
Journal of Object Technology
Published by AITO — Association Internationale pour les Technologies Objets

http://www.jot.fm/

Modelling of
Language Syntax and Semantics:

The Case of the Assembler Compiler

Vadim Zaytseva

a. Raincode Labs, Brussels, Belgium

Abstract Application of software language technologies, whether analyti-
cal, transformational, or generational, in an industrial context is usually a
taxing endeavour, with high demands in qualification levels of developers
involved in it. Yet, if applied successfully, in the right places and with the
right amount of effort, they promise high returns in terms of optimisation,
effectiveness, validity and verifiability. In this paper, we report on our
experience on writing a compiler for a complex second generation legacy
programming language originally intended to be used on a mainframe.
The business case for this product deals with companies migrating their
software systems off the mainframe to cloud native or PC. Leveraging the
documentation, available domain knowledge, several sample projects and
a test suite, as well as several proprietary DSLs, we successfully modelled
syntax and semantics of hundreds of instructions of that language, to
the point of producing a compiler with a very limited group of compiler
developers in limited time. The compiler is currently deployed at some of
our customers and has received a top technology award from Microsoft.

This report is meant to serve as a sample snapshot of how compilers
can be built in the industry with software language engineering techniques.
Traditional problems of compiler construction such as parsing or code
optimisation either did not present a noticeable challenge or did not
manifest themselves altogether in the course of this project, but MDE
matters such as model transformation, modular design, the use of DSLs
and meta-tools, were a constant concern. The focus of the report is in
truthful representation of the domain as well as the details of the project,
on reflection of the choices that were taken or could have been taken in
the meantime, and on lessons learnt during the project.

Keywords Syntax; semantics; legacy systems; knowledge extraction; expe-
rience report; software language engineering.

Vadim Zaytsev. Modelling of Language Syntax and Semantics: The Case of the Assembler Compiler.
Licensed under Attribution 4.0 International (CC BY 4.0). In Journal of Object Technology, vol. 19,
no. 2, 2020, pages 5:1–22. doi:10.5381/jot.2020.19.2.a5

http://www.jot.fm/
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.5381/jot.2020.19.2.a5
http://dx.doi.org/10.5381/jot.2020.19.2.a5
http://dx.doi.org/10.5381/jot.2020.19.2.a5


2 · Vadim Zaytsev

1 Introduction

The Raincode ASM370 compiler [Rai16] is a product that can be used to run programs
written in the IBM mainframe assembler, on PCs or servers with .NET Framework or
.NET Core. It is a proper compiler, since its input is a program text written in assem-
bler, and it treats this assembler program as a normal compiler would have treated a
program in any other high level language: parses it, constructs an intermediate model of
it, annotates it, transforms the model and finally produces an executable file. (This goes
against the industrial state of the art in modernisation of second generation languages,
which usually entails mapping assembler instructions to statements in some other low
level language such as C [Mic, War13, WZH04, B+, Sou, War01, JSW99, War99] or
semi-automated extraction of some sort of abstract models that could potentially guide
system redevelopment [LB96, War00]). The technologies to implement it, are propri-
etary metaprogramming DSLs [Bla95, Bla01], as well as native .NET languages like C\
and framework-specific software languages like the LINQ language extension [MBB06],
the Roslyn framework [NPC+19], C\ libraries, WPF event handling API [Mic06],
XAML user interface definitions [Mic08], etc. The development of the compiler in-
volved overcoming many challenges like reimplementing proprietary macros, solving
performance issues and dealing with self-modifying code [Zay17b], but ultimately led
to a product that satisfies customers [Rai16] and wins awards [Pre16]. In this paper
we focus on the modelling aspect and follow how the syntax and semantics of the
ASM370 was formulated, extracted, transformed and finally evolved to enhance the
already working compiler to target yet another platform.

The paper is structured as follows: subsection 1.1 goes deeper into the background
of the issue, explains what ASM370 is, how it is used, why have we embarked on the
journey of building a compiler for it in the first place, and what were the main abstract
challenges of this endeavour; section 2 motivates the metamodel(s) for modelling syntax
and semantics of the elements of the instruction set of the chosen language and explains
how different elements of the models were manifesting themselves and were being used
at various stages of development and execution; section 3 explains the first model
transformation step where the syntax models conforming to the desired metamodel
were extracted from faulty and only semi-structured documentation, debugged and
corrected; section 4 switches to the semantic models and provides details on how
their metamodel was designed and what is its link to the artefacts that eventually
needed to be generated from the models; section 5 revisits a number of related research
endeavours that either were used in this project or go in parallel to it but could be
profitably combined into it. Finally, section 6 summarises the entire project in a
somewhat verbose way in an attempt to provide valuable lessons to be learnt for future
industrial projects of similar nature, or some tension points and open problems for
future academic projects to solve and address.

1.1 Background and Problem Statement

High Level Assembler (HLASM from this point on) is a second generation language
available on IBM mainframes (Figure 1). The other classical “generations” are the
first (raw machine code), the fourth (DSLs) and the third (a catch-all category
for all other general purpose software languages for programming, modelling, data
definition, action description, screen specification, batch processing, and so on) [BJZ16,
Zay17c]. Notwithstanding widespread third generation alternatives like COBOL or
PL/I, HLASM is being used for a number of reasons, some typical arguments for a lower

Journal of Object Technology, vol. 19, no. 2, 2020

http://dx.doi.org/10.5381/jot.2020.19.2.a5


Modelling of Language Syntax and Semantics: The Case of the Assembler Compiler · 3

Figure 1 – IBM System/360, the mainframe for which Basic Assembler Language (BAL)
was originally developed in 1964. BAL went through several versions and gained the
name HLASM in 1992. For detailed history of the IBM assemblers, please refer to
Blagodarov et al. [BJZ16] The photo was taken by the paper author at Deutches Mu-
seum during MoDELS 2019 in Munich.

level language (fine-grained or bespoke memory management, error handling, tailoring
and optimisations, bit-level interoperability), others being legacy consequences of the
software development process (e.g., avoiding the costs of a 3GL/4GL compiler) [BJZ16].
The main reasons for us to develop an HLASM compiler was to provide the option
for our customers to migrate their existing HLASM codebase in the scope of a global
migration off the mainframe into PC, Azure, Cloud-Native, etc. In such cases this
option would allow them to ignore the presence of HLASM assets in their codebase
until better times, and use a modern IDE later to help reverse engineering it and
rewriting it with modern technologies. These HLASM assets are not meant to be kept
operational forever: usually we see barely several thousands lines of HLASM within a
typical portfolio of 20–200 million lines of code in higher level languages (there are
known cases up to 343 MLOC at Bank of New York Mellon [Mit12], but the largest
portfolio to have been migrated by Raincode Labs, is 250 MLOC [Rai19]).

HLASM code typically covers basic features like date and format conversions, with
a great fan-in (many other components relying on them extensively, up to millions calls
per program). Such a setup means that replacement of HLASM components is feasible
but extremely dangerous without proper tool support for testing and refactoring, and
is undesirable to undertake during massive migration where resources are inevitably
running thin anyway. In rare cases with enough inner administrative support it is
possible to take the quality-first approach and work on improving the quality of the
existing production codebase prior to migration [WPP+19], but it is more common to
postpone such activities until after the migration is complete [Fea04].

Journal of Object Technology, vol. 19, no. 2, 2020

http://dx.doi.org/10.5381/jot.2020.19.2.a5


4 · Vadim Zaytsev

1.2 Main Challenges and Approaches

On the grand scheme of things, the two main engineering complications in implementing
HLASM as a compiler, are its massive instruction set and its equally massive and
wickedly flexible macro system. Good sources of information about both of them,
can be found in IBM’s official documentation: Principle of Operation [IBM17] for
the instruction set (and a general overview of the z/Architecture), and General
Information [IBM13] for the macro language (and other HLASM extensions). For the
purpose of limiting the scope of this report, we focus here on the former.

The most noticeable challenges faced by the project, were the following:

• Dealing with legacy ecosystems: e.g., language design choices were motivated by
punchcard-era technology and are hard to link to anything explainable nowadays.

• Customer inflexibility: given the extremely fragile nature of assembler code and
the significance of this code to its owner, there were no compromises to be made
in technical choices within the system as well as within the migration process.

• Efficiently executing low-level code written with the use of peculiar idioms up to
and including self-modification at runtime.

• The massive scale of the instruction set: while typical high-level programming
languages have 20–50 major constructs, HLASM was treated as a high-level
language but contained almost a thousand of instructions, each of which had to
be examined and implemented individually.

• Non-orthogonality of the instruction set: conceptually similar instructions tend
to have subtly and counter-intuitively varying semantics.

• Artefact unavailability: we had no direct access to the original compiler for
which our product was meant to be a replacement, and for legal reasons were
not allowed to consult its source code, its other components (such as macro
definitions) or existing alternative reimplementations.

• Lack of automation for initial steps: instead of tangible verifiable executable
models as a starting point, we had to rely on documentation which was manually
written, incomplete, contained errors and explicitly (legally) prohibited automatic
derivations of commercial artefacts from it, even when it was possible.

In order to face them, we:

• Combined compilation (code generation) and interpretation (emulation) in one
language processor [Zay17b].

• Used notation-parametric recovery [Zay12] and semiparsing [Zay14] to extract
initial data ready for manual curation.

• Inferred models of syntax and semantics of HLASM [IBM13, IBM17] from
available sources and generated compiler [BJZ16, GZ19] components from them.

• Applied model repair [CBSK12], model refinement [PMBM98] and model trans-
formation [BP96] to improve our models.

• Designed several tool-supported domain-specific languages [MHS05] to express
both commonalities and peculiarities in syntax and semantics.

Journal of Object Technology, vol. 19, no. 2, 2020

http://dx.doi.org/10.5381/jot.2020.19.2.a5


Modelling of Language Syntax and Semantics: The Case of the Assembler Compiler · 5

ICM R1,M3,D2(B2) [RS-b]
1 0 1 1 1 1 1 1 ␣ ␣ ␣ ␣ ␣ ␣ ␣ ␣ ␣ ␣ ␣ ␣ ␣ ␣ ␣ ␣ ␣ ␣ ␣ ␣ ␣ ␣ ␣ ␣

0xBF R1 M3 B2 D2

ICMY R1,M3,D2(B2) [RSY-b]
1 1 1 0 1 0 1 1 ␣ ␣ ␣ ␣ ␣ ␣ ␣ ␣ ␣ ␣ ␣ ␣ ␣ ␣ ␣ ␣ ␣ ␣ ␣ ␣ ␣ ␣ ␣ ␣ ␣ ␣ ␣ ␣ ␣ ␣ ␣ ␣ 1 0 0 0 0 0 0 1

0xEB R1 M3 B2 DL2 DH2 0x81

ICMH R1,M3,D2(B2) [RSY-b]
1 1 1 0 1 0 1 1 ␣ ␣ ␣ ␣ ␣ ␣ ␣ ␣ ␣ ␣ ␣ ␣ ␣ ␣ ␣ ␣ ␣ ␣ ␣ ␣ ␣ ␣ ␣ ␣ ␣ ␣ ␣ ␣ ␣ ␣ ␣ ␣ 1 0 0 0 0 0 0 0

0xEB R1 M3 B2 DL2 DH2 0x80

Figure 2 – Three different variants of the INSERT CHARACTER UNDER MASK instruc-
tion [IBM17, pp.7-262–7-263]

2 Modelling Syntax and Semantics of an Instruction

The main instruction set (basic instructions + extended mnemonics) of HLASM consists
of 953 individual instructions, all of them described in the latest release of Principles
of Operation [IBM17], a 1902 pages giant of a book. Our first attempt at modelling
all of them was to classify each manually according to its syntax and semantics, into
one or more of general classes like “addition” or “floating point” and inferring the
final picture by composing known fragments. Unfortunately, this endeavour relatively
quickly came to a halt due to our overestimation of the orthogonality of the language
and underestimation of the scale. We have seen cases where each combination of
conceptually different classes had to be uniquely implemented, effectively nullifying
the non-explosion contribution of model composition. We have seen cases where there
would be an addition instruction of a particular subkind but not a corresponding
subtraction instruction, and the opcode that would have been logical for such a
subtraction instruction to have, was devoted to something entirely unrelated. We
have seen cases where within the same group different instructions were assigning
a “condition code” (the result code of an operation) with different strategies or not
assigning it at all. This all prevented the straightforward “top-down” remodelling of
the instruction set and forced us to look more individually at the most relevant of
them, slowly broadening our scope whenever possible and in general working our way
upwards from the classification and properties already listed in the documentation or
apparently required for the artefacts that were to be generated.

Despite the fact that we mostly treat HLASM as a high level language, it is an
assembler with all the consequences attached to it — in particular, it allows to treat
code as data and data as code. Hence, a program can read its own parts as data
(so we need to imitate the memory model at runtime) and can alter its own code
by simply writing over it (so we have to retain the knowledge of how to parse bytes
into instructions at runtime as well). It is important to know this at this point of
the story because it means that beside the traditional source-to-code compiler we
have to generate an emulator capable of parsing and executing any instruction given
its address in memory. The actual compiler will then resort to calling the emulator
when the analysis of the compiled code indicates this necessity (i.e., when the code is
modifying itself).

As an example, consider the INSERT CHARACTER UNDER MASK instruction, which
structure is depicted on Figure 2. It has three variants, distinguished by programmers

Journal of Object Technology, vol. 19, no. 2, 2020

http://dx.doi.org/10.5381/jot.2020.19.2.a5


6 · Vadim Zaytsev

with the use of the right mnemonic: “ICM” is used for the basic version, “ICMY” for the
version that uses a longer 20 bit displacement and “ICMH” for the ASM 370 version
that “inserts” its “characters” into the higher 32 bits of the 64 bit register R1 (otherwise
all 32 bit operations are assumed to operate on the lower 32 bits of 64 bit registers).
The formula “R1,M3,D2(B2)” after the mnemonic also refers to the encoding used by
the programmers: it means that if a programmer writes “ICM 1,2,3(4)”, it means
the first register, the fourth base, a displacement of 3 and a mask equal to 2. Note
that the order of operands is different for the programmer, for the emulator and
for the description (we have no explanation for this difference, but learnt to accept
legacy systems as they are and not as they should be; there was probably a very good
reason for it at design time). So when the text of the description of the instruction’s
behaviour mentions its “second argument”, they mean D2(B2), which is the third of
the arguments that the programmer writes down. Also, the programmer writes it
down as a displacement with the base following it in parenthesis, while the memory
layout puts the base before the displacement (which in turn can have its higher bits
positioned even lower for the ICMY and ICMH variants). Handling three numbering
schemes is too error-prone to be done manually, so we extract the knowledge of them,
save it in the models and generate artefacts from it automatically as a way to avoid
any mistakes when handling all 952 instructions.

To the right of the programmer’s notation, we see “[RS-b]” or “[RSY-b]”, which
is the so-called “format” of the instruction. All instructions of the format RS-b are
structured similarly: they start with eight bits of the fixed opcode (different per
instruction variant), have the next four bits for the register, then the mask, then
the base and then the displacement. Dealing with 60 reusable formats is easier than
dealing with 952 individual formats, even though the documentation contains errors
and slight inconsistencies about them (will be elaborated in section 3).

The little bit positioning scheme shows for each format, which bits correspond to
which argument. These arguments are still too low level for modelling instruction
behaviours: for example, the base and the displacement are never used independently,
they are two parts of one conceptual entity representing an address in the memory.
Hence, if we just implement the correct mapping between the format’s bitwise parts
and the conceptual runtime entities, we will be able to let ICM and ICMY to have exactly
the same semantics. (The only difference is how the displacement is calculated, which
is irrelevant when we already think on the level of addresses, registers and masks).

Figure 3 can help us see the information flows though the solution. The Principles
of Operation [IBM17], broadly speaking, has four interested sources of information:
chapter 5 contains its definition of formats, from which we extract intermediate format
models to be tested, validated, completed and finally used to build a model of each
instruction’s syntax; chapters 7–20 contain many natural text sections, 381 for the
fourth edition we mostly used in our project, which had to be consulted regularly
to resolve ambiguities as well as to build models of each instruction’s behaviour;
appendix B contained several tables (called “lists”) with basic information such as
instruction’s name, mnemonic, opcode and format, all ending up in each instruction’s
syntax model; and appendix C with another table concerning different strategies to
calculate condition codes—the two-byte result codes— which will be explained in more
detail in section 3.

The condition code (CC) models, together with the models of emulator’s desired
behaviour, lead to generating the emulator code, which forms a part of the runtime
that both the compiler and the compiled program will use. Since the emulator needs

Journal of Object Technology, vol. 19, no. 2, 2020

http://dx.doi.org/10.5381/jot.2020.19.2.a5


Modelling of Language Syntax and Semantics: The Case of the Assembler Compiler · 7

Compiler

Runtime

Instruction Set ModelPrinciples of Operation

[Ch.5] Instruction formats

[Ap.B] Lists of instructions

[Ap.C] Condition codes

Format Models

Emulator Semantic
Models

CC Models

Emulator

Macros

Bitness Models

Inlining Semantic
Models

Instruction Syntax 
Models

[Ch.7–20] 381 text sections

Figure 3 – A megamodel of the project, showing information sources, different kinds of
models, relations among them and the final artefacts of the product. Dashed lines rep-
resent “used by” relationships, solid lines are model transformations: black ones are
mostly manual effort; red ones (or dark grey in monochrome) are semi-automatic with
error correction or tolerance built in; green (or light grey) are fully automated trans-
formations. The artefacts on the far left are parts of a volatile manually created PDF.
The artefacts on the far right are code. All artefacts in the middle with a “model” in
their names are proper models, each having a formally defined metamodel to which
they conform.

to parse the instruction from memory bytes, its code also incorporates the knowledge
about syntax. The model of the instruction set (in XML) together with the definitions
of all the used macros (in HLASM), is provided to the compiler together with the
source program. This is done to increase configurability at the customer’s site where
they might want to turn off support for certain instructions without recompiling the
compiler. Not shown on the diagram is documentation, derived from all the models put
together and rendered in a human-readable form to simplify debugging and providing
visual aid to our compiler developers.

The final model of the instruction set contains, for each instruction, the following
components. Name, such as “insert character under mask” or “branch and link”, as
a short description of the instruction, intended for human comprehension. Besides
naming a group of conceptually (but not always implementationally!) related instruc-
tions, it is essentially useless for the HLASM compiler except for the runtime if logging
is turned on (this was used to test previously unseen customer code at customer
premises outside our usual development environment). Mnemonic, such as “ICM” or
“BAL”, is intended for the HLASM programmers and used in the parser that reads an
HLASM program in order to recognise instructions, macros and commands it uses.
Please note that the compiler frontend uses a parser model and does not encode the
syntactic structure explicitly in the parsing algorithm as some other compilers do:
as indicated earlier, we need to retain the possibility of tweaking the instruction set
at the customer’s side without recompiling the compiler. Next is operation code
(or “opcode” for short), such as 0xBF for ICM or 0xEB81 for ICMY. The opcode is a
bytecode-level representation of the instruction, that identifies it for the CPU (as well
as for our emulator) and thus must also be used as a part of the code generation.
This is known as “instruction decoding” [Kli19b]. “Inlining” is the name we use to
refer to the “true” compilation where an input instruction is compiled to one or more
individual atomic bytecode instructions of the target platform. For instructions that
allow inlining, their model in the instruction set includes the explicit inlining conditions
and the code template to be generated. This is required to enable customisation at
the user side to switch inlining on or off per instruction for each particular customer.
The microcode DSL will be explained in section 4.

Journal of Object Technology, vol. 19, no. 2, 2020

http://dx.doi.org/10.5381/jot.2020.19.2.a5


8 · Vadim Zaytsev

3 Model Extraction

Now that we know what kind of information we need in our models and where we can get
it from, let us focus on the information extraction process itself. We extracted the initial
models directly from the HLASM manual PDF [IBM17] with an ad hoc developed
technique similar to grammar extraction [LZ11, Zay12]: tolerant error-correcting
heuristic-based semiparsing of unstructured data with its subsequent curation [Zay14].
As shown on Figure 3, of particular interest for that process are several multi-page
tables in appendix B of the Principles of Operation [IBM17] that contain instruction
summaries, coupling the name (intended for human comprehension, such as “branch
and link” or “compute message authenticating code”) with the mnemonic (intended for
programmers and the parser, like BAL or KMAC), the opcode (hexadecimal identification
of an instruction, spanning one or more bytes) and “characteristics” (97 flags describing
frequently occurring behaviour like raising particular kinds of exceptions or having
a particular bitwise format). Appendix C contains another useful 6-page table that
defines per instruction the strategy used to set the condition code depending on the
result of the local computation (an example strategy could be “0 if zero, 1 if negative,
2 if positive, 3 if overflow”). There are 88 such different strategies in total. Each of
the tables contained a small number of mistakes and inconsistencies, so we cannot
honestly claim to have derived the resulting models from the documentation, but
rather reconstructed by heavily relying on several official information sources.

We found and (manually) fixed some errors and inconsistencies in the documenta-
tion, most commonly referred to formats of instructions. The problems mostly fell
into one of the five categories:

• lacking formats that use only the first 8 bits for the opcode instead of 16
announced (three cases of the S format);

• referencing non-existing formats (e.g., RRF instead of RRF-c; or RSL on multiple
occasions instead of RSL-a or RSL-b) which were used in earlier versions of the
same document and have not been properly replaced [IBM04];

• slightly misstating a different format within the same group such as RRF-e
instead of RRF-c (19 cases), RRF-b instead of RRF-a (4 cases), RRF-e instead
of RRF-b (2 cases) or RRF-a instead of RRF-b (1 case), possibly related to
plans of finding some uses for extra arguments but ending up not using them in
the final version;

• lacking formats with varying uses of a register field (RR and RRE have variants
with just one register instead of two for SPM and IPM; RR has a variant with a
mask instead of a register for BCR);

• lacking formats for having an immediate value occupy the space normally al-
located to an address field (10 cases of RSY-a) or to several fields (8 cases of
RS-a).

Of these five, the first two are the most severe and not tolerably ignorable: the
first one will yield undefined behaviour depending on the implementation of the final
model-to-code transformation; the second one will even leave models non-well-formed.
The third and the fourth categories would lead to performance problems: in the third
case, data will be fetched without need, and in the fourth case, data will be fetched in
a wrong format (and will need to be refined explicitly as an additional semantic step,

Journal of Object Technology, vol. 19, no. 2, 2020

http://dx.doi.org/10.5381/jot.2020.19.2.a5


Modelling of Language Syntax and Semantics: The Case of the Assembler Compiler · 9

adding to the modeller’s manual effort). The last case is the most dangerous of all,
since it can lead to not only unnecessary data fetches, but also fetches from incorrect
addresses, occasionally leading to access violations at runtime in a very difficult to
reproduce fashion.

One of the useful model properties that was not coded explicitly in any of the
tables in the original documentation but was possible to extract manually after reading
the textual descriptions of all instructions, was the bitness of their arguments — i.e.,
for each of the arguments to remember whether it is 8 bit long, 16 bit, 32 bit or 64 bit;
whether it is signed or unsigned; whether the argument is in a binary coded decimal
form; and whether the argument designates a pair of registers instead of just one (e.g.,
in MR R4,R8 the first argument is a pair of registers R4 and R5 which are virtually
concatenated and used as one 64-bit number).

All these examples serve to demonstrate problems that are typical in dealing
with documentation of large legacy languages: information is partly missing, partly
incomplete, partly subtly wrong. In retrospective, HLASM documentation was on the
higher side of the quality spectrum: there were no legal reasons to stop us from using
it, it was reasonably complete and quite thorough. All the bugs we found in it, were
just manifestations of its manual nature and differences between a manually written
2000-pages text and an explicit executable verifiable model.

4 Semantic Steps Modelling

It has been mentioned that as a fallback mechanism to deal with self-modifying code
and using code as data, we incorporate an emulator into our runtime. This runtime is
used by the compiler, as well as by any compiled program, since it contains support
for omnipresent data structures like binary coded decimals. Executing a HLASM
instruction through the emulator is the safest way since it works in all circumstances,
but it is also the slowest. Thus, if the compiler determines that more optimal ways of
executing an instruction, are unsafe, or that there is no alternative (like for EXECUTE
explained below), it compiles the instruction to a call to the emulator. This emulator
has to perform basically five tasks:

• determining which instruction is the next one to be executed;

• parsing its arguments according to the syntactic model;

• fetching the required input data;

• actually executing the steps of core behaviour;

• possibly modifying the condition code;

• determining the program counter for the next instruction.

HLASM, since no low-level language would be complete without an eval-like
construct [RHBV11], also has an instruction called EXECUTE whose actual execution
means emulating another instruction from an arbitrary memory location, so one part
of the emulator must be able to connect to the others as well.

Determining which instruction to execute next (“instruction decoding” [Kli19b]),
in a broad sense, is just parsing [ZB14]. Having the knowledge about the general
syntactic structure of each instruction (its length in bytes, positions of instruction-
defining opcode bytes and their values) makes this a trivial generative task, with some

Journal of Object Technology, vol. 19, no. 2, 2020

http://dx.doi.org/10.5381/jot.2020.19.2.a5


10 · Vadim Zaytsev

handling of corner cases—e.g., the EXECUTE instruction mentioned above, does not
return to the original call location if the executed instruction is a branching one.

Within the individual instruction execution part, there is also a syntactic part that
fetches the required number of bytes from the memory, reconstructs actual values out
of them (for instance, a 12 bit value would be constructed by masking and bitshifting
one byte and disjuncting it with the other), and preparing them for use (for example,
a memory address is composed out of base, index and displacement, which are never
used individually). The next part is truly individual: for example, an arithmetic
instruction actually adds, subtracts, bit-manipulates or otherwise transforms its input
values and stores the result at the expected location. While the first parts (instruction
identification and its arguments preparation) were fairly straightforward to infer from
our models of syntax, the individual semantic part demanded more work.

In order to model the behaviour of each instruction explicitly, we defined “mi-
crocode”, a DSL for modelling typical atomic semantic steps such as:

• Fetch a value from a register or from an address in memory

• Extend the sign from an 8-bit or 16-bit value to 32 bits

• Spread a 64-bit value over bytes in memory

• Compute an operation on values with a possible overflow

• Convert a value from a zoned decimal to a packed decimal

• Assign conditions to possible condition codes

• Set the highest bit of a value to 1

• Check a condition and perform one of other actions depending on it

• Perform an action looping through consequent bytes

Some of these steps, such as the conditional step or the loop, are naturally recursive
in the sense of containing other semantic steps.

The idea of semantic steps and modelling the behaviour of each of the instructions
as a sequence (in fact, a tree) of such steps, works to our satisfaction, with two
adjustments. First of them was dealing with condition codes: in HLASM there are
many instructions that change a special “magic” two-bit flag called “the condition code”
as a result of their execution. For example, any addition instruction on machine words
(AR, AGR, AGFR, A, AY, AG, AGF) or halfwords (AH, AHY, AHI, AGHI) assigns a condition
code 0 when the result of the addition is zero and no overflow occurs, a condition code
1 when the result is negative without overflowing, a condition code 2 when the result is
positive without overflowing, and finally a condition code 3 in the case of an overflow
outside the expected bit length. However, actually assigning such condition codes
is a costly operation — mostly due to the fact that the .NET Framework does not
detect arithmetic overflows naturally, and there exists no perfectly reliable algorithm
known for making such predictions, so one needs to perform the operation (addition
in this example) on larger data types and then check whether the result would have
fit in the smaller type. This by itself would not have been such a problem and would
have been seen as necessary evil, but in our observation these condition codes are
not always checked right after they are assigned, and it is not uncommon to have
several consequent instructions overwriting condition codes without reading them.

Journal of Object Technology, vol. 19, no. 2, 2020

http://dx.doi.org/10.5381/jot.2020.19.2.a5


Modelling of Language Syntax and Semantics: The Case of the Assembler Compiler · 11

1 case 0xBF: // INSERT CHARACTERS UNDER MASK (low) (ICM)
2 i3 = mem[instructionAddress+3]; // the instruction is four bytes long
3 i2 = mem[instructionAddress+2];
4 uint r1 = (uint)(i1 >> 4); // the first argument designates a register
5 uint v1 = (uint)GetR(r1); // read the value of the register since it is an input
6 uint m2 = (uint)(i1 & 0xF); // the second argument is a mask
7 uint b3 = (uint)(i2 >> 4); // base and displacement of the third argument
8 uint d3 = (uint)((((uint)i2 & 0xF) << 8) | i3);
9 uint a3 = Addr(GetRZ(b3) + d3); // compute the actual memory address based on them
10 _bCodeCode = 0x0; // the condition code will be computed directly, not lazily
11 var t1 = 0;
12 if ((m2 & 8) != 0) // check the leftmost bit of the mask
13 v1 = (uint)((v1 & 0x00FFFFFF) | ((uint)mem[a3+(t1++)] << 24));
14 if ((m2 & 4) != 0) // check the second leftmost bit of the mask
15 v1 = (uint)((v1 & 0xFF00FFFF) | ((uint)mem[a3+(t1++)] << 16));
16 if ((m2 & 2) != 0) // check the third leftmost bit of the mask
17 v1 = (uint)((v1 & 0xFFFF00FF) | ((uint)mem[a3+(t1++)] << 8));
18 if ((m2 & 1) != 0) // check the last (rightmost) bit of the mask
19 v1 = (uint)((v1 & 0xFFFFFF00) | mem[a3+(t1++)]);
20 SetR(r1, (uint)v1); // assign the fetched value to the register
21 if ((m2 != 0) && ((mem[a3] & 0x80) != 0))
22 ConditionCode = 1; // CC=1 if leftmost inserted bit is set
23 else
24 {
25 byte t2 = 0;
26 for (int it=0;it<t1;it++)
27 t2 |= mem[a3+it];
28 if ((t2) == 0)
29 ConditionCode = 0; // CC=0 if mask is zero or all inserted bits are zero
30 else
31 ConditionCode = 2; // CC=2 otherwise
32 }
33 return nextProgramCounter; // continue execution as normal

Figure 4 – ICM: Insert Character under Mask (emulator code in C
\
)

Hence, it made sense (and a measurable impact on performance) to explicitly model
the condition code computation instead and delay the actual computation of them
until (if ever) it is actually required. Once the condition code has been accessed, it is
computed and cached for possible repetitive uses later. Evolving our system to switch
to this lazy condition code evaluation was done by tweaking the model transformation
only, without any change to the models themselves.

Having witnessed the impact of this optimisation, we engaged in a separate
performance analysis project [Mje17] to investigate other possible bottlenecks in the
system and ways to overcome them. The HLASM compiler has never been performance-
focused, but it could not afford to be entirely performance-ignorant, for both technical
and marketing reasons. The findings included a list of hotspots — instructions that
were both used often in the sample code of our customer, and took significant time
to execute. For some of them we have proposed alternative implementations, coded
directly in IL (the bytecode-level language of the .NET Framework and .NET Core).
One of the biggest performance gains was the ICM instruction we have seen above.
Normally, it takes a register, a mask and a memory address and fetches consecutive
bytes from the memory location into the register according to the mask — for example,
if the mask is 1001 binary, then there are two bytes fetched, one ends up as the highest
byte of the target register, the other one as the lowest byte, and the two bytes in
between remain unchanged. As it turns out, it is a common idiom among HLASM
programmers to have ICM with a mask of 1111 which just straightforwardly fetches
four consecutive bytes from a memory location into four consecutive bytes of a target
register. The reasons to use ICM instead of the L (“load”) instruction that performs

Journal of Object Technology, vol. 19, no. 2, 2020

http://dx.doi.org/10.5381/jot.2020.19.2.a5


12 · Vadim Zaytsev

the same procedure is that L leaves the condition code unchanged while ICM assigns a
value to it, allowing to fetch four bytes with one instruction and, for instance, check if
they yielded zero with the next instruction.

The general implementation of ICM easily fills up the entire screen (see Figure 4:
all comments except the one on the first line are added manually for readability, the
rest of the program is fully generated), but its full-mask-simplified form is extremely
simpler and consists of two IL-level instructions for the actual semantics and barely a
dozen more for computing the condition code. This is how we arrived at the idea of
conditional inlining : if the code is safe (not self-modifying) and if the inlining conditions
are met (in this case, if the mask is 1111 binary), then the instruction is compiled to
its shorter optimised form; otherwise the emulator is called with the right arguments.
This technique has been clunkily named previously as “compilepretation” [Zay17b]
since it combines aspects of traditional compilation (model-to-code) and interpretation
(operational semantics). Introducing concurrency into the mix has bears another
clunky name of “interpretisation” [Kli19a].

To verify the equivalence of the general operational semantics of the emulator
and the partial optimised inlining semantics, we used an old program transformation
technique called supercompilation (supervision + compilation), based on works of
Lombardi [Lom67], Futamura [Fut71], Ershov [Ers77] and Turchin [Tur80]. It was
designed specifically to transform executable models by observing/supervising their
behaviour and compiling them to self-sufficient models that achieve the same effect
while being smaller thanks to utilisation of additional (meta)data. For the example from
Figure 4, if the mask is known to be 1111 binary, then all the ifs checking for individual
bits on lines 12, 14, 16 and 18 succeed, so we reach the same effect by immediately
executing the positive branches of each conditional statement. Furthermore, the
counter t1 reliably increases by 1 so it does not need to be kept since all the instances
of reading it become constants, and then it does not even have to be defined on line
11. Then, since all bytes of v1 will be overwritten, there is no need to mask-carve
the right ones with bit conjunctions and bit disjunctions. In fact, there is no need to
read its original value into v1 on line 5 at all, it will be overwritten in any case. In a
similar series of near-trivial simplification steps we can prove that constructing t2 in
lines 25–27 and checking it for being equal to 0 is the same as checking v1 directly
for being equal to 0. Theoretically we could have implemented such supercompilation
steps to infer the inlining code based on the model of the emulator semantics and
the known condition, but for technical reasons we decided to write the inlining code
manually and then use supercompilation for verification of its correctness.

The microcode language had to be evolved in a significant way twice. The first
change was to accommodate the inlining abstractions due to the differences between
domains. For instance, assignment statements in the emulator assume some high
level language that they will have to generate at some point down the toolchain
(such as C\) and thus rely on things like variables and even their automatic type
inference, while the inlining semantic steps are meant to produce very low level
bytecode constructs. Thus, they have to integrate well with their context of gaining
input values and producing output values. For example, AssignProgramCounter is a
microcode command that makes sense in both contexts (emulating and inlining), so
it requires no special attention. However, DeclareValue, when used in an emulator,
allows an optional initialiser that can be used to assign the value right after declaring it
(since it is extremely easy to do on the level of C\, and quite useful at times), but there
are too many complications for inlining, so we disallow initialisers there. Similarly, the

Journal of Object Technology, vol. 19, no. 2, 2020

http://dx.doi.org/10.5381/jot.2020.19.2.a5


Modelling of Language Syntax and Semantics: The Case of the Assembler Compiler · 13

Argument expression is an approximate equivalent of the Variable expression and its
variants (Value, Address, etc), but requires an explicit type each time it is used, due
to the low-levelness of IL.

The second change was related to the current activities around the HLASM
compiler where we aim to use LLVM as a backend instead of the .NET Framework,
so it covered a polishing pass over the microcode commands to remove the C\ bias
and simplify possible generation of C code such that our customers can execute their
HLASM programs on arbitrary Linux machines without relying on .NET Core. These
adjustments were relatively minor and concerned details like explicit and implicit type
conversion rules in C and C\ when dealing with signed and unsigned integers.

In section 2 and Figure 3 we mentioned that some models are kept until compile time
or even runtime. To be more precise, in this case there is a model of inlining semantics
used at compile time, but it conforms to a different metamodel, better suitable to
the architecture of our compiler. The transformation from models conforming to the
microcode metamodel to models conforming to this compile-time-specific metamodel,
is not far beyond trivial in complexity, and does not challenge the state of the art in
model transformation.

5 Related Work

Extracting fully structured curated data with heuristics from a semi-structured source,
as we used in section 3, is related to many things: we have already mentioned
grammar extraction based on textual cues [LZ11] and on known properties of anchor
symbols [Zay12]. The bibliography of [Zay14] provided us with a comprehensive view
on the topic of using all sorts of tolerant, permissive and error-correcting parsing. The
research area of mining unstructured data has been active for at least two decades,
and produced quite a number of various techniques [Fel99], mostly based on heuristics
and/or data mining.

Optimising a compiler by specifically targeting code idioms [AS14] is not a new
idea and has been successfully employed for almost three decades in FORTRAN
compilers [HSVF08, PP91, PE95] and later even on the mainframe [KKM+06]. In a
contemporaneous project we are trying to find ways to identify such idioms automati-
cally with graph mining [PNM+19, FZM+19, PBM+19, NPF+19] since their manual
construction for each language is rather labour-intensive.

One of the substantial recent contributions to research on execution semantics
of software languages was done by Tikhonova [Tik19]. In her terms, our microcode
(section 4) defines a semantic domain and what we call models of instruction semantics
together form a semantic mapping as specification templates (possibly with less
sufficient formal rigour on our side). Conceptually Tikhonova’s work on Constelle
rhymes with our experience and is well aligned with it; however, technically even if
Constelle was released before the start of our project, it is unlikely that we would
have chosen to use it directly for the fear of relying on third party technology with
unknown and unpredictable lifespan and maintainability status. On the other hand,
the component-based executable semantics of funcons [vBMS19, M+19] served as a
major inspiration in this project to design the microcode, toned down by the fact
that we needed it for one very specific language in the scope of one project, and
Mosses initially planned funcons to serve as a playground for creating all kinds of
different DSLs. Besides that, the approach obviously aimed at experimental forward
engineering of small software languages, was successfully applicable to this project of

Journal of Object Technology, vol. 19, no. 2, 2020

http://dx.doi.org/10.5381/jot.2020.19.2.a5


14 · Vadim Zaytsev

reverse engineering semantics of a relatively large legacy software language.
Similarly, our own model transformation framework was developed in-house and

was never meant to cover the entire domain of model transformation. There are much
better general purpose academic frameworks like MOMENT that formalised a model
transformation language in a term rewriting framework Maude [BCR06], which has
also seen applications in transforming legacy software [BCR05].

One of the unmissable references in the field of assembler modelling is the work of
Kennedy et al [KBJD13] who managed to model the Intel x86 assembler with type
classes and dependent types in Coq. They never reached complete coverage of the
language, but for the covered subset they provided auto-proven theorems on correctness
(relating in-memory code to a verifiable formula). There are similar projects such as
one by Schmaltz and Shadrin modelling joint semantics of C with macro assembler
also for the purpose of verification [SS12] — notably the authors recognised later that
the definition was leaky with respect to some stack manipulations and needed to cover
the basic assembler as well [PSS12]. Even simpler methods of semantic modelling
seeing programs as collections of execution paths with weak preconditions [WF03],
are inherently incapable of modelling self-modifying code similar to well-used HLASM
features omnipresent in industrial codebases. At the current point it does not seem
possible for us to make a step from having constructed models of semantics for
individual instructions, to inferring a full system specification suitable for verification
and proving useful properties.

On a more technical side, Klimiankou recently published an interesting story
centred primarily on parsing of instructions for IA-32 (which is the Intel assembler
as opposed to our IBM assembler, but the two are very much alike) [Kli19b]. In our
work his “instruction decoding” corresponds to the emulator figuring out at runtime
which instruction to execute next and how to turn its bits into meaningful entities
corresponding to its arguments in terms of which its core semantics is expressed.
Klimiankou managed to build the fastest decoder for IA-32 commands [Kli19b] and
was able to leverage it to migrate from switch-based dispatch (that we also use) to
concurrent threaded code [Kli19a].

6 Conclusion and Lessons Learnt

In this document we have reported on a project that focused on extracting and
refining models of syntax and semantics of instructions of High Level Assembler
(HLASM) [IBM13, IBM17] with the final goal of building a compiler for that lan-
guage [BJZ16, Rai16]. The project was seen as successful from our side, since it
met the expectations of customers and was completed within a very limited time
frame by a small team of people, even though the language consisted of hundreds
of instructions and macros. git statistics show a total of 817 commits from May
2015 till May 2020 concerning the folders with the HLASM compiler after filtering
out non-human committers like the nightbuild system: 423 are made by this paper’s
author, 244 by Ynès Jaradin, the lead architect of the project and a co-author of the
original report [BJZ16], and 150 commits made by 13 other senior software developers
occasionally contributing to the project.

Knowledge extraction was done ad hoc, yet according to the state of the art
methodology [LZ11, Zay12, Zay14, Bav16, HKLM16]. Mining and extracting semi-
structured data is an active field of research [Bav16, HKLM16], but there was no ready
to use tool for this particular text-to-model transformation, and the cost of developing

Journal of Object Technology, vol. 19, no. 2, 2020

http://dx.doi.org/10.5381/jot.2020.19.2.a5


Modelling of Language Syntax and Semantics: The Case of the Assembler Compiler · 15

it was not that high, given prior experience and expertise of our developers. Model
fixing was a labour intensive process due to its manual nature, but cross-checking
different parts of the models with one another, as well as models extracted from
different sources even within the same original document, was useful. Conceptually
this was a straightforward application of abstract model repair [CBSK12].

Enriching the models with new information was, again, done with bespoke tech-
nology, and then redone to refactor away idiosyncrasies. The technology was not
the bottleneck, but the metamodel was — in the sense that we needed to make sure
the models contained all the information that can be properly expressed and that
will be useful later at the code generation stage. Given the context of the project
and the policies within our company, it seems unlikely that we would have used any
available tools if they were adding technical dependencies of their own. However,
it was crucial to employ as much automation as possible, to avoid introducing or
propagating hard-to-catch bit-level errors. Existing model transformation frameworks
were not used, and new ones were not developed—seemed like overengineering since
we did not need any intricate expressiveness.

Models of the syntax of the instructions were more straightforward than the models
of the semantics of them, and they were fairly structured already in the original
documentation, so our part was limited to extracting them in a form suitable for
automated processing, fixing inconsistencies and imperfections (possibly introduced
by manual processing and typesetting instead of relying on generative techniques),
augmenting the models with additional information that was not present in the source
explicitly (even though it could have been, but it probably just never occurred to the
documentation writers to summarise it), and generating the desired artefacts. In MDE
terms, this was metamodelling in a low complexity domain. To model semantics, we
had to read through thousands of pages of descriptions given in natural language, and
encode it in a specially designed DSL (microcode, see section 4). The language design
was challenging as it always is [Zay17a].

After further analysis of the performance of the compiled code of the HLASM
emulator [Mje17] and the structure of our customers’ source code, we came to the
conclusion that our existing models of instruction semantics were insufficient. We
had to invest significantly into enhancing them to cover not only the behaviour of the
emulator, but also rules for conditional inlining that can be used if the code is safe
(i.e., is not modifying itself). Later, they were enhanced to be rid of C\ idiosyncrasies
in order for us to be able to use it with an alternative backend such as LLVM. This
step did not use any model-level profiling, so it needed manual lifting of the numbers
crunched at the code level, to the inlining semantic models level.

The documentation was round-tripped: our tools try to produce the documentation
inferred from our models, in a form that is as close as possible to the original, for
easier comparison and visual verification. The main obvious change is that the original
natural language description of the semantics of each instruction, is replaced in our
case with microcode or semi-structured prose generated from it. Again, we followed the
state of the art in what is desirable and advisable for generated executable language
documentation, and gained expected results [ZL11].

For the framework to implement our model-to-text transformations we used T4, a
Microsoft template language [MSD]. Several templates were developed: one for the
documentation, one for several versions of the emulator, etc. The chosen technology
turned out to be satisfactory, but did not contribute to the project in any overly
significant way. The main reason for choosing it was its integration into the IDE that

Journal of Object Technology, vol. 19, no. 2, 2020

http://dx.doi.org/10.5381/jot.2020.19.2.a5


16 · Vadim Zaytsev

we were already using (Visual Studio .NET).
Some of the models had to be kept at hand beside the compiler (and be delivered

as a part of the product) for the sake of the possibility to tailor the project to each
specific customer by supporting older versions of the HLASM language, different sets of
macros, etc (cf. Figure 3). The architecture of the compiler had to take this modularity
into account on many levels. We are unaware of other industrial or academic compilers
that go this far towards full configurability, and can allow the end user of the shipped
compiler to dramatically alter the language definition of the language being compiled.
At the frontend side (websites and mobile apps) comparable approaches are called
“low-code” [RRM+14].

Given the context of the problem of implementing a massive low-level language
from scratch, for legal reasons without looking at the baseline IBM assembler nor at its
existing open-source partial replacements, in a team of very limited size within a rigid
timeframe, this project was subjectively for us a very successful application of software
language engineering, software modelling and model transformation. Determining the
right level of abstraction and identifying the right elements to put in the metamodel,
in order to automatically refine the models of both syntax and semantics of each of
the instructions in the set, and produce final components of the compiler in a reliable
and testable [GZ19] way, was a winning strategy that allowed us to avoid burnout,
produce a viable product and deploy it to our customers’ satisfaction.

References

[AS14] Miltiadis Allamanis and Charles A. Sutton. Mining Idioms from Source
Code. In Proceedings of the 22nd Symposium on the Foundations of
Software Engineering (FSE), pages 472–483. ACM, 2014. doi:10.1145/
2635868.2635901.

[B+] Ira Baxter et al. Mainframe Assembler Migration. Seman-
tic Designs, http://www.semdesigns.com/Products/Services/
MainframeAssemblerMigration.html.

[Bav16] Gabriele Bavota. Mining Unstructured Data in Software Repositories:
Current and Future Trends. In Leaders of Tomorrow Symposium: Future
of Software Engineering (FOSE at SANER), pages 1–12. IEEE CS,
2016. doi:10.1109/SANER.2016.47.

[BCR05] Artur Boronat, José Ángel Carsí, and Isidro Ramos. Automatic Reengi-
neering in MDA Using Rewriting Logic as Transformation Engine. In
Proceedings of the Ninth European Conference on Software Mainte-
nance and Reengineering (CSMR), pages 228–231. IEEE CS, 2005.
doi:10.1109/CSMR.2005.14.

[BCR06] Artur Boronat, José Ángel Carsí, and Isidro Ramos. Algebraic Specifi-
cation of a Model Transformation Engine. In Proceedings of the Ninth
International Conference on Fundamental Approaches to Software Engi-
neering (FASE), volume 3922 of LNCS, pages 262–277. Springer, 2006.
doi:10.1007/11693017_20.

[BJZ16] Volodymyr Blagodarov, Yves Jaradin, and Vadim Zaytsev. Tool Demo:
Raincode Assembler Compiler. In Tijs van der Storm, Emilie Balland,
and Dániel Varró, editors, Proceedings of the Ninth International Con-

Journal of Object Technology, vol. 19, no. 2, 2020

https://doi.org/10.1145/2635868.2635901
https://doi.org/10.1145/2635868.2635901
http://www.semdesigns.com/Products/Services/MainframeAssemblerMigration.html
http://www.semdesigns.com/Products/Services/MainframeAssemblerMigration.html
https://doi.org/10.1109/SANER.2016.47
https://doi.org/10.1109/CSMR.2005.14
https://doi.org/10.1007/11693017_20
http://dx.doi.org/10.5381/jot.2020.19.2.a5


Modelling of Language Syntax and Semantics: The Case of the Assembler Compiler · 17

ference on Software Language Engineering (SLE), pages 221–225, 2016.
doi:10.1145/2997364.2997387.

[Bla95] Darius Blasband. The YAFL Programming Language. Journal of
Object-Oriented Programming, 8(7):42–49, 1995.

[Bla01] Darius Blasband. Parsing in a Hostile World. In Elizabeth Burd, Peter
Aiken, and Rainer Koschke, editors, Proceedings of the Eighth Working
Conference on Reverse Engineering (WCRE), pages 291–300. IEEE CS,
2001. doi:10.1109/WCRE.2001.957834.

[BP96] Michael R. Blaha and William J. Premerlani. A Catalog of Object Model
Transformations. In Proceedings of the Third Working Conference on
Reverse Engineering, pages 87–97. IEEE CS, 1996. doi:10.1109/WCRE.
1996.558881.

[CBSK12] George Chatzieleftheriou, Borzoo Bonakdarpour, Scott A. Smolka, and
Panagiotis Katsaros. Abstract Model Repair. In Alwyn Goodloe and
Suzette Person, editors, Proceedings of the Fourth International Sympo-
sium on NASA Formal Methods (NFM), volume 7226 of LNCS, pages
341–355. Springer, 2012. doi:10.1007/978-3-642-28891-3_32.

[Ers77] Andrey P. Ershov. On the Essence of Translation. In Erich J. Neuhold,
editor, Formal Description of Programming Concepts, pages 391–418.
North-Holland, 1977.

[Fea04] Michael Feathers. Working Effectively with Legacy Code. Prentice Hall,
October 2004.

[Fel99] Ronen Feldman. Mining Unstructured Data. In Tutorial Notes of the
Fifth International Conference on Knowledge Discovery and Data Min-
ing, KDD, pages 182–236. ACM, 1999. doi:10.1145/312179.312192.

[Fut71] Yoshihiko Futamura. Partial Evaluation of Computation Process — An
Approach to Compiler-Compiler. Systems, Computers, Control, 2(5):45–
50, 1971.

[FZM+19] Johan Fabry, Vadim Zaytsev, Kim Mens, Siegfried Nijssen, Hoang Son
Pham, Coen De Roover, Dario Di Nucci, and Tim Molderez. A Language-
Parametric Toolchain for Mining Idiomatic Code Patterns. In Program-
ming 2019 Demos Track. 2019. URL: https://tinyurl.com/yx8gmjhj.

[GZ19] Aynel Gül and Vadim Zaytsev. Mutative Fuzzing for an Assembler Com-
piler. In Dario Di Nucci and Coen De Roover, editors, Proceedings of the
18th Belgium-Netherlands Software Evolution Workshop (BENEVOL),
volume 2605 of CEUR Workshop Proceedings, pages 18–24. CEUR-
WS.org, 2019. URL: http://ceur-ws.org/Vol-2605/18.pdf.

[HKLM16] Sonia Haiduc, Takashi Kobayashi, Michele Lanza, and Andrian Marcus.
Mining & Modeling Unstructured Data in Software — Challenges for
the Future (NII Shonan Meeting 2016-3). NII Shonan Meeting Reports,
2016. http://shonan.nii.ac.jp/shonan/report/no-2016-3/.

[HSVF08] Jiahua He, Allan Snavely, Rob F. Van der Wijngaart, and Michael A.
Frumkin. Code Coverage, Performance Approximation and Automatic
Recognition of Idioms in Scientific Applications. In Proceedings of
the 17th International Symposium on High-Performance Parallel and

Journal of Object Technology, vol. 19, no. 2, 2020

https://doi.org/10.1145/2997364.2997387
https://doi.org/10.1109/WCRE.2001.957834
https://doi.org/10.1109/WCRE.1996.558881
https://doi.org/10.1109/WCRE.1996.558881
https://doi.org/10.1007/978-3-642-28891-3_32
https://doi.org/10.1145/312179.312192
https://tinyurl.com/yx8gmjhj
http://ceur-ws.org/Vol-2605/18.pdf
http://shonan.nii.ac.jp/shonan/report/no-2016-3/
http://dx.doi.org/10.5381/jot.2020.19.2.a5


18 · Vadim Zaytsev

Distributed Computing (HPDC), pages 223–224. ACM, 2008. doi:10.
1145/1383422.1383456.

[IBM04] SA22-7832-03: z/Architecture Principles of Operation. IBM, fourth
edition, May 2004.

[IBM13] GC26-4943-06: High Level Assembler for z/OS & z/VM & z/VSE Ver-
sion 1 Release 6 General Information. IBM, 2013.

[IBM17] SA22-7832-11: z/Architecture Principles of Operation. IBM, twelfth
edition, September 2017.

[JSW99] Adrian Johnstone, Elizabeth Scott, and Tim Womack. Experience Paper:
Reverse Compilation of Digital Signal Processor Assembler Source to
ANSI-C. In Proceedings of the 15th International Conference on Software
Maintenance, pages 316–325. IEEE CS, 1999.

[KBJD13] Andrew Kennedy, Nick Benton, Jonas Braband Jensen, and Pierre-
Évariste Dagand. Coq: The World’s Best Macro Assembler? In
Proceedings of the 15th International Conference on Principles and
Practice of Declarative Programming, pages 13–24. ACM, 2013. doi:
10.1145/2505879.2505897.

[KKM+06] Motohiro Kawahito, Hideaki Komatsu, Takao Moriyama, Hiroshi In-
oue, and Toshio Nakatani. A New Idiom Recognition Framework for
Exploiting Hardware-Assist Instructions. In Proceedings of the 12th
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), pages 382–393. ACM,
2006. doi:10.1145/1168857.1168905.

[Kli19a] Yauhen Klimiankou. Interpretizer: A Compiler-Independent Conversion
of Switch-Based Dispatch into Threaded Code. In Manuel Mazzara,
Jean-Michel Bruel, Bertrand Meyer, and Alexander K. Petrenko, editors,
Proceedings of the 51st International Conference on Software Technol-
ogy: Methods and Tools (TOOLS), volume 11771 of LNCS, pages 59–72.
Springer, 2019. doi:10.1007/978-3-030-29852-4_4.

[Kli19b] Yauhen Klimiankou. Rapid Instruction Decoding for IA-32. In Nicolaj
Bjørner, Irina Virbitskaite, and Andrei Voronkov, editors, Proceedings
of the 12th A. P. Ershov Informatics Conference (PSI), pages 141–150.
IPC NSU, 2019. doi:10.1007/978-3-030-37487-7_1.

[LB96] Tom Lake and Tim Blanchard. Reverse Engineering of Assembler Pro-
grams: A Model-Based Approach and its Logical Basis. In Proceedings of
the Third Working Conference on Reverse Engineering (WCRE), pages
67–75. IEEE CS, 1996. doi:10.1109/WCRE.1996.558872.

[Lom67] Lionello A. Lombardi. Incremental Computation. Advances in Computers,
8, 1967. doi:10.1016/S0065-2458(08)60698-1.

[LZ11] Ralf Lämmel and Vadim Zaytsev. Recovering Grammar Relationships for
the Java Language Specification. Software Quality Journal (SQJ); Sec-
tion on Source Code Analysis and Manipulation, 19(2):333–378, March
2011. doi:10.1007/s11219-010-9116-5.

[M+19] Peter D. Mosses et al. CBS-beta — PLanCompS. https://plancomps.
github.io/CBS-beta/, 2019.

Journal of Object Technology, vol. 19, no. 2, 2020

https://doi.org/10.1145/1383422.1383456
https://doi.org/10.1145/1383422.1383456
https://doi.org/10.1145/2505879.2505897
https://doi.org/10.1145/2505879.2505897
https://doi.org/10.1145/1168857.1168905
https://doi.org/10.1007/978-3-030-29852-4_4
https://doi.org/10.1007/978-3-030-37487-7_1
https://doi.org/10.1109/WCRE.1996.558872
https://doi.org/10.1016/S0065-2458(08)60698-1
https://doi.org/10.1007/s11219-010-9116-5
https://plancomps.github.io/CBS-beta/
https://plancomps.github.io/CBS-beta/
http://dx.doi.org/10.5381/jot.2020.19.2.a5


Modelling of Language Syntax and Semantics: The Case of the Assembler Compiler · 19

[MBB06] Erik Meijer, Brian Beckman, and Gavin Bierman. LINQ: Reconciling
Object, Relations and XML in the .NET Framework. In Proceedings of
the International Conference on Management of Data, SIGMOD, pages
706–706. ACM, 2006. doi:10.1145/1142473.1142552.

[MHS05] Marjan Mernik, Jan Heering, and Anthony M. Sloane. When and How to
Develop Domain-Specific Languages. ACM Computing Surveys, 37(4):316–
344, 2005. doi:10.1145/1118890.1118892.

[Mic] MicroAPL. Relogix Sample Translation (IBM Mainframe). http://
microapl.com/asm2c/sampleibm.html.

[Mic06] Microsoft. Windows Presentation Foundation. https://docs.
microsoft.com/en-us/dotnet/framework/wpf/, 2006.

[Mic08] Microsoft. Extensible Application Markup Language (XAML) overview
in WPF. https://docs.microsoft.com/en-us/dotnet/desktop-wpf/
fundamentals/xaml, 2008.

[Mit12] Robert L. Mitchell. The Cobol Brain Drain. Computerworld, May
2012. URL: https://www.computerworld.com/article/2504568/
the-cobol-brain-drain.html.

[Mje17] Roar Mjelde. HLASM: Optimization of a z/Architecture Emulator .
INF319, Universitas Bergentis, 2017.

[MSD] MSDN. Code Generation and T4 Text Templates. https://msdn.
microsoft.com/en-gb/library/bb126445.aspx.

[NPC+19] Cyrus Najmabadi, Jared Parsons, Heejae Chang, Tomáš Matoušek, Sam
Harwell, Manish Vasani, Jason Malinowski, et al. The .NET Compiler
Platform (“Roslyn”). https://github.com/dotnet/roslyn, 2019.

[NPF+19] Dario Di Nucci, Hoang-Son Pham, Johan Fabry, Coen De Roover, Kim
Mens, Tim Molderez, Siegfried Nijssen, and Vadim Zaytsev. A Language-
Parametric Modular Framework for Mining Idiomatic Code Patterns.
In Anne Etien, editor, Proceedings of the 12th Seminar on Advanced
Techniques & Tools for Software Evolution (SATTOSE), volume 2510
of CEUR Workshop Proceedings. CEUR-WS.org, 2019. URL: http:
//ceur-ws.org/Vol-2510/sattose2019_paper_3.pdf.

[PBM+19] Yunior Pacheco, Jonas De Bleser, Tim Molderez, Dario Di Nucci, Wolf-
gang De Meuter, and Coen De Roover. Mining Scala Framework Ex-
tensions for Recommendation Patterns. In Xinyu Wang, David Lo, and
Emad Shihab, editors, Proceedings of the 26th IEEE International Con-
ference on Software Analysis, Evolution and Reengineering (SANER),
pages 514–523. IEEE, 2019. doi:10.1109/SANER.2019.8668019.

[PE95] Bill Pottenger and Rudolf Eigenmann. Idiom Recognition in the
Polaris Parallelizing Compiler. In Proceedings of the Ninth Interna-
tional Conference on Supercomputing (ICS), pages 444–448. ACM, 1995.
doi:10.1145/224538.224655.

[PMBM98] Wei-Jin Park, Sang-Yoon Min, Doo-Hwan Bae, and Pyeong-Soo Mah.
Object-oriented model refinement technique in software reengineer-
ing. In Proceedings of the 22nd International Computer Software and
Applications Conference (COMPSAC), pages 32–38. IEEE CS, 1998.
doi:10.1109/CMPSAC.1998.716633.

Journal of Object Technology, vol. 19, no. 2, 2020

https://doi.org/10.1145/1142473.1142552
https://doi.org/10.1145/1118890.1118892
http://microapl.com/asm2c/sampleibm.html
http://microapl.com/asm2c/sampleibm.html
https://docs.microsoft.com/en-us/dotnet/framework/wpf/
https://docs.microsoft.com/en-us/dotnet/framework/wpf/
https://docs.microsoft.com/en-us/dotnet/desktop-wpf/fundamentals/xaml
https://docs.microsoft.com/en-us/dotnet/desktop-wpf/fundamentals/xaml
https://www.computerworld.com/article/2504568/the-cobol-brain-drain.html
https://www.computerworld.com/article/2504568/the-cobol-brain-drain.html
https://msdn.microsoft.com/en-gb/library/bb126445.aspx
https://msdn.microsoft.com/en-gb/library/bb126445.aspx
https://github.com/dotnet/roslyn
http://ceur-ws.org/Vol-2510/sattose2019_paper_3.pdf
http://ceur-ws.org/Vol-2510/sattose2019_paper_3.pdf
https://doi.org/10.1109/SANER.2019.8668019
https://doi.org/10.1145/224538.224655
https://doi.org/10.1109/CMPSAC.1998.716633
http://dx.doi.org/10.5381/jot.2020.19.2.a5


20 · Vadim Zaytsev

[PNM+19] Hoang Son Pham, Siegfried Nijssen, Kim Mens, Dario Di Nucci, Tim
Molderez, Coen De Roover, Johan Fabry, and Vadim Zaytsev. Min-
ing Patterns in Source Code using Tree Mining Algorithms. In Petra
Kralj Novak, Tomislav Šmuc, and Sašo Džeroski, editors, Proceedings of
the 22nd International Conference on Discovery Science (DS). Springer,
2019. doi:10.1007/978-3-030-33778-0_35.

[PP91] Shlomit S. Pinter and Ron Y. Pinter. Program Optimization and Par-
allelization Using Idioms. In David S. Wise, editor, Conference Record
of the 18th Annual Symposium on Principles of Programming Languages
(POPL), pages 79–92. ACM Press, 1991. doi:10.1145/99583.99597.

[Pre16] Presse Box. Microsoft zeichnet Raincode als “Top Performer for Main-
frame Migration” aus. https://www.pressebox.de/inaktiv/raincode-
gmbh/Microsoft-zeichnet-Raincode-als-Top-Performer-for-
Mainframe-Migration-aus/boxid/807202, July 2016.

[PSS12] Wolfgang J. Paul, Sabine Schmaltz, and Andrey Shadrin. Completing the
Automated Verification of a Small Hypervisor — Assembler Code Verifi-
cation. In Proceedings of the 10th International Conference on Software
Engineering and Formal Methods (SEFM), volume 7504 of LNCS, pages
188–202. Springer, 2012. doi:10.1007/978-3-642-33826-7_13.

[Rai16] Raincode. The Raincode ASM370 compiler for .NET and .NET Core.
https://www.raincode.com/technical-landscape/asm370/, 2016.

[Rai19] Raincode Labs. Bankia Chooses Raincode Labs for
PACBASE migration. https://www.raincodelabs.com/blog/
bankia-chooses-raincode-labs-for-pacbase-migration/, 2019.

[RHBV11] Gregor Richards, Christian Hammer, Brian Burg, and Jan Vitek.
The Eval That Men Do — A Large-Scale Study of the Use of Eval
in JavaScript Applications. In Mira Mezini, editor, Proceedings
of the 25th European Conference on Object-Oriented Programming
(ECOOP), volume 6813 of LNCS, pages 52–78. Springer, 2011. doi:
10.1007/978-3-642-22655-7_4.

[RRM+14] Clay Richardson, John R. Rymer, Christopher Mines, Alex Cullen,
and Dominique Whittaker. New Development Platforms Emerge For
Customer-Facing Applications. https://www.forrester.com/go?
objectid=RES113411, June 2014.

[Sou] Soukhman. Assembler to C translator. http://www.soukhman.com/
Asm2CobolCJava/Asm2CobolCJava%20SG.html, page long defunct,
but described in detail at http://www.semdesigns.com/Products/
Services/Soukhman.html.

[SS12] Sabine Schmaltz and Andrey Shadrin. Integrated Semantics of
Intermediate-Language C and Macro-Assembler for Pervasive Formal
Verification of Operating Systems and Hypervisors from VerisoftXT. In
Rajeev Joshi, Peter Müller, and Andreas Podelski, editors, Verified Soft-
ware: Theories, Tools, Experiments (VSTTE), pages 18–33. Springer,
2012. doi:10.1007/978-3-642-27705-4_3.

[Tik19] Ulyana Tikhonova. Reusable Specification Templates for Defining Dy-
namic Semantics of DSLs. Software and System Modeling, 18(1):691–720,
2019. doi:10.1007/s10270-017-0590-0.

Journal of Object Technology, vol. 19, no. 2, 2020

https://doi.org/10.1007/978-3-030-33778-0_35
https://doi.org/10.1145/99583.99597
https://www.pressebox.de/inaktiv/raincode-gmbh/Microsoft-zeichnet-Raincode-als-Top-Performer-for-Mainframe-Migration-aus/boxid/807202
https://www.pressebox.de/inaktiv/raincode-gmbh/Microsoft-zeichnet-Raincode-als-Top-Performer-for-Mainframe-Migration-aus/boxid/807202
https://www.pressebox.de/inaktiv/raincode-gmbh/Microsoft-zeichnet-Raincode-als-Top-Performer-for-Mainframe-Migration-aus/boxid/807202
https://doi.org/10.1007/978-3-642-33826-7_13
https://www.raincode.com/technical-landscape/asm370/
https://www.raincodelabs.com/blog/bankia-chooses-raincode-labs-for-pacbase-migration/
https://www.raincodelabs.com/blog/bankia-chooses-raincode-labs-for-pacbase-migration/
https://doi.org/10.1007/978-3-642-22655-7_4
https://doi.org/10.1007/978-3-642-22655-7_4
https://www.forrester.com/go?objectid=RES113411
https://www.forrester.com/go?objectid=RES113411
http://www.soukhman.com/Asm2CobolCJava/Asm2CobolCJava%20SG.html
http://www.soukhman.com/Asm2CobolCJava/Asm2CobolCJava%20SG.html
http://www.semdesigns.com/Products/Services/Soukhman.html
http://www.semdesigns.com/Products/Services/Soukhman.html
https://doi.org/10.1007/978-3-642-27705-4_3
https://doi.org/10.1007/s10270-017-0590-0
http://dx.doi.org/10.5381/jot.2020.19.2.a5


Modelling of Language Syntax and Semantics: The Case of the Assembler Compiler · 21

[Tur80] Valentin F. Turchin. The Use of Metasystem Transition in Theorem
Proving and Program Optimization. In J. W. de Bakker and Jan van
Leeuwen, editors, Proceedings of the Seventh Colloquium on Automata,
Languages and Programming (ICALP), volume 85 of LNCS, pages 645–
657. Springer, 1980. doi:10.1007/3-540-10003-2_105.

[vBMS19] L. Thomas van Binsbergen, Peter D. Mosses, and Neil Sculthorpe. Ex-
ecutable Component-based Semantics. Journal of Logic and Algebraic
Programming, 103:184–212, 2019. doi:10.1016/j.jlamp.2018.12.004.

[War99] Martin P. Ward. Assembler to C Migration Using the FermaT Trans-
formation System. In Proceedings of the 15th International Confer-
ence on Software Maintenance (ICSM), pages 67–76. IEEE CS, 1999.
doi:10.1109/ICSM.1999.792571.

[War00] Martin P. Ward. Reverse Engineering from Assembler to Formal Spec-
ifications via Program Transformations. In Proceedings of the Seventh
Working Conference on Reverse Engineering (WCRE), page 11. IEEE
CS, 2000. doi:10.1109/WCRE.2000.891448.

[War01] Martin P. Ward. The FermaT Assembler Re-engineering Workbench. In
Proceedings of the 17th International Conference on Software Mainte-
nance (ICSM), pages 659–662. IEEE CS, 2001. doi:10.1109/ICSM.2001.
972783.

[War13] Martin P. Ward. Assembler Restructuring in FermaT. In Proceedings
of the 13th International Working Conference on Source Code Analysis
and Manipulation (SCAM), pages 147–156. IEEE, 2013. doi:10.1109/
SCAM.2013.6648196.

[WF03] Geoffrey Watson and Colin J. Fidge. A Partial-Correctness Semantics for
Modelling Assembler Programs. In Proceedings of the First International
Conference on Software Engineering and Formal Methods (SEFM),
pages 82–90. IEEE CS, 2003. doi:10.1109/SEFM.2003.1236210.

[WPP+19] Leszek Włodarski, Boris Pereira, Ivan Povazan, Johan Fabry, and
Vadim Zaytsev. Quality First! A Large Scale Modernisation Report.
In Xinyu Wang, Zhenyu Chen, and Jinjun Hu, editors, Proceedings of
the 26th IEEE International Conference on Software Analysis, Evolu-
tion and Reengineering — Industry Track (SANER IT), pages 569–573,
2019. doi:10.1109/SANER.2019.8668006.

[WZH04] Martin P. Ward, Hussein Zedan, and T. Hardcastle. Legacy Assembler
Reengineering and Migration. In Proceedings of the 20th International
Conference on Software Maintenance, pages 157–166. IEEE CS, 2004.
doi:10.1109/ICSM.2004.1357800.

[Zay12] Vadim Zaytsev. Notation-Parametric Grammar Recovery. In Anthony
Sloane and Suzana Andova, editors, Post-proceedings of the 12th Inter-
national Workshop on Language Descriptions, Tools, and Applications
(LDTA). ACM DL, June 2012. doi:10.1145/2427048.2427057.

[Zay14] Vadim Zaytsev. Formal Foundations for Semi-parsing. In Serge De-
meyer, Dave Binkley, and Filippo Ricca, editors, Proceedings of the
Software Evolution Week (IEEE Conference on Software Maintenance,
Reengineering and Reverse Engineering), Early Research Achievements

Journal of Object Technology, vol. 19, no. 2, 2020

https://doi.org/10.1007/3-540-10003-2_105
https://doi.org/10.1016/j.jlamp.2018.12.004
https://doi.org/10.1109/ICSM.1999.792571
https://doi.org/10.1109/WCRE.2000.891448
https://doi.org/10.1109/ICSM.2001.972783
https://doi.org/10.1109/ICSM.2001.972783
https://doi.org/10.1109/SCAM.2013.6648196
https://doi.org/10.1109/SCAM.2013.6648196
https://doi.org/10.1109/SEFM.2003.1236210
https://doi.org/10.1109/SANER.2019.8668006
https://doi.org/10.1109/ICSM.2004.1357800
https://doi.org/10.1145/2427048.2427057
http://dx.doi.org/10.5381/jot.2020.19.2.a5


22 · Vadim Zaytsev

Track (CSMR-WCRE 2014 ERA), pages 313–317. IEEE, February 2014.
doi:10.1109/CSMR-WCRE.2014.6747184.

[Zay17a] Vadim Zaytsev. Language Design with Intent. In Don Batory, Jeff
Gray, and Vinay Kulkarni, editors, Proceedings of the 20th International
Conference on Model Driven Engineering Languages and Systems (MoD-
ELS), pages 45–52. IEEE, 2017. doi:10.1109/MODELS.2017.16.

[Zay17b] Vadim Zaytsev. On the Need of Compilepretation for Legacy Languages.
In Laurence Tratt, Adam Welc, and Stefan Marr, editors, Workshop
on Modern Language Runtimes, Ecosystems, and Virtual Machines
(MoreVMs 2017), 2017.

[Zay17c] Vadim Zaytsev. Open Challenges in Incremental Coverage of Legacy Soft-
ware Languages. In Luke Church, Richard P. Gabriel, Robert Hirschfeld,
and Hidehiko Masuhara, editors, Post-proceedings of the Third Edition
of the Programming Experience Workshop (PX/17.2), pages 1–6, 2017.
doi:10.1145/3167105.

[ZB14] Vadim Zaytsev and Anya Helene Bagge. Parsing in a Broad Sense. In
Jürgen Dingel, Wolfram Schulte, Isidro Ramos, Silvia Abrahão, and
Emilio Insfran, editors, Proceedings of the 17th International Conference
on Model Driven Engineering Languages and Systems (MoDELS 2014),
volume 8767 of LNCS, pages 50–67. Springer, October 2014. doi:10.
1007/978-3-319-11653-2_4.

[ZL11] Vadim Zaytsev and Ralf Lämmel. A Unified Format for Language
Documents. In Brian A. Malloy, Steffen Staab, and Mark G. J. van den
Brand, editors, Post-proceedings of the Third International Conference
on Software Language Engineering (SLE), volume 6563 of LNCS, pages
206–225. Springer, 2011. doi:10.1007/978-3-642-19440-5_13.

About the author

Vadim Zaytsev is the Chief Science Officer of Raincode Labs, the largest independent
compiler company in the world. His interests currently revolve around applying model-
based, model-driven and low-code automation techniques in development of compilers,
program transformations and other tools that help renovating legacy software systems.
Contact email: vadim@grammarware.net.
Websites to visit: http://grammarware.net or http://grammarware.github.io.

Journal of Object Technology, vol. 19, no. 2, 2020

https://doi.org/10.1109/CSMR-WCRE.2014.6747184
https://doi.org/10.1109/MODELS.2017.16
https://doi.org/10.1145/3167105
https://doi.org/10.1007/978-3-319-11653-2_4
https://doi.org/10.1007/978-3-319-11653-2_4
https://doi.org/10.1007/978-3-642-19440-5_13
mailto:vadim@grammarware.net
http://grammarware.net
http://grammarware.github.io
http://dx.doi.org/10.5381/jot.2020.19.2.a5

	Introduction
	Background and Problem Statement
	Main Challenges and Approaches

	Modelling Syntax and Semantics of an Instruction
	Model Extraction
	Semantic Steps Modelling
	Related Work
	Conclusion and Lessons Learnt
	Bibliography
	About the author

