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ABSTRACT Building on Martin Gogolla’s algebraic formalisation of the “Object Constraint Language” (OCL), its expression
part has been formalised as a syntactically and semantically heterogeneous language using the framework of term charters
for faithfully integrating OCL’s features in a step-wise and compositional manner. This schema for the evaluation of OCL
expressions on a single system state is now extended to comprise OCL contracts, i.e., the specification of operations with
pre- and post-conditions. Under mild assumptions term charters can be systematically transformed into 2-term charters
involving two system states. The application to OCL as a heterogeneous expression and contract language is illustrated by
several examples.
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1. Introduction
Martin Gogolla has been involved in the foundations, the devel-
opment, and the improvement of the “Object Constraint Lan-
guage” (OCL) since its very inception and its integration with
the “Unified Modeling Language” (UML) (Gogolla & Richters
1997; Richters & Gogolla 1998). He has contributed and con-
tinually updated a formal semantics for OCL that still is at
the heart of the (informative) semantics annex of the official
OMG specification (Object Management Group 2014). He has
furthermore developed the Bremen “UML-based Specification
Environment” (USE) that, based on the OCL and its semantics,
allows for UML model exploration, animation, visualisation,
testing, finding, completion, to name a few (Gogolla & Richters
2002; Gogolla et al. 2007, 2020). USE continues to be a bench-
mark implementation of the OCL specification.

Martin’s work on semantics and the interaction with him at
several OCL workshops and UML conferences were a main
source of inspiration for our own efforts on providing OCL with
an operational as well as a denotational semantics (Cengarle
& Knapp 2001, 2004). Martin’s OCL semantics and the USE
tool follow the tradition of algebraic specifications that, in fact,
stood at Martin’s career beginnings (Engels & Gogolla 1982;

JOT reference format:
Alexander Knapp and María Victoria Cengarle. 2-Term Charters. Journal of
Object Technology. Vol. 19, No. 3, 2020. Licensed under Attribution -
NonCommercial - No Derivatives 4.0 International (CC BY-NC-ND 4.0)
http://dx.doi.org/10.5381/jot.2020.19.3.a10

Ehrich et al. 1989). Also in this algebraic line of research, we
have started to restructure our semantics using an algebraic term
evaluation framework akin to the model-theoretic framework
of institutions (Knapp & Cengarle 2015). The goal of this
endeavour is to show how the various semantic and syntactic
features of OCL can be handled in a modular and compositional
manner.

In our framework of term charter domains and term char-
ters (Knapp & Cengarle 2018), the domain of evaluation de-
scribes values and variables, structures, and the underlying
values of structures, all indexed over signatures. A term char-
ter consists of a term constructor, a variable embedding, and
evaluation maps for terms over a signature and variables; the
interaction of these ingredients is regulated by three axioms
for variable evaluation, variable renaming, and signature trans-
lations. Analogous to institutions (Goguen & Burstall 1992),
the slogan behind term charters is “evaluation is invariant un-
der change of notation”. Moreover, term charters give rise to
institutions and thus a formulation of OCL by means of term
charters makes it possible to integrate also this language into an
institution-based modularisation of the UML as a heterogeneous
language (Cengarle et al. 2008). Furthermore, for modular lan-
guage design, term charter domains and term charters can be
combined systematically keeping up the invariance of evaluation
under change of notation (Knapp & Cengarle 2015, 2018).

The OCL offers, besides an expression language for querying
and navigating through a system state (snapshot), a contract
language for specifying the behaviour of operations by pre- and
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post-conditions. The pre-condition of a contract is a boolean
OCL expression that is to be evaluated over the operation’s pre-
state; the evaluation of the post-condition expression, however,
involves two system states, the pre-state and a post-state where
the suffix @pre refers to the pre-state. We demonstrate how
expression evaluation over two states can be accommodated
for by the notion of term charter domains and term charters
by devising a suitable notion of “2-able” term charter domains,
2-term charter domains, and 2-term charters.

Technically, we use the language of indexed categories (Tar-
lecki et al. 1991) for our general abstract framework and also for
the construction of 2-term charter domains and of 2-term char-
ters. We show that, to ensure that a given term charter can be
transformed into a 2-term charter, it suffices that the signatures,
used as indexes, have push-outs and that the structures support a
weak form of amalgamation (Sannella & Tarlecki 2012). In fact,
a 2-term charter also is a standard term charter yet over a 2-term
charter domain. Thus, the term-charter-building operators can
also be applied to 2-term charters.

The extension from single states to pairs of states, in order
to cover also state transitions, has been considered before in
different algebraic contexts though mainly on the level of for-
mulæ and satisfaction and not for expressions and evaluation. In
particular, Baumeister (1995) studies the relational language of
Z in terms of institutions. Similarly, Pawłowski (1996) presents
context institutions for capturing open formulæ and their us-
age in Hoare logic. For temporal logic and whole sequences
of states, Reggio, Astesiano, and Choppy extend the algebraic
specification language CASL by a linear temporal logic (Reggio
et al. 2003).

The remainder of this paper is structured as follows: We
first give a rough account of a small sub-language of OCL
expressions in Sect. 2 that shows different language features
and their semantic formalisation. In Sect. 3, we provide an
abstract account of the ingredients in the framework of term
charter domains and term charters, and illustrate the achieved
modularisation by several examples. In Sect. 4, we develop
our approach of extending OCL expression evaluation over a
single system state to an evaluation over two system states for
capturing OCL contracts and derive requirements on “2-able”
term charter domains. In Sect. 5, we then give an abstract
account of 2-term charter domains and 2-term charters and
show how these can again be extended in a modular fashion.
We conclude in Sect. 6 with an outlook to future work.

2. OCL Types and Expressions

We give a brief account of what is involved when formalising
the type system of OCL and its expressions, which can be used
to navigate and constrain single system states. The main goal
of this rather abridged overview is not completeness or an in-
depth discussion of the fine points of, say, non-determinism or
three-valued evaluation (Cengarle & Knapp 2004; Brucker &
Wolff 2008; Object Management Group 2014). The aim is more
to give an impression of how the semantics can be captured
using extended order-sorted algebras, to show some points of
variation, and also to show why it is useful to proceed to a more

Account
∼balance : Real

+withdraw(amount : Real) : Void

SavingsAccount

–rate : Real

(a) English

Konto
∼kontostand : Real
–zinssatz : Real

+abheben(betrag : Real) : Void

(b) German

Figure 1 UML class diagrams for accounts

general framework than that immediately provided by algebras.
We also stress the importance of maps between different sys-
tems, system states, and OCL expressions for making them
usable in systematic software development.

2.1. OCL Types and States
The OCL types and operations comprise, on the one hand, pre-
defined types, like Real or Seq(s), together with their func-
tions, like + : Real × Real → Real or append : Seq(s) ×
Seq(s) → Seq(s), of the standard library and, on the other
hand, the classes, attributes (properties), and queries of an under-
lying UML static structure. These types and operations can be
captured — at least to a large extent — by an order-sorted signa-
ture Σ = (S, F) consisting of a partial order S = (|S|,≤S) for
the sort (class, type) hierarchy and a family of function declara-
tions F = (Fs)s∈|S|+ . For complying with the OCL specifica-
tion such signatures have to be closed under the OCL primitives
and they must reflect the OCL type hierarchy with its collection
types, such that, e.g., Real ∈ |S|, Seq(s), Collection(s) ∈
|S|, and Seq(s) ≤S Collection(s) for all s ∈ |S|. For
example, the description of accounts in Fig. 1(a) leads to the
OCL-closed sort hierarchy (SAccs,≤Accs) containing

SAccs = { Account, Seq(Account), SavingsAccount,
Void, Real, . . . } ,

SavingsAccount ≤Accs Account ,
Seq(SavingsAccount) ≤Accs Seq(Account)

and the function declarations FAccs including

FAccs
Real = { -1.0, 0.0, 3.14159265359, . . . } ,

FAccs
RealRealReal = { +, . . . } ,

FAccs
AccountReal = { balance } ,

FAccs
SavingsAccountReal = { balance, rate } ,

where the declaration of balance for a SavingsAccount is due to
the rules of inheritance in UML. The operations, i.e., withdraw
in our example, are not captured in this kind of signature.

2 Knapp and Cengarle



Changes in the interface of UML static structures, i.e., mov-
ing from an order-sorted signature Σ = (S, F) to an order-
sorted signature Σ′ = (S′, F′), are catered for by order-sorted
signature morphisms σ = (σS : S → S′, σF : F → F′) : Σ →
Σ′ where σS is monotone w.r.t. ≤S and σF( f ) ∈ F′

σS(s)
for

f ∈ Fs. For example,

σAccs
S (Account) = σS(SavingsAccount) = Konto ,

σAccs
F (balance) = kontostand ,

σAccs
F (rate) = zinssatz

allows to use a German interface to accounts, at the same time
discarding the difference between checking and savings ac-
counts. It is important to require that all the OCL standard
types and operations are left invariant by such signature mor-
phisms, that is, e.g., σS(Real) = Real and σS(Seq(s)) =
Seq(σS(s)).

A system state or snapshot for a given static structure ex-
pressed as an order-sorted signature Σ = (S, F) can be rep-
resented by an order-sorted Σ-algebra M = (SM, FM) inter-
preting the sort hierarchy by a family of sets SM = (sM)s∈|S|
such that sM

1 ⊆ sM
2 if s1 ≤S s2, and the function declara-

tions by a family of (total) functions FM = (FM
s )s∈|S|+ with

f M : sM
1 × . . .× sM

n → sM ∈ FM
s1 ...sn s for f ∈ Fs1 ...sn s. The

interpretation of a sort from a UML class corresponds to the
objects of this class in the system state of discourse. Such a set
may be an arbitrary, typically finite set or it may be a subset of
an externally given set Obj of object identifiers. For a predefined
OCL type, a standard interpretation has to be required, such that,
e.g., the interpretation BoolM of the sort Bool always yields
the Boolean values {ff , tt} and the interpretation Seq(s)M of
the sequences over s always yields the lists (sM)∗. Moreover,
to comply with OCL 2.4, both a “null” value 0 and an “invalid”
value † have to be included in each sort interpretation (where 0

can occur in collections, but † cannot); in older OCL versions,
† alone would have sufficed. An example state St for Accs may
thus contain

RealSt = { †, 0, −1.0, 0.0, 3.14159265359, . . . } ,

AccountSt = { †, 0, 3048, 4711 } ,

SavingsAccountSt = { †, 0, 3048 } .

The functions interpreting the attributes and query operations of
the UML static structure again may be chosen at whim, whereas
the interpretation of the operations from the OCL standard
library should indeed be standard, such that +M(0.0, 0.0) = 0.0,
+M(0.0, 0) = †, and appendM(0.0 :: 1.0, ε) = 0.0 :: 1.0 with
Seq{ }M = ε. The state St may hence include

balanceSt(†) = † = balanceSt(0) ,

balanceSt(3048) = 200.0 , balanceSt(4711) = 100.0 .

Maps between system states M1 and M2 over an order-
sorted signature Σ = (S, F) are given by Σ-algebra homo-
morphisms µ = (µs : sM1 → sM2)s∈|S| : M1 → M2 with
µs( f M1(~v)) = f M2(µs(~v)) for f ∈ Fs s, where OCL standard

types and operations have to be related by identities. On the
other hand, an order-sorted signature morphism σ : Σ → Σ′

induces a reduct functor −|σ mapping a Σ′-algebra M′ to the Σ-
algebra M′|σ = ((σS(s)M′)s∈|S|, ((σF(F)σS(s))

M′)s∈|S|+) and
a Σ′-algebra homomorphism µ′ : M′1 → M′2 to the Σ-algebra
homomorphism µ′|σ = (µ′

σS(s)
)s∈|S| : M′1|σ → M′2|σ. For

example, a system state for the static structure in Fig. 1(b) with

KontoSt′ = { †, 0, 3048 } ,

kontostandSt′(3048) = 200.0 ,

zinssatzSt′(3048) = 0.25

induces the following reduct along σAccs:

AccountSt′ |σAccs
= { †, 0, 3048 }

= SavingsAccountSt′ |σAccs
,

balanceSt′ |σAccs
(3048) = 200.0 ,

rateSt′ |σAccs
(3048) = 0.25 .

2.2. OCL Expressions and Evaluation
Most OCL expressions, as e.g. self.balance - 163.27 or
Seq{1.0}->isEmpty(), correspond to order-sorted terms
T ≤Σ (X) = (T ≤Σ (X)s)s∈|S| over a static structure with order-
sorted signature Σ = (S, F) and Σ-variables X = (Xs)s∈|S|
such that Xs1 ⊆ Xs2 for s1 ≤S s2, inductively defined for all
s ∈ |S| by

– x ∈ T ≤Σ (X)s for x ∈ Xs;

– f(t1, . . ., tn) ∈ T ≤Σ (X)s′ for all s′ ≥S s
if f ∈ Fs1 ...sn s and ti ∈ T ≤Σ (X)si for all 1 ≤ i ≤ n.

Using Accs-variables X with self ∈ XAccount, the order-sorted
term

-(balance(self), 163.27) ∈ T ≤Accs(X)Real

is a prefix (abstract syntax) variant of self.balance - 163.27.
The evaluation of the order-sorted terms T ≤Σ (X) over an

order-sorted algebra M = (SM, FM) over Σ = (S, F) relies on
a valuation

β = (βs : Xs → sM) : X → U≤Σ (M)

of the variables into the underlying values U≤Σ (M) = SM.
Order-sorted term evaluation

J−K≤
(Σ,X)

(M, β) = (J−K≤
(Σ,X)

(M, β)s :

T ≤Σ (X)s → sM)s∈S : T ≤Σ (X)→ U≤Σ (M)

is inductively defined by

– JxK≤
(Σ,X)

(M, β)s = βs(x) for x ∈ Xs;

– J f(t1, . . ., tn)K≤(Σ,X)
(M, β)s =

f M(Jt1K
≤
(Σ,X)

(M, β)s1 , . . . , JtnK≤
(Σ,X)

(M, β)sn)

for f ∈ Fs1 ... sn s and ti ∈ T ≤Σ (X)si for 1 ≤ i ≤ n.
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For example, for the system state St and βSt
Account(self) = 3048

we obtain

J-(balance(self), 163.27)K≤Accs,X(St, βSt) = 36.73 .

For an order-sorted signature Σ = (S, F) variable renamings
ξ = (ξs : X1,s → X2,s)s∈|S| : X1 → X2 allow to call self, say,
yo. Such a variable renaming also induces a term renaming

T ≤Σ (ξ) = (T ≤Σ (ξ)s : T ≤Σ (X1)s → T ≤Σ (X2)s)s∈|S| :

T ≤Σ (X1)→ T ≤Σ (X2) ,

which usually is denoted again by ξ; then for each t ∈
T ≤Σ (X1)s a “renaming lemma” holds that says that a syntac-
tic renaming of t along ξ can be equally well expressed by a
semantic reshuffling of the valuation β by ξ:

(R≤) Jξs(t)K≤(Σ,X2)
(M, β)s = JtK≤

(Σ,X1)
(M, β ◦ ξ)s .

Moreover, an order-sorted signature morphism σ : Σ→ Σ′ and
the corresponding reducts of variables X′|σ = (X′

σS(s)
)s∈|S|

and terms T ≤Σ′ (X′)|σ = (T ≤Σ′ (X′)σS(s))s∈|S| induce a term

translation T ≤σ (X′) : T ≤Σ (X′|σ) → T ≤Σ′ (X′)|σ inductively
defined by

– T ≤σ (X′)s(x′) = x′ for x′ ∈ (X′|σ)s;
– T ≤σ (X′)s( f(t1, . . ., tn)) =

σF( f )(T ≤σ (X′)s1(t1), . . ., T ≤σ (X′)sn(tn))
for f ∈ Fs1 ... sn s and ti ∈ T ≤Σ (X′|σ)si for 1 ≤ i ≤ n.

This induced term translation is again usually denoted by just
σ. Then, for the σ-reduct of a Σ′-algebra M′ and a valuation
β′|σ = (β′

σS(s)
)s∈|S|, a “translation lemma” holds for each

t ∈ T ≤Σ (X′|σ)s, which expresses that syntactic translations
along σ correspond to semantic evaluation in reducts along σ:

(T≤) Jσs(t)K≤(Σ′ ,X′)(M′, β′)σS(s) = JtK≤
(Σ,X′ |σ)(M′|σ, β′|σ)s .

As the signature and the variables form the “interface” of a term
in the sense of what can be seen from the outside, the renaming
lemma (R≤) and the translation lemma (T≤) combinedly ensure
that “evaluation is invariant under change of notation”.

However, several OCL constructs transcend the boundaries
of mere order-sorted terms. This is most palpable for the itera-
tion construct

c->iterate(i : s; a : s′ = e0 | e)

(and its descendants like select, collect, etc.) which in-
volves higher-order features: the iteration expression e has to be
evaluated repeatedly for different valuations of the bound itera-
tion variable i and the bound accumulator variable a. Repeated
evaluation is most conveniently handled by special expres-
sion formers. This leads to an extended family of expressions
C it

Σ (X) = (C it
Σ (X)s)s∈|S| over a signature Σ = (S, F) and

Σ-variables X, which, on the one hand, satisfies T ≤Σ (X)s ⊆
C it

Σ (X)s for all s ∈ |S| and, on the other hand, also includes the
rule

– c->iterate(i : s; a : s′ = e0 | e) ∈ C it
Σ (X)s′

for s, s′ ∈ |S| where c ∈ C it
Σ (X)Seq(s), e0 ∈ C it

Σ (X)s′ , and
e ∈ C it

Σ (X ] {i : s, a : s′})s′

The evaluation of iterations can still be directly expressed
using a Σ-algebra M based on an intermediate though ad
hoc higher-order function itM : (sM)∗ × s′M × (s′M × sM →
s′M)→ sM that works like Haskell’s foldr:

– Jc->iterate(i : s; a : s′ = e0 | e)Kit
(Σ,X)

(M, β)s′ =

itM(JcKit
(Σ,X)

(M, β)Seq(s), Je0Kit
(Σ,X)

(M, β)s′ ,

{(vi, va) 7→ JeKit
(Σ,X]{i:s,a:s′})

(M, β{i : s 7→ vi, a : s′ 7→ va})s′}) ,

itM(ε, va, h) = va, itM(vi :: `, va, h) = itM(`, h(vi, va), h).

Since an expression formation clause has been added, term
renaming and term translation have to be extended in such a way
that bounded variables are taken into account; for iterations,

– C it
Σ (ξ)s′(c->iterate(i : s; a : s′ = e0 | e)) =

C it
Σ (ξ)Seq(s)(c)->iterate(i : s; a : s′ =C it

Σ (ξ)s′(e0) |

C it
Σ (ξ{i : s 7→ i : s, a : s′ 7→ a : s′})s′(e)) ,

– C it
σ (X′)s′(c->iterate(i : s; a : s′ = e0 | e)) =

C it
σ (X′)Seq(s)(c)->iterate(i : σS(s);

a : σS(s′) = C it
σ (X′)s′(e0) |

C it
σ (X′ ] {i : σS(s), a : σS(s′)})s′(e)) .

These definitions must again ensure that “evaluation is invariant
under change of notation”. The renaming and the translation
lemmata are adjusted as follows:

Jξs(t)Kit
(Σ,X2)

(M, β)s = JtKit
(Σ,X1)

(M, β ◦ ξ)s(Rit)

Jσs(t)Kit
(Σ′ ,X′)(M′, β′)σS(s) = JtKit

(Σ,X′ |σ)(M′|σ, β′|σ)s(Tit)

Another OCL feature which is not directly included in order-
sorted algebras is the possibility to access all instances of a
finitely interpreted type, which involves a kind of reflection.
Again we can capture this by a special expression formation
rule this time for an extended family of expressions C a

Σ(X)

extending T ≤Σ (X) and containing

– s.allInstances() ∈ C a
Σ(X)Set(s) for s ∈ |S|

with accompanying evaluation

– Js.allInstances()Ka
(Σ,X)

(M, β)Set(s) ={
sM if |sM| < ∞ ,
† otherwise .

The evaluation of OCL expressions is strict to the most part,
i.e., term evaluation applied to the “invalid” value † yields †.
Though both strict and non-strict evaluation can be directly ex-
pressed in the standard OCL order-sorted algebras containing
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†, it contributes to a separation of concerns to group together
those OCL features that are to be evaluated in a non-strict fash-
ion, viz. isInvalid and if . . . then . . . else . . . endif (as
well as and, or, etc.). This arrangement results in yet another
extended term construction C u

Σ(X) with according evaluation
rules:

– Je.isInvalid()Ku
(Σ,X)

(M, β)Bool ={
tt if JeKu

(Σ,X)
(M, β)s = † ,

ff otherwise .

– Jif e then ett else eff endifKu
(Σ,X)

(M, β)s =
JebKu

(Σ,X)
(M, β)s if JeKu

(Σ,X)
(M, β)Bool = b

with b ∈ {ff , tt} ,
† otherwise .

Obviously, the OCL contains all of C it, C a, C u, and yet
more, which can be achieved by simply lumping together all
the language constructors and evaluation rules and proving that
still “evaluation is invariant under change of notation”. The
separation of concerns suggested by singling out particular lan-
guage features allows, however, for a more systematic language
engineering by switching on and off certain features.

2.3. Variations in Evaluation
Up to here, the discussed OCL features all were evaluated over
the same domain of OCL-closed order-sorted algebras. There
are, however, also OCL constructs that necessitate extensions of
this domain. Still, their definitions otherwise only involve term
constructors, evaluation rules, and translations.

When it comes to iterate over arbitrary collections and
not only sequences, OCL evaluation becomes non-determin-
istic. For this an extended domain of values UPΣ (M) =

PΣ(SM) = (PΣ(sM))s∈|S| for a Σ-algebra M has to be
considered that involves powersets. The deterministic eval-
uation J−Kit

(Σ,X)
(M, β) : C it

Σ (X) → U≤Σ (M) for a β : X →
U≤Σ (M) has to be lifted to a powerset-based evaluation func-
tion J−Knd

(Σ,X)
(M, βP ) : C it

Σ (X) → UPΣ (M) where βP : X →
PΣ(X) is defined by βP (x)s = {β(x)s}. The compo-
sition ξP2 ◦P ξP1 : X1 → PΣ(X3) of variable renamings
ξP1 : X1 → PΣ(X2) and ξP2 : X2 → PΣ(X3) is given by
{V 7→ ⋃

v∈V ξP2 (v)} ◦ ξP1 . The clause for iterate over
Set(s) involves a function Seqs : P(sM)→ P((sM)∗) yield-
ing all possible sequences of values in a set, and reads

– Jc->iterate(i : s; a : s′ = e0 | e)Knd
(Σ,X)

(M, βP )s′ =

{itM(vc, ve0 , h) |

vc ∈ Seqs(vSet(s)),

vSet(s) ∈ JcKnd
(Σ,X)

(M, βP )Set(s),

ve0 ∈ Je0Kc
(Σ,X)

(M, βP )s′ ,

h ∈ {{(vi, va) 7→ ve} | ve ∈ JeKnd
(Σ,X]{i:s,a:s′})

(M, βP{i : s 7→ {vi}, a : s′ 7→ {va}})s′} .

Whereas expressions in previous versions of OCL precisely
contained the primitive recursive functions (Cengarle & Knapp
2004), OCL 2.4 sports an unbounded closure construct

c->closure(i : s | e)

that computes the smallest set containing the set c, the e-succes-
sors of c, the e-successors of the e-successors of c etc., where an
e-successor of a v is obtained by evaluating e with i bound to v.
Thus, when including a special term formation rule for closures,

– c->closure(i : s | e) ∈ C c
Σ(X)Set(s) for s ∈ |S|

where c ∈ C c
Σ(X)Set(s) and e ∈ C c

Σ(X ] {i : s})Set(s)

the evaluation has to allow for possible non-termination, like in
Set{0}->closure(i : Int | Set{i+1}). We can consider
another extended domain of values U⊥Σ (M) = ⊥Σ(SM) =

(sM ] {⊥})s∈|S| including ⊥ for non-termination and use
valuations of the form β⊥ : X → U⊥Σ (M) which are com-
posed such that ⊥ is preserved. Similarly to iterations we
can then handle closures by an ad hoc higher-order function
with unbounded accumulation clM

⊥ : (P(sM)∪{⊥})× (sM →
P(sM) ∪ {⊥})×P(sM)→ P(sM) ∪ {⊥}:

– Jc->closure(i : s | e)Kc
(Σ,X)

(M, β⊥)Set(s) =

clM
⊥ (JcKc

(Σ,X)
(M, β⊥)Set(s),

{vi 7→ JeKc
(Σ,X]{i:s})(M, β⊥{i : s 7→ vi})Set(s)},

∅) ,

clM
⊥ (∅, h, V) = V⊥,

clM(C, h, V) = clM((
⋃⊥

v∈C h(v)) \V, h, V ∪ C),

where V⊥ is ⊥ if V is infinite and V otherwise,
⋃⊥ yields ⊥ if

one of its summands is ⊥, and clM
⊥ is strict in its first argument.

Clearly, also the conditional has to be adapted and its evaluation
considering non-termination reads:

– Jif e then ett else eff endifKc
(Σ,X)

(M, β⊥)s =
JebKc

(Σ,X)
(M, β⊥)s if JeKc

(Σ,X)
(M, β⊥)Bool = b

with b ∈ {ff , tt} ,
⊥ otherwise .

3. Term Charter Domains and Term Charters
Having illustrated what is needed to formalise the semantics of
OCL types and expressions to be evaluated over a single system
state, we now provide a rather abstract account of all the ingre-
dients used. On the one hand, the proposed framework (Knapp
& Cengarle 2018) of term charter domains and term charters
aims at making transparent and precise the required interactions
of the various parts of signatures and translations, (algebraic)
structures, variables and renamings, values, and evaluation. On
the other hand, the abstract formulation offers means to combine
different instantiations of the framework for modular language
engineering (Knapp & Cengarle 2015). What is more, and as is
discussed in the next sections, it can also be used to move from
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the evaluation of expressions over a single system state, as in
OCL invariants, to the evaluation of relational expressions over
two system states, as in OCL pre-/post-conditions.

Term charter domains capture the signatures, values and vari-
ables, structures, and the underlying values. The grammar of
expression formation, variable renaming, variable embedding,
and the evaluation proper is collected into a term charter over
such a domain requiring conditions for embedding variables
into expressions as well as the invariance of evaluation under
renaming and translation. We use indexed categories (Tarlecki
et al. 1991; Wolter & Martini 1997; Diaconescu 2008; Sannella
& Tarlecki 2012) as a foundation for the abstract framework,
since they provide a close link with the algebraic signatures as
indexes also used in the model-theoretic framework of institu-
tions (Sannella & Tarlecki 2012).

Term charter domains involve indexed categories and in-
dexed functors: An indexed category N over an index cat-
egory I is a functor N : Iop → Cat. An indexed functor
F : M →̇ N between the I-indexed categories M and N is
given by a family of functors (Fi : M(i)→ N(i))i∈|I| such that
Fi2 ; N(u) = M(u); Fi1 for each u : i1 → i2 in I, i.e., F is a
natural transformation from M to N.

Term charters use lax indexed functors, that subsume indexed
functors, and lax indexed natural transformations: A lax indexed
functor F : M →̈ N between the I-indexed categories M and
N is given by families of functors (Fi : M(i)→ N(i))i∈|I| and
natural transformations (Fu : M(u); Fi1 →̇ Fi2 ; N(u))u∈I(i1,i2)
with F1i = 1Fi such that Fu1;u2

= (M(u2)∗, Fu1); (Fu2
∗, N(u1))

for all u1 ∈ I(i1, i2), u2 ∈ I(i2, i3) — where ∗, denotes the
horizontal composition of natural transformations. The com-
position F; G : L →̈ N of F : L →̈ M and G : M →̈ N for the
I-indexed categories L, M, N is given by (F; G)i = Fi; Gi for
i ∈ |I| and (F; G)u = (Fu∗, Gi1); (Fi2

∗, Gu) for u ∈ I(i1, i2).
For M, N I-indexed categories and F, G : M →̈ N lax indexed
functors, a lax indexed natural transformation η : F →̇ G is
given by a family of natural transformations (ηi : Fi →̇ Gi)i∈|I|
such that (M(u)∗, ηi1); Gu = Fu; (ηi2

∗, N(u)) for u ∈ I(i1, i2).

3.1. Term Charter Domains
A term charter domain (S,Val, Str, U) is given by a category
S of signatures, an indexed categoryVal : Sop → Cat of value
variables, an indexed category Str : Sop → Cat of structures,
and an underlying indexed functor U : Str →̇Val.

We use the terminology of “value variables”, sinceVal plays
the rôle of both. In fact, variables inVal can only be assigned
values inVal, not, e.g., sets of values or functions.

EXAMPLE. (1) A term charter domain D≤ = (S≤,Val≤, Str≤,
U≤) for order-sorted algebras can be obtained by assembling
the relevant parts of the previous section: The signature cate-
gory S≤ comprises the order-sorted signatures and signature
morphisms. For a Σ ∈ |S≤|, the categoryVal≤(Σ) of Σ-value
variables comprises the Σ-variables with their renaming mor-
phisms, and the category Str≤(Σ) of Σ-structures the Σ-alge-
bras and their morphisms; a σ : Σ → Σ′ in S≤ induces the
σ-reduct functorsVal≤(σ) = −|σ : Val≤(Σ′)→Val≤(Σ) and
Str≤(σ) = −|σ : Str≤(Σ′) → Str≤(Σ). Finally, the under-

lying value variables and renamings are given by U≤Σ (M) =

(sM)s∈S and U≤Σ (µ : M1 → M2) = (µs)s∈|S|, such that in-
deed U≤Σ ◦ Str≤(σ) =Val≤(σ) ◦U≤Σ′ .
(2) For reflecting the type hierarchy and standard library of OCL,
the term charter domain D◦ = (S◦,Val◦, Str◦, U◦) is obtained
by restricting D≤: S◦ shows all signatures with predefined
sorts Bool, Real, Seq(s) and function symbols 0.0, +, etc.,
as well as all signature morphisms preserving these predefined
symbols;Val◦ is only defined on S◦; the structures in Str◦ are
those with standard interpretations of the predefined symbols;
and the underlying functor U◦ operates only on Str◦.
(3) For the non-termination extension, the term charter do-
main (S≤,Val⊥, Str≤, U⊥) is defined using the indexed endo-
functor ⊥ : Val≤ →̇ Val≤ with ⊥Σ(X) = (Xs ] {⊥})s∈|S|
and ⊥Σ(ξ) = (ξs{⊥ 7→ ⊥})s∈|S| for a Kleisli construc-

tion (Borceux 1994): The objects of Val⊥(Σ) and Val≤(Σ)
coincide, but a morphism ξ⊥ : X1 → X2 ofVal⊥(Σ) is given
by theVal≤(Σ)-morphism ξ : X1 → ⊥Σ(X2); the ⊥(Σ)-iden-
tities 1X : X → X are the inclusions ιX : X → ⊥Σ(X), the
composition ξ⊥1 ; ξ⊥2 of ξ⊥1 : X1 → X2 and ξ⊥2 : X2 → X3

is (ξ1; ξ2{⊥ 7→ ⊥})⊥ : X1 → X3. The underlying func-
tor U⊥ : Str≤ →̇ Val⊥ is chosen as U⊥Σ (M) = U≤Σ (M) and
U⊥Σ (µ : M1 → M2) = (U≤Σ (µ); ιU≤Σ (M2)

)⊥.

3.2. Term Charters
Let (S,Val, Str, U) be a term charter domain. Let C : Val →̈Val
be a lax indexed functor, where the functors CΣ : Val(Σ) →
Val(Σ) for each Σ ∈ |S| construct terms and rename terms
along value variable renamings, and the natural transformations
Cσ : Val(σ); CΣ →̇ CΣ′ ;Val(σ) for each σ ∈ S(Σ, Σ′) translate
terms along signature morphisms. Let furthermore ν : 1Val →̇
C be a lax indexed natural transformation, where the natural
transformations νΣ : 1Val(Σ) →̇ CΣ for each Σ ∈ |S| embed
value variables into terms. Finally, for each Σ ∈ |S|, X ∈
|Val(Σ)|, and M ∈ |Str(Σ)|, let

(extΣ)
M
X : Val(Σ)(X, UΣ(M))→Val(Σ)(CΣ(X), UΣ(M))

be a function extending a value variable valuation β into a term
valuation (extΣ)

M
X (β). Then (C , ν, ext) is a term charter over

(S,Val, Str, U) if the following variable condition (V), renam-
ing condition (R), and translation condition (T) are satisfied:

(V) νΣ(X); (extΣ)
M
X (β) = β

for all Σ ∈ |S| and β ∈Val(Σ)(X, UΣ(M)), i.e., the term valu-
ation over a value variable valuation extends the value variable
valuation;

(R) CΣ(ξ); (extΣ)
M
X2
(β) = (extΣ)

M
X1
(ξ; β)

for all Σ ∈ |S|, ξ ∈ Val(Σ)(X1, X2), and β ∈ Val(Σ)(X2,
UΣ(M)), i.e., the “renaming lemma” holds; and

Cσ(X′);Val(σ)((extΣ′)
M′
X′ (β′)) =(T)

(extΣ)
Str(σ)(M′)
Val(σ)(X′) (Val(σ)(β′))
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for all σ ∈ S(Σ, Σ′) and β′ ∈Val(Σ′)(X′, UΣ′(M′)), i.e., the
“translation lemma” holds.

This notion of term charters in fact directly translates the
properties of concrete evaluation as discussed in the previ-
ous section into an abstract framework: Assume that for each
Σ ∈ |S| there is a faithful functor UΣ : Val(Σ) → Set, i.e.,
each Val(Σ) is a concrete category. Writing X for UΣ(X)
when X ∈ |Val(Σ)|, ξ for UΣ(ξ) when ξ ∈ Val(Σ)(X1, X2),
−|σ for both Str(σ)(−) and Val(σ)(−), JtK(Σ,X)(M, β) for
(extΣ)

M
X (β)(t), ξ(t) for TΣ(ξ)(t), and σ(t) for Tσ(X′)(t),

the conditions become

(V) JxK(Σ,X)(M, β) = β(x);
(R) Jξ(t)K(Σ,X2)

(M, β) = JtK(Σ,X1)
(M, β ◦ ξ);

(T) (Jσ(t)K(Σ′ ,X′)(M′, β′))|σ = JtK(Σ,X′ |σ)(M′|σ, β′|σ).

EXAMPLE. (1) For order-sorted algebras, T≤ = (T ≤, ν≤,
ext≤) with ν≤Σ (X) = 1X : X ↪→ T ≤Σ (X) and (ext≤Σ )

M
X (β) =

J−K≤
(Σ,X)

(M, β) forms a (S≤,Val≤, Str≤, U≤)-term charter.

Note that, indeed, T ≤ : Val≤ →̈Val≤.

(2) For iterations, Tit = (C it, νit, extit) with νit
Σ(X) =

1X : X ↪→ C it
Σ (X), and (extit

Σ)
M
X (β) = J−Kit

(Σ,X)
(M, β) con-

stitutes a D◦-term charter, as the instantiated properties (Vit),
(Rit), and (Tit) hold by induction on term construction.

Similarly, the constructions for allInstances and the
handling of invalid values by isInvalid and a non-strict
if . . . then . . . else . . . endif can be comprised in D◦-term
charters Ta = (C a, νa, exta) and Tu = (C u, νu, extu) respec-
tively.

Term charters over a term charter domain D = (S,Val,
Str, U) form the category TmCh(D) with a term charter (for-
ward) morphism µ : T1 → T2 from T1 = (C1, ν1, ext1) to
T2 = (C2, ν2, ext2) given by a lax indexed natural transforma-
tion µ : C1 →̇ C2 such that both ν1,Σ(X); µΣ(X) = ν2,Σ(X)
and µΣ(X); (ext2,Σ)

M
X (β) = (ext1,Σ)

M
X (β) hold for all Σ ∈

|S|, X ∈ |Val(Σ)|, M ∈ |Str(Σ)|, and β : X → UΣ(M);
see (Knapp & Cengarle 2015).

3.3. Combining Term Charters

One of the main goals of the term charter framework is to
support modular language development. We briefly discuss
two combinators for term charters in TmCh(D) over the same
term charter domain D; see (Knapp & Cengarle 2015). The
first construction composes two term charters sequentially, the
second one builds the “union” of term charters as a general
co-limit construction. Together, these methods of composition
allow for a deeply nested language combination.

Let T1 = (C1, ν1, ext1) and T2 = (C2, ν2, ext2) be term
charters over the term charter domain D = (S,Val, Str, U).
Then the sequencing T1 � T2 = (C , ν, ext) of first T1 and
then T2 is defined by C = C1; C2 : Val →̈ Val, ν =
ν1; (C1

∗, ν2) : 1Val →̇ C , and

(extΣ)
M
X (β) = (ext2,Σ)

M
C1,Σ(X)((ext1,Σ)

M
X (β))

for all Σ ∈ |S|, X ∈ |Val(Σ)|, M ∈ |Str(Σ)|, and β : X →
UΣ(M). In particular, T1 � T2 is a term charter over D;
see (Knapp & Cengarle 2015).

EXAMPLE. Over the term charter domain D◦, consider the
expression

(Seq(Bool).allInstances()).isInvalid() .

This “heterogeneous” term in Ta � Tu is built by first con-
structing Seq(Bool).allInstances() in Ta = (C a, νa,
exta), then taking this term as a variable, which we may ab-
breviate by x ∈ C a

Σ(X), and constructing x.isInvalid() in
Tu = (C u, νu, extu). Consequently, for an arbitrary valuation
β : X → U◦Σ(M) with value variables X ∈ |Val◦(Σ)|, structure
M ∈ |Str◦(Σ)|, and signature Σ ∈ |S◦|, to evaluate

(extu
Σ)

M
C a

Σ(X)((exta
Σ)

M
X (β))

((Seq(Bool).allInstances()).isInvalid()) =

(extu
Σ)

M
C a

Σ(X)((exta
Σ)

M
X (β))(x.isInvalid())

consists, firstly, in evaluating (extu
Σ)

M
C a

Σ(X)
((exta

Σ)
M
X (β))(x),

which amounts to (exta
Σ)

M
X (β)(x), since x is a variable in

C a
Σ(X). Secondly, given that {0, ff , tt}∗ is an infinite set,

(exta
Σ)

M
X (β)(Seq(Bool).allInstances()) evaluates to †.

Thus the overall result is tt.

Also the lax indexed natural transformation C1
∗, ν2 : C1 →̇

C1; C2 induces a term charter morphism from T1 to T1 � T2,
and, likewise, the natural transformation ν1

∗, C2 : C2 →̇ C1; C2
induces a term charter morphism from T2 to T1 � T2. The
n-th iteration T�n of a term charter T for n ≥ 1 is inductively
defined by T�1 = T and T�(n+1) = T�n �T.

The second method of composition is building a co-limit for
a diagram F : J → TmCh(D) where J is a small connected
category. Writing TC for the first component of a term char-
ter T = (C , ν, ext) ∈ |TmCh(D)|, assume that all the dia-
grams FC ,X : J →Val(Σ) with FC ,X(j) = (F(j)C )Σ(X) and
FC ,X( f : j → j′) = F( f )Σ(X) for Σ ∈ |S|, X ∈ |Val(Σ)|
have co-limits. From the universality of co-limits it follows that
a term charter TF = (C F, νF, extF) can be defined uniquely
(up to isomorphism), where C F : Val →̈Val just maps CΣ(X)
to the co-limit object of FC ,X; see (Knapp & Cengarle 2015).

EXAMPLE. As in the previous example, consider the D◦-
term charter Ta � Tu. We now want to construct arbitrarily
nested terms from Ta and Tu. We thus consider the chain
T

ν1−→ T�2 ν2−→ T�3 ν3−→ · · · for T = Ta � Tu. Writing C for
the construction functor C a; C u, we have to check that the chain

CΣ(X)
ν1,Σ(X)
−−−−→ C �2

Σ (X)
ν2,Σ(X)
−−−−→ C �3

Σ (X)
ν3,Σ(X)
−−−−→ · · · has a

co-limit inVal◦(Σ) for X ∈ |Val◦(Σ)|. Indeed, the co-limit ob-
ject of this chain is simply given by the component-wise union
of the value domains. We obtain a co-limit term charter, which
we denote by T�∗. The evaluation of a term in (Ta �Tu)�∗ at
a nesting level n, then, proceeds like in (Ta �Tu)�n.
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4. OCL Contracts
OCL expressions are evaluated over a single system state and
thus can be used to query and navigate snapshots of a system
or constrain system states by invariants. The evaluation of such
expressions in states is abstractly captured by term charters over
term charter domains. Besides expressions for invariant con-
straints, OCL offers pre-/post-conditions for operation contracts,
like the following for describing the withdrawal of an amount
from an account in our example from Fig. 1:

context Account::withdraw(amount : Real)
pre: amount > 0 and self.balance >= amount
post: self.balance = self.balance@pre - amount

In contrast to the term charters above, now two structures
have to be involved, the first describing pre-condition time, i.e.,
the state before withdraw is performed and to which attributes
adorned with @pre refer, the second post-condition time, i.e.,
after withdraw has been performed and to which the unadorned
attributes refer. On the other hand, the variables self and
amount have only to be bound to a value once and must not
change from pre-condition to post-condition time. We describe
an approach where two structures can be combined into a single
one such that the following formula ϕwd

amount > 0 and self.balance@pre >= amount
and self.balance = self.balance@pre - amount

can be evaluated over the variables self and amount by the
same means of term charters, but over an extended signature,
technically constructed by a push-out, and a combined structure,
using a weak form of amalgamation.

The main aim is to derive the requirements on term charter
domains and term charters in order to make them “2-able”,
i.e., to see them prepared for a lifting from a single system
state to two system states for pre- and post-condition time,
which technically means to ensure that there are push-outs and
a weak form of amalgamation. We use OCL as rôle model
and the accounts example in Fig. 1, based on the term charter
(T ≤, ν≤, ext≤) over the term charter domain (S≤,Val≤, Str≤,
U≤), as primary illustration; for simplicity, however, we omit
SavingsAccount from our discussion.

Let Acb = (Sb, Fb) be a basic order-sorted signature in S≤

comprising the OCL sorts Bool and Real and showing function
declarations for the real constant 0 : Real, the subtraction of re-
als - : Real× Real→ Real, and the comparison operators on
reals >, >=, = : Real× Real→ Bool. Now consider a sort ex-
tension Acc = (Sc, Fc) of Acb adding the sort Account such that
σc : Acb ↪→ Acc is an inclusion of order-sorted signatures (i.e.,
σc,S(s) = s for all s ∈ |Sc| and σc,F( f ) = f for each f ∈ Fc,s
with s ∈ |Sc|+). Furthermore, consider two declaration ex-
tensions of Acc: On the one hand, Accd adds a declaration
for balance : Account → Real, such that σcd : Acc ↪→ Accd
is an inclusion of order-sorted signatures; on the other hand,
the renamed version

↼
Accd of this extension replaces balance

by balance@pre yielding the accompanying order-sorted signa-
ture inclusion morphism ↼σcd : Acc ↪→

↼
Accd. Let now Âc with

↼̂σ :
↼

Accd ↪→ Âc and σ̂ : Accd ↪→ Âc be the push-out of Acc
along ↼σcd and σcd resulting in the following commuting diagram

of order-sorted signatures in S≤:
↼

Accd

Acb Acc Âc

Accd

σc

↼σcd

σcd

↼̂σ

σ̂

More generally and abstractly, given a category S, (Σ1 +
σ1,σ2
Σ0

Σ2, (σ̂i : Σi → Σ1 +
σ1,σ2
Σ0

Σ2)1≤i≤2) is a push-out along the
morphisms σ1 : Σ0 → Σ1 and σ2 : Σ0 → Σ2 in S if σ1; σ̂1 =
σ2; σ̂ and, furthermore, for all Σ′ ∈ |S| and σ′i : Σi → Σ′, i ∈
{1, 2} satisfying σ1; σ′1 = σ2; σ′2, there is a unique morphism
σ : Σ1 +

σ1,σ2
Σ0

Σ2 → Σ′ with σ′i = σ̂i; σ, i ∈ {1, 2} as shown in
following commuting diagram:

Σ1

Σ0 Σ1 +
σ1,σ2
Σ0

Σ2 Σ′

Σ2

σ1

σ2

σ′1
σ̂1

σ̂2

σ′2

σ

Thus the push-out object Âc =
↼

Accd +σc;↼σcd,σc;σcd
Acb

Accd
(which exists in order-sorted algebras) shows all parts of Acb
as well as a single sort Account and two function declarations
for balance and balance@pre. Note that, if the sort extension is
not separated from the declaration extension, that is, if these
two extensions are done in a single step, the push-out object
would also duplicate the sorts. Note also that it is technically not
necessary to first come up with a renamed copy of Accd, which
corresponds to Accs of Sect. 2.1, as the push-out construction
takes care of providing two separate copies of all those features
of Accd that are not shared in Acc. Still, preparing a designated
copy allows to use pre-formed names like . . .@pre.

Now consider again the conjunctive interpretation ϕwd of the
pre-/post-condition pair for the withdrawal contract. With our
prerequisites on signatures, it forms an expression in T ≤

Âc
(X̂)

over the combined signature Âc and the Âc-value variables
X̂ comprising self : Account and amount : Real. In fact,
the value variables X̂ could also reflect that some variables
are present already at pre-condition time, as in our case both
self and amount, but others, like result for storing the
value returned by an operation call, only at post-condition
time. This can be achieved by combining value variables
↼
Xcd ∈ |Val≤(

↼
Acd)| and Xcd ∈ |Val≤(Acd)| into their disjoint

union X̂ =
↼
Xcd ] Xcd ∈ |Val≤(Âc)|; the same holds for valua-

tions that go from (value) variables to value (variable)s.
Next, let Stb = (SStb

b , FStb
b ) be a canonical order-sorted struc-

ture in Str≤(Acb) interpreting the sorts Bool and Real as well
as the function declarations for 0, -, >, >=, and = as usual. Also
let

↼
Stcd = (S

↼
Stcd
c ,

↼
F
↼
Stcd
cd ) ∈ |Str≤(

↼
Accd)| be an order-sorted

algebra representing a system state at pre-condition time and
Stcd = (SStcd

c , FStcd
cd ) ∈ |Str≤(Accd)| an order-sorted algebra

for a post-state such that the canonical structure Stb is shared
by both, i.e.,

Str≤(↼σcd ◦ σc)(
↼
Stcd) ∼= Stb ∼= Str≤(σcd ◦ σc)(Stcd) .

8 Knapp and Cengarle



4711: Account

balance = 100.0

3048: Account

balance = 200.0

(a) Pre-state
↼
Stcd

4711: Account

balance = 80.0

0815: Account

balance = 0.0

(b) Post-state Stcd

Figure 2 UML object diagrams for accounts

Let these algebras show interpretations of Account and bal-
ance resp. balance@pre as follows (cf. the UML object diagrams
in Fig. 2):

S
↼
Stcd
c,Account = {3048, 4711} SStcd

c,Account = {4711, 0815}
balance@pre

↼
Stcd(4711) = 100.0 balanceStcd(4711) = 80.0

balance@pre
↼
Stcd(3048) = 200.0 balanceStcd(0815) = 0.0

In this setting, at pre-condition time, i.e., in
↼
Stcd, there is an

account 3048 with balance 200.0 and an account 4711 with
balance 100.0. At post-condition time, i.e., in Stcd, there still
is the account 4711, now with balance 80.0, additionally an
account 0815 with balance 0.0, and account 3048 has been
closed.

We may now form Ŝt = (ŜŜt, F̂Ŝt) ∈ |Str≤(Âc)| by taking
the “union” of

↼
Stcd and Stcd as combined order-sorted algebra

over the combined signature Âc = (Ŝ, F̂): For all basic sorts
and function declarations we choose Ŝt to behave like Stb, and
for the additional sorts and function declarations contributed in
Acc,

↼
Accd, and Accd, we set

ŜŜt
Account = {3048, 4711, 0815}

balance@preŜt(3048) = 200.0 balanceŜt(3048) = 0.0
balance@preŜt(0815) = 0.0 balanceŜt(0815) = 0.0
balance@preŜt(4711) = 100.0 balanceŜt(4711) = 80.0

In particular, Str≤(σ̂ ◦ σcd ◦ σc)(Ŝt) ∼= Stb, but it deserves
separate mention that Str≤(σ̂)(Ŝt) 6∼= Stcd as their values differ.
In fact, there is considerable freedom how to “construct” the
combined structure Ŝt from

↼
Stcd and Stcd. Here, we have used

the “default value” 0.0 for the missing pieces of information
for balance@preŜt(0815) and balanceŜt(3048), but the choice is
only limited by what is available in the underlying structures,
like 0 in structures with an explicit value for “null” (which is
prescribed by OCL and can be achieved by using D◦) or just
leaving the definition open in partial algebras.

More generally and abstractly, we say that an indexed cate-
gory Str : Sop → Cat has weak union amalgamations w.r.t. to
a subcategory S∗ of S that has push-outs, if for all σi : Σ0 → Σi
in S∗, i ∈ {1, 2},

– for all Mi ∈ |Str(Σi)|, i ∈ {1, 2, 3}, with Str(σ1)(M1) ∼=
M0 ∼= Str(σ2)(M2), there is a structure M1 ×Σ0 M2 ∈
|Str(Σ1 +

σ1,σ2
Σ0

Σ2)| such that Str(σ1; σ̂1)(M1 ×Σ0 M2) ∼=
M0 ∼= Str(σ2; σ̂2)(M1 ×Σ0 M2);

– for all µi : Mi → Ni in |Str(Σi)|, i ∈ {1, 2, 3}, with
Str(σ1)(µ1) ∼= µ0 ∼= Str(σ2)(µ2), there is a structure
morphism µ1 ×Σ0 µ2 : M1 ×Σ0 M2 → N1 ×Σ0 N2 in
Str(Σ1 +

σ1,σ2
Σ0

Σ2) such that Str(σ1; σ̂1)(µ1×Σ0 µ2) ∼= µ0 ∼=
Str(σ2; σ̂2)(µ1 ×Σ0 µ2);

– for all signature morphisms ρi : Σi → Σ′i in S∗, 0 ≤
i ≤ 2, and the unique signature morphism ρ̂ : Σ1 +

σ1,σ2
Σ0

Σ2 → Σ′1 +
σ′1,σ′2
Σ′0

Σ′2, it holds that Str(ρ̂)(M′1 ×Σ′0
M′2) =

Str(ρ1)(M′1)×Σ0 Str(ρ2)(M′2).

In our example, the formation of Ŝt =
↼
Stcd ×Acb Stcd cor-

responds to the “union” described above. It also satisfies the
requirement that reducts of weak union amalgamations are equal
to weak union amalgamations of reducts, which ensures com-
patibility with translations. Equality of structures can indeed be
weakened to an equality of the underlying values.

Now reconsider ϕwd ∈ T ≤
Âc
(X̂) from the pre-/post-condition

pair for the withdrawal contract with the Âc-value variables X̂
comprising self : Account and amount : Real. Using the
combined structure Ŝt, the expression spanning two states can
be evaluated using

(ext≤
Âc
)Ŝt

X̂
(β̂) = J−K≤

(Âc,X̂)
(Ŝt, β̂)

for a value variable assignment β̂ : X̂ → U≤
Âc
(Ŝt) given by,

say, β̂Account(self) = 4711 and β̂Real(amount) = 20.0. Then
(ext≤

Âc
)Ŝt

X̂
(β̂)Bool(ϕwd) = tt, i.e., the withdrawal contract is

satisfied for this particular situation. By contrast, when choosing
β̂Account(self) = 3048, the result is ff .

Finally, and more generally and abstractly, we call a term
charter domain D = (S,Val, Str, U) 2-able if there is a subcate-
gory S∗ of S with push-outs and Str has weak union amalgama-
tions as of above w.r.t. S∗.

It has to be noted that allInstances is not properly sup-
ported by this approach: The evaluation of the expression
Account.allInstances() would return the accounts available
at both pre-condition and post-condition time which is not what
OCL requires. Moreover, OCL’s isNew(), which tests whether
some object did not exist at the pre-state, needs special attention.

5. 2-Term Domains and 2-Term Charters

In order to handle OCL contracts abstractly we move from a 2-
able term charter domain D to a 2-term charter domain and from
a given term charter T over D to a 2-term charter. The former has
as 2-signatures extensions of a basic D-signature by first “sorts”
and then “declarations”, and as 2-structures two D-structures
for a pre-state and a post-state. The latter constructs expressions
over the push-out signature in D and uses the evaluation from T
for the weak union amalgamation of the pre-state and the post-
state. However, 2-term charter domains and 2-term charters are
just special cases of term charter domains and term charters
respectively.
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5.1. 2-Term Charter Domains
Let D = (S,Val, Str, U) be a 2-able term charter domain. Let
S∗ be a subcategory of S showing push-outs and × a weak
union amalgamation construction for Str w.r.t. S∗. The 2-term
charter domain 2D∗ = (2S∗, 2Val, 2Str, 2U) over D together
with S∗ and× consists of a 2-signature category 2S∗ over S∗, an
indexed category 2Val : (2S∗)op → Cat of 2-value variables,
an indexed category 2Str : (2S∗)op → Cat of 2-structures,
and an underlying indexed functor 2U : 2Str →̇ 2Val that are
defined as follows:

A 2-signature category 2S∗ over S∗ has as objects 2-signa-
tures that are pairs τ = (τc : Σb(τ) → Σc(τ), τcd : Σc(τ) →
Σcd(τ)) of signature morphisms in S∗; and as morphisms
2-signature morphisms from τ to τ′ that are triples σ =
(σb : Σb(τ) → Σb(τ

′), σc : Σc(τ) → Σc(τ′), σcd : Σcd(τ) →
Σcd(τ

′)) of signature morphisms in S∗ such that the following
diagram commutes:

Σb(τ) Σc(τ) Σcd(τ)

Σb(τ
′) Σc(τ′) Σcd(τ

′)

τc

σb

τcd

σc

τ′c τ′cd

σcd

We write Σ̂(τ) for the push-out object Σcd(τ) +
τc;τcd,τc;τcd
Σb(τ)

Σcd,

and
↼
τ̂ : Σcd(τ) → Σ̂(τ) and τ̂ : Σcd(τ) → Σ̂(τ) for the first

and second push-out morphisms as illustrated in

Σcd(τ)

Σb(τ) Σc(τ) Σ̂(τ)

Σcd(τ)

τc

τcd

τcd

↼
τ̂

τ̂

Furthermore, for a 2-signature morphism σ : τ → τ′, we write
σ̂ for the unique signature morphism from τ̂ to τ̂′ that satisfies
↼
τ̂; σ̂ = σcd;

↼
τ̂′ and τ̂; σ̂ = σcd; τ̂′.

EXAMPLE. The term charter domain D≤ = (S≤,Val≤, Str≤,
U≤) is 2-able, as described in Sect. 4. For (S≤)∗ we may
choose the subcategory of inclusions in S≤ which has push-outs.
The 2-signatures in 2(S≤)∗, then, directly correspond to the
sorts and declaration extensions; the annotation of attributes
with @pre is a mere convention.

For a 2-signature τ ∈ |2S∗|, the category 2Val(τ) is given by
Val(Σ̂(τ)); for a 2-signature morphism σ : τ → τ′, the functor
2Val(σ) : 2Val(τ′)→ 2Val(τ) byVal(σ̂).

For a 2-signature τ ∈ |2S∗|, the category 2Str(τ) has
as objects pairs of structures (

↼
M, M) ∈ |Str(Σcd(τ))| ×

|Str(Σcd(τ))| with Str(τc; τcd)(
↼
M) ∼= Str(τc; τcd)(M); and

as morphisms from (
↼
M1, M1) to (

↼
M2, M2) pairs of structure

morphisms (↼µ :
↼
M1 →

↼
M2, µ : M1 → M2) in Str(Σcd(τ))

with Str(τc; τcd)(
↼µ) ∼= Str(τc; τcd)(µ). For a 2-signature mor-

phism σ : τ → τ′, the functor 2Str(σ) : 2Str(τ′) → 2Str(τ)
is defined by 2Str(σ)(

↼
M, M) = (Str(σcd)(

↼
M), Str(σcd)(M))

and 2Str(σ)(↼µ, µ) = (Str(σcd)(
↼µ), Str(σcd)(µ)).

EXAMPLE. For the previous example, the 2-structures over
2(S≤)∗ are given by pairs of Str-structures that share a common
basic structure.

Finally, for a 2-signature τ ∈ |2S∗|, the underlying functor
2Uτ : 2Str(τ) → 2Val(τ) maps a (

↼
M, M) ∈ |2Str(τ)| to

UΣ̂(τ)(
↼
M ×Σb(τ) M) and a (↼µ, µ) : (

↼
M1, M1) → (

↼
M2, M2)

in 2Str(τ) to UΣ̂(τ)(
↼µ×Σb(τ) µ).

By expanding these definitions, we obtain

PROPOSITION. The 2-term charter 2D∗ = (2S∗, 2Val, 2Str,
2U) over the 2-able term charter domain D is a term charter
domain.

5.2. 2-Term Charters
Let D = (S,Val, Str, U) be a 2-able term charter domain and
T = (C , ν, ext) a term charter over D. Let 2D∗ = (2S∗, 2Val,
2Str, 2U) be the 2-term charter domain over D together with a
push-out subcategory S∗ of S and a weak union amalgamation
construction × for Str w.r.t. S∗. The 2-term charter (2C , 2ν,
2ext) over 2D∗ consists of a lax indexed functor 2C : 2Val →̈
2Val, a lax indexed natural transformation 2ν : 12Val →̇ 2C , and

a family of maps (2extτ)
(
↼
M,M)

X̂
: 2Val(τ)(X̂, 2Uτ(

↼
M, M)) →

2Val(τ)(2Cτ(X̂), 2Uτ(
↼
M, M)) for τ ∈ |2S∗|, X̂ ∈ |2Val(τ)|,

and (
↼
M, M) ∈ |2Str(τ)| that are defined as follows:

– For a 2-signature τ ∈ |2S∗|, the 2-terms construction and re-
naming functor 2Cτ : 2Val(τ)→ 2Val(τ) is given by CΣ̂(τ);
for a 2-signature morphism σ : τ → τ′ in 2S∗, the 2-terms
translating natural transformation 2Cσ : 2Val(σ); 2Cτ →̇
2Cτ′ ; 2Val(σ) is given by Cσ̂.

– For a 2-signature τ ∈ |2S∗|, the 2-embedding natural trans-
formation 2ντ : 12Val(τ) →̇ 2Cτ is given by νΣ̂(τ).

– For a 2-signature τ ∈ |2S∗|, 2-value variables X̂ ∈
|2Val(τ)|, a 2-structure (

↼
M, M) ∈ |2Str(τ)|, and a 2-

valuation β̂ : X̂ → 2Uτ(
↼
M, M), the 2-terms evaluation

map (2extτ)
(
↼
M,M)

X̂
(β̂) : 2Cτ(X̂) → 2Uτ(

↼
M, M) is given

by (extΣ̂(τ))
↼
M×Σb(τ)

M

X̂
(β̂).

Using the requirements on weak union amalgamations we
obtain

PROPOSITION. The 2-term charter (2C , 2ν, 2ext) over the term
charter domain 2D∗ is a term charter.

Proof. Requirements (V) and (R) for (2C , 2ν, 2ext) directly
follow from the respective requirements for (C , ν, ext) using
push-outs. For (T) we have with the same notation as above

2Cσ(X̂′); 2Val(σ)((2extτ′)
(
↼
M′ ,M′)

X̂′
(β̂′))

= Cσ̂(X̂′);Val(σ̂)((extΣ̂(τ′))
↼
M′×Σb(τ

′)M′

X̂′
(β̂′))

= (extΣ̂(τ))
Str(σ̂)(

↼
M′×Σb(τ

′)M′)

Val(σ̂)(X̂′)
(Val(σ̂)(β̂′))

= (extΣ̂(τ))
Str(σcd)(

↼
M′)×Σb(τ)

Str(σcd)(M′)

Val(σ̂)(X̂′)
(Val(σ̂)(β̂′))
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= (2extτ)
2Str(σ)(

↼
M′ ,M′)

2Val(σ)(X̂′)
(2Val(σ)(β̂′)) .

EXAMPLE. Consider the 2-term charter domain 2(D≤)∗ over
the 2-able term charter domain D≤ as above and the term
charter T≤ over D≤. The functor 2T ≤τ then constructs the
terms over Σ̂(τ) that include both unadorned and adorned
function symbols, the latter for “post-condition time”. A val-
uation β̂ : X̂ → 2Uτ(

↼
M, M) indeed is a function β̂ : X̂ →

UΣ̂(τ)(
↼
M ×Σb(τ) M) that can map value variables to values

from both the pre-state
↼
M and the post-state M.

5.3. Extending 2-Term Charters
We now want to apply the 2-construction to OCL and to in-
clude also allInstances and isNew which, as mentioned
above, need special attention. We therefore move to the
OCL-closed term charter domain D◦ and the co-limit To =
(Tit � Tu)�∗ = (C o, νo, exto) of the iterate and undefined-
ness term charters without including the all-instances term char-
ter Ta. There the basic signature for push-outs and the basic
structure for weak union amalgamations is dispensable as al-
ways the OCL standard library and its predefined interpreta-
tion may be chosen. Still, the construction of 2-term charter
domains and 2-term charters is directly applicable, yielding
2(D◦)∗ and 2To = (2C o, 2νo, 2exto). For the integration of
allInstances and isNew we can again use the constructions
on term charters defined in Sect. 3.3, since 2(D◦)∗ is a term
charter domain and 2To a term charter. We define a new term
charter (C 2o, ν2o, ext2o) over 2(D◦)∗ that just comprises these
two constructs for a τ ∈ |2S◦∗| with Σcd(τ) = (Scd, Fcd):

– s.allInstances() ∈ C 2o
τ (X̂)Set(s) for s ∈ |Scd|

– v.isNew() ∈ C 2o
τ (X̂)Bool for s ∈ |Scd| and v ∈ X̂s

Their evaluation reads:

– (ext2o
τ )

(
↼
M,M)

X̂
(β̂)(s.allInstances()) =

(exta
Σcd(τ)

)M
Val◦(τ̂)(X̂)

(Val◦(τ̂)(β̂))(s.allInstances())

– (ext2o
τ )

(
↼
M,M)

X̂
(β̂)(v.isNew()) =

{
tt if v ∈ sM \ s

↼
M

ff otherwise

The rule for s.allInstances() only has to take into account
the post-state M and we can re-use the evaluation in the term
charter Ta for allInstances by adapting the signature of the
variables X̂ and of the valuation β̂ by reducts. The rule for
v.isNew() only looks at the set difference between the inter-
pretation of the sort s of v in the post-state M and the pre-state
↼
M.

Now we obtain the full OCL terms for (pre- and) post-condi-
tions by (2To �T2o)�∗.

6. Conclusions
Motivated by the OCL and its contract language, we have pre-
sented a systematic transition from term charter domains and
term charters for evaluating general expressions over a single
system state to 2-term charter domains and 2-term charters in-
volving two system states. We have provided conditions that

make term charter domains 2-able by means of push-outs and
a weak form of amalgamation, and we have also shown that 2-
term charter domains and 2-term charters are again term charter
domains and term charters, respectively. Term charters provide a
modular and compositional framework for expression language
design and their extension to 2-term charters thus makes mod-
ularisation also available for relational expressions and OCL
pre- and post-conditions.

The OCL is a syntactically and semantically heterogeneous
language that involves different algebraic and non-algebraic
expression constructs as well as different semantic domains
for partiality, non-determinism, and non-termination. Although
all features can be faithfully captured by term charter domains
and term charters as well as put into relation by term charter
(domain) morphisms (Knapp & Cengarle 2018), a general proce-
dure for constructively combining different syntactic constructs
over different semantic domains is still missing.

Extending OCL contracts that involve two system snapshots,
filmstrip models have been introduced by Gogolla et al. (2014)
for capturing system dynamics over a series of snapshots. Rea-
soning about such filmstrips could be enabled by moving from
2-term charters to n-term charters.

The application of the term charter framework to the OCL
should be implemented in a tool for making the approach exe-
cutable and accompanied by an entailment system for verifying
OCL invariants and contracts. Moreover, the framework should
be integrated into the institution-based “Heterogeneous Tool
Set” (Mossakowski et al. 2007) in order to “institutionalise”
OCL and to study UML/OCL model consistency (Hilken et
al. 2014; Gogolla & Hilken 2015) as put forward by Martin
Gogolla.
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