Journal of Object Technology | RESEARCH ARTICLE

I I JOURNAL OF
OBJECT TECHNOLOGY

Modeling and Validating
Role-Based Authorization Policies for a
Port Communication System with UML and OCL

Christian Maeder*, Karsten Sohr*, Rodrigue Wete Nguempnang*, Nils Meyer-Larsen®, and Rainer Miiller
*lnstitute of Shipping Economics and Logistics (ISL), Germany
*University of Bremen, Germany

ABSTRACT Modern sea or inland ports rely on digital communication and systems to boost rapid turnover of trade. Stakeholders
like shippers, shipping lines, container terminals and port authorities collaborate and compete using their own legacy applications.
Many sea ports operate Port Community Systems (PCS) to orchestrate processes between the players. These software
systems are potential targets of security threats that may lead to payment fraud, espionage of competitors, smuggling, theft,
export control violations, up to disasters involving dangerous goods possibly effecting public mains.

In our approach we apply modeling to the field of information security. We combine and focus on Role-Based Access Control
(RBAC) with constraints and Attribute-Based Access Control (ABAC) for finer grained authorization constraints. In a concrete
case study we model authorization policies within port communities that partly utilize dedicated PCS. The purpose is to increase
the integrity of exchanged data and thus reduce the risks of attacks or failures. We employ the UML-based Specification
Environment (USE) and its OCL support to validate specified security properties for a typical container shipping scenario.

KEYWORDS Access Control Model, Permissions, RBAC, ABAC, OCL, Port Community Systems

1. Introduction

In this paper, we apply advanced Role-Based Access Control
(RBAC) concepts (Sandhu et al. 1996) and combine it with
Attribute-Based Access Control (ABAC) for fine-grained au-
thorizations (Hu et al. 2015) in the context of a whole port
community rather than a single company. We model basic parts
of the port domain, RBAC, and ABAC constraints (a.k.a. “poli-
cies”) using the UML-based Specification Environment (USE)
(Gogolla et al. 2007) and its support for the Object Constraint
Language (OCL) (OMG 2014) to test and validate the specified
constraints. The USE tool has been developed in the research
group of Martin Gogolla over the last twenty years. The testing

JOT reference format:

Christian Maeder, Karsten Sohr, Rodrigue Wete Nguempnang, Nils
Meyer-Larsen, and Rainer Miller. Modeling and Validating: Role-Based
Authorization Policies for a : Port Communication System with UML and
OCL. Journal of Object Technology. Vol. 19, No. 3, 2020. Licensed under
Attribution - No Derivatives 4.0 International (CC BY-ND 4.0)
http://dx.doi.org/10.5381/jot.2020.19.3.a8

and validation steps allow a policy designer to systematically
evaluate defined policies and finally improve the integrity of
data shared within a port community.

Since around 90 percent of the world’s trade is done via con-
tainer shipping, the relevance of maritime ports communities is
evident. Many ports of the global maritime network play vital
roles for transshipments along major trading routes and for the
regional economy. Quite a few companies related to these port
activities must be considered as critical infrastructures that need
to be observed and secured against failure. Many sea ports run
so-called Port Community Systems (PCS) in order to support
frictionless operations and increase turnover via IT systems.
PCS are in operation for the North-Sea ports Rotterdam, Am-
sterdam, Antwerp, Zeebrugge, Wilhelmshaven, Bremerhaven,
Hamburg, and others. These independent PCS also share and
exchange common global shipping data among each other as
well as with governmental authorities, i.e. local port authorities.
Information regarding dangerous goods or waste potentially
harmful to the environment is also systematically collected and
reported to authorities.

An AITO publication

http://dx.doi.org/10.5381/jot.2020.19.3.a8

The International Port Community System Association
(IPCSA') defines a PCS as a neutral and open electronic plat-
form enabling intelligent and secure exchange of information
between multiple systems operated by a variety of organizations
that make up a seaport community. Inland ports usually do
not have a PCS, which means that corresponding individual
stakeholders communicate directly with each other.

Due to the ever increasing importance and complexity of
such PCS the objective of two German research projects—as
acknowledged at the end—was to deeper examine the potential
threats for such software and IT systems. Proper risk assess-
ment for the business processes as well as an overall security
architecture for the many stakeholders of a port community are
deemed to be essential (Meyer-Larsen & Miiller 2018).

Port processes, such as import or export, are often business
critical. If they are disrupted, this may even jeopardize the
supply for the population. Hence, adequate measures must be
implemented to secure digital port processes (Meyer-Larsen
et al. 2019). The European Union Agency for Cybersecurity
(ENISA) (Drougkas et al. 2019) mention the cyberattack in
Antwerp, the NotPetya incident impacting Maersk, and other
ransomware attacks in the ports of Barcelona and San Diego.
Among many security aspects for port processes, i.e. network
security to increase availability and reliable authentication pos-
sibly supported by a Public Key Infrastructure (PKI), access
control mechanisms are important for confidentiality and in-
tegrity.

Access control has already been adopted by many applica-
tion areas, such as banking and healthcare (Anderson 2008).
Role-based policies as standardized in ANSI (2012) are only
well-suited for role hierarchies and simple static or dynamic
Separation of Duty (SoD) constraints (Simon & Zurko 1997;
Ahn & Sandhu 2000). Fine-grained access control that consid-
ers i.e. a history (Bertino et al. 2001) or a context (Georgiadis
et al. 2001) requires substantial extensions that should be better
perceived as being attribute-based. For specifying both, RBAC
and ABAC constraints, we employ OCL as unifying formal
language. While appreciating the support of OCL via the USE
tool, a more adequate unified specification language for RBAC
and ABAC seems still to be missing.

The remainder of this paper is organized as follows. After
a discussion of related work in Section 2, we present the back-
ground of this paper in Section 3. Thereafter, we introduce
our approach to modeling and validating exemplary role-based
and attribute-based policies in the port domain in Section 4.
Section 5 concludes with a summary and an outlook.

2. Related Work

A plethora of works exist that integrate security policies into soft-
ware and system models based on UML. These works include
Kuhlmann et al. (2011, 2013); Sohr et al. (2012, 2008); Jiir-
jens (2002); Ray et al. (2004); Ahn & Shin (2001); Ferndndez-
Medina & Piattini (2004); Basin et al. (2006); Alam et al. (2008);
Strembeck & Mendling (2011); Basin et al. (2011). Some of the

! https://ipcsa.international

2 Maeder et al.

approaches do not particularly address RBAC like UMLsec (Jiir-
jens 2002). Basin et al. (2006) present the modeling language
SecureUML for integrating the specification of access control
into application models and for automatically generating access
control infrastructures for applications. They also deal with
authorization constraints but do not discuss SoD constraints. In
Simon & Zurko (1997); Gligor et al. (1998); Sohr et al. (2008),
we explicitly model role-based SoD constraints with UML and
OCL. A similar model-driven approach for role-based policies
is introduced by Alam et al. (2008) within the frameworks for
applications based on web services.

Several works on the validation of role-based policies based
on UML and OCL exist (Basin et al. 2009; Yu et al. 2008;
Sohr et al. 2008). Based upon SecureUML, Basin et al. (2009)
propose an approach to analyze role-based policies by stating
and evaluating queries like “Which permissions can a user per-
form with a given role?” or “Are there two roles with the same
set of permissions?”. Our approach allows similar kinds of
queries through the query facility of the USE tool (Gogolla et
al. 2007). In Yu et al. (2008), a scenario-based approach to
analyzing UML models is presented, which is exemplified by
an elementary RBAC UML model. In this context, a policy is
considered as a dynamic artifact which evolves through adminis-
trator activities. Hence, it can be examined whether a sequence
of administrative RBAC operations, such as assigning users to
roles, can violate static SoD constraints.

In cooperation with Martin Gogolla, we have published sev-
eral works which are similar to the aforementioned papers deal-
ing with UML/OCL modeling in the context of RBAC and its
extensions (Kuhlmann et al. 2011, 2013; Sohr et al. 2012, 2008).
Not only do these publications focus on the modeling part but
also on the analysis of role-based policies by means of a vali-
dation approach that employs the USE tool. Furthermore, they
support dynamic authorization constraints, such as object-based
dynamic SoD and history-based SoD (Simon & Zurko 1997;
Gligor et al. 1998)—an aspect that is not in the focus of the
other modeling approaches.

This work now applies the concepts of our earlier papers in
the context of a port-based scenario. This scenario has been
developed with stakeholders of seaports, such as the vessel
operator Hapag-Lloyd, a logistician BLG LOGISTICS as well
as a PCS vendor/operator.

3. Background

We first describe a PCS, the core of the IT infrastructure of
many seaports, and then we discuss RBAC and its extensions.

We conclude this Section with explaining relevant concepts of
UML, OCL, and the USE tool.

3.1. Port Community Systems

A PCS supports the processes to export and import goods. In
Figure 1 we describe the export as done in the German sea ports
of Hamburg, Wilhelmshaven, or Bremerhaven. Only essential
electronic messages are shown and accompanying physical ac-
tivities are omitted. The following roles are typical for port
processes.

https://ipcsa.international

exporter customs | | shipping line PCS terminal | | port authority
T . T T T T
| 1, Declaration ‘: E E E E
LMRN | : : : :
| 1. transport order | | | | |
| | | 2. port order ;__: | |
2 Port order number
X \ X | 2. port order X X
E E E E 2. port order (dangerous goé:ds}l E
E i E E 3. Gate-In E E
E E : 3. Gate-In : : E
E E E : 3. Gate-In (dangerous goodsl) :
E ! 3. presentati:on to customs | E E
E : 4. clearance o:r inspection : E E
E E E | 4. clearance or inspection | E
| | | _ 4. clearance or inspection | | |
| : | | 5.0n-Vessel | |
i | i i | i
X | | 5.0n-Vessel X X X
E E E E 5. On-Wessel (dangerous golbds) E
E i 5. all Ioadedi E E E
E E §. completed I¢ustoms E E E
E 6. completed customs : E E E E
E E E : 6. vessel ready : E
E E | 6. vessel ready | | E
exporter customs | | shipping line PCS terminal | | port authority

Figure 1 Export process (numbers refer to descriptions below)

Modeling and Validating Role-based Policies for a PCS with UML and OCL

3

— Exporters, traders, shippers, or importers actually want to
export, import, or simply transfer containerized goods via
the port. There are also inland carriers (or forwarders) that
transport goods to or from the ports but we comprise all
these players using a single exporter role in the sequence
diagram.

— Customs has ultimate control over the goods being im-
ported or exported that exporters have to declare in ad-
vance. Customs duties may be charged. Goods are held
in customs areas—usually terminals at ports—until being
cleared possibly after some containers have been inspected.

— Shipping lines offer the transport capabilities. Exporters
ask shipping lines or agents to transport (their) goods by
ship. The shipping line organizes the subsequent container
handling, i.e. by sending a port order to a PCS in charge.
For ports without a PCS shipping lines communicate with
terminals directly.

— The PCS of Figure 1 is basically responsible to coordinate
the presentation to customs for containers arriving at ter-
minals. Decisions of customs as well as other information,
i.e. about dangerous goods, is forwarded to other involved
players.

— Terminal operators administer storage locations at the port
and control required clearances before goods are actually
moved. Terminals closely communicate with shipping
lines for loading and unloading of containers.

— A port authority is informed about all dangerous goods
arriving, leaving, or located at the port to ensure timely
and appropriate responses in case of hazards.

The major steps made by individual players of the afore-
mentioned roles are numbered as in the sequence diagram of
Figure 1 and described as follows.

1. The first step for an exporter is to declare the goods to be
exported at customs. Customs returns shipping documents
and a so-called Movement Reference Number (MRN). The
exporter hands over this information to a shipping line.

2. The shipping line (or an agent) organizes the transport of
the exporter’s goods via forwarders to a terminal and sends
an official port order to the PCS. Apart from the MRN, the
port order contains the actual packing of containers and
the concrete voyage comprising the terminal for loading
and the destination port. The PCS returns a port order
number to the shipping line and forwards the port order
to the chosen terminal. A further copy of the port order
is sent to the responsible port authority in case dangerous
goods are involved.

3. The terminal associates arriving containers with port orders
and reports this back to the PCS and to the shipping line as
Gate-In messages. The PCS forwards Gate-In messages
for containers with dangerous goods to the port authority.
The PCS gets declaration data from customs and requests
customs clearance as soon as all goods associated with one
MRN are located at the terminal. This is called qualified
presentation to customs.

4 Maeder et al.

4. Customs can now grant clearance to containers or order
various kinds of inspections. Their decision is sent to the
PCS that in turn informs the terminal and shipping line.
Only after customs clearance, containers may be loaded.
Furthermore, all containers need a Verified Gross Mass
(VGM). The shipping line is responsible for obtaining a
VGM from the exporter but the exporter can also supply a
VGM via (a service of) the PCS to the shipping line. The
terminal and the shipping line together agree on a bay- or
stowage plan for the vessel.

5. The terminal reports the loading of a container to the PCS
and the corresponding shipping line. In case of dangerous
goods, the PCS forwards this message to the port authority.
When all containers associated with one MRN are loaded,
the PCS informs customs.

6. Customs acknowledges completion of the process to the
exporter and the PCS. Finally the terminal informs the PCS
and the shipping line when vessel loading has completed.

3.2. RBAC and Authorization Constraints

RBAC is a well-established access control model, by which
users obtain permissions not directly but via roles that users play
in their organization. RBAC has been formalized by Sandhu et
al. (1996), which in turn was later used as the basis for the ANSI
(2012) RBAC standard. The following concepts are defined in
Sandhu et al. (1996):

— the sets U, R, P, S (users, roles, permissions, and sessions,
respectively)

— UA C U x R (user assignment)

PA C R x P (permission assignment)

RH C R x Ris a partial order called the role hierarchy or

role dominance relation written as <.

Users may activate a subset of the roles they are authorized
for in a session. P is a set of ordered pairs of operations and
objects. In the context of access control all resources accessible
in an [T-system (e.g. files, database tables) are referred to by the
notion object. An operation is an action on objects (e.g. read,
update, delete). The relation PA assigns roles from R to permis-
sions from P. So PA determines for a given role the operation(s)
it may execute and the object(s) to which the operation in ques-
tion is applicable. Thus a user with an activated role of a session
can apply an operation to an object if the corresponding ordered
pair is an element of the permission assignment PA. Role hierar-
chies can be formed by the RH relation. Users of senior roles
inherit permissions from junior roles through the RH relation
(e.g., the role chief_physician inherits all permissions from the
physician role, written as: physician < chief_physician). A user
from U is authorized for a role if the user is directly assigned to
the role or to a senior role by the user assignment relation UA.

Figure 2 shows a basic class diagram for the above sets and
relations, where the role hierarchy that may be optional is mod-
ularly given by a subclass HR of R for hierarchical roles with
inverse senior and junior relations. The structure of permissions

UA role PA
R]
user activeRoles .
%

HR senior

Figure 2 RBAC class diagram

P with operations and objects? is omitted. A session from S has
a unique associated user from U and aggregate roles from R as
activated roles.

Figure 3 shows an example of an object diagram based on the
RBAC class diagram (Figure 2) that reflects the above sequence
diagram (Figure 1). The top row shows all role objects as in
the sequence diagram, all other nodes are permission objects.
The partly overlapping connections—only between roles and
permissions and not between permissions—show the role per-
mission assignment PA. A PCS shares some permissions with
other players, basically forwarding information. In order to
keep the picture readable, receiving information is not modeled
as permission. Therefore no permission is assigned to port au-
thorities, although in a realistic setting, reading sensitive data
like dangerous goods should be modeled as a permission as
well.

Authorization constraints are an important advanced con-
cept of RBAC that are basically given by restrictions of the
above RBAC functions and relations. For example, an SoD
constraint may state that a user must not be authorized for both
a cashier and a (non-senior) cashier_supervisor role, i.e. the UA
relation is statically restricted. Less strict would be a dynamic
SoD constraint, where the two roles merely must not be active
in simultaneous sessions of a user.

Sandhu et al. (1996) introduce a family of RBAC models for
the various dimensions. RBACj is the core model and RBAC;
adds role hierarchies. RBAC, adds constraints to RBACy and
is incomparable to RBAC. The consolidated model is RBAC3
as union of RBAC; and RBAC;. Ahn & Sandhu (2000) pro-
pose the Role-based Constraint Language (RCL) to specify
constraints for RBAC; and RBAC3. RCL is a domain specific
language, based on a restricted first-order logic, that allows to
express constraints in a declarative way without explicit quanti-
fiers as we explain in Section 4.4.1.

It has been argued elsewhere that authorization constraints
are the principal motivation behind the introduction of RBAC
(Sandhu et al. 1996). They allow a policy designer to express
higher-level organizational rules. In the literature, several kinds
of authorization constraints have been identified, such as various
types of static and dynamic SoD constraints (Gligor et al. 1998;
Simon & Zurko 1997; Ahn & Sandhu 2000), prerequisite roles
and cardinality constraints (Sandhu et al. 1996), constraints on
delegation (Zhang et al. 2003), context constraints (Joshi et al.
2005; Georgiadis et al. 2001), workflow constraints (Bertino

2 In order to avoid confusion with the term object, i.e. in the context of object
diagrams, we henceforth prefer the term resource in conjunction with RBAC
permissions. In the literature on access control, however, still the term object
is common.

et al. 1999), binding of duty (Brucker et al. 2012). The RBAC
standard (ANSI 2012) recommends specific SoD relations based
on conflicting roles and cardinalities. Only sessions are dynamic
in RBAC. Dynamic constraints based on i.e. attributes, types,
contexts like the time of day, history, etc., go clearly beyond the
standard and RBAC;.

For advanced constraints, attribute-based access control
(ABAC) has been introduced (Hu et al. 2015). This access
control model unifies access control concepts, such as roles,
contexts, or access history, into a common model and represents
these access control entities as attributes, which are used within
access control decisions. ABAC is the recommended access
control model for promoting information sharing between di-
verse and disparate organizations (Rubio-Medrano et al. 2013;
Hu et al. 2014).

As RBAC, however, is still one of the most prevalent access
control models in practice, we focus on it as long as possible. We
switch to ABAC for context constraints (Georgiadis et al. 2001),
which are needed within the frameworks of port processes,
e.g. import and export. A typical context constraint is so-called
multitenancy, meaning that users (i.e. customers) despite having
the same basic role are only allowed to access resources they
own (or created) as we elaborate in Section 4.4.2.

3.3. UML, OCL, and USE

In the following, we briefly introduce UML, OCL, and the USE
tool. For this purpose, we partly resort to our earlier publications
(Hamann et al. 2015; Sohr et al. 2012).

The Unified Modeling Language (UML) represents a
general-purpose visual modeling language, in which one can
specify, visualize, and document the components of software
systems. It captures decisions and understanding about sys-
tems that are to be constructed. UML has become a standard
modeling language in the field of software engineering.

Through different views and corresponding diagrams, UML
permits the description of static, functional, and dynamic mod-
els. In this paper, we concentrate on UML class and object
diagrams as well as on sequence diagrams for documentation
purposes of business processes. A class diagram provides a
structural view of a system. Classes are defined in terms of their
attributes and relationships. Relationships are binary or n-ary
associations between classes but they can also be association
classes with additional attributes. Object diagrams visualize
instances of the modeled system, i.e. class instances (objects),
attribute instances (values), and instances of associations (links).
Figures 2 and 3 show an example class and object diagram. A
sequence diagram is depicted in Figure | visualizing an export
process via a PCS.

The Object Constraint Language (OCL) is a declarative
textual language that describes constraints on object-oriented
models (Warmer & Kleppe 2003; OMG 2014). It is an industrial
standard for object-oriented analysis and design.

OCL expressions consist of standard operations or user-
defined query operations. The built-in standard operations
support calculations on the basic types Boolean (e.g. and, or,
implies), Integer (e.g. +, x, mod), Real (e.g. /, round), String
(e.g. +) as well as on collection types, i.e. sets, bags (multisets),

Modeling and Validating Role-based Policies for a PCS with UML and OCL 5

|§xpgnt&L.B| |wmm3| |memgm
Y
| declare_goods_1:P | [send_MRN_1:P |
[
| nd_tran rt_or r_l:Pl
| send_port_order 2:P |
nd_clearance 4:P
| n mpletion P|

Figure 3 Object diagram for PCS roles and permissions

terminal:R | |port_authority:R

rnm send_port_order_number_2:P

| send Gate_lIn_3: P|

| present_to_. customs 3:P |

send_all_loaded_5:P |

| send_vessel_ready_6:P

context S inv activ:
user.role.getRoles ()—includesAll(activeRoles)

Listing 1 Check active roles of a session

ordered sets, and sequences. Beside the usual collection type
operations (e.g. union, size, and includes) several operations en-
able iteration over the members of a collection, such as forAll,
exists, collect, select, and reject. These latter operations can all
be expressed by the very generic iterate® operation that takes an
additional accumulator argument. The most important features
of OCL are navigation and attribute access, which connect an
OCL expression with the values in a concrete model instance.
By definition, OCL constraints can restrict aspects of a UML
model through invariants.

The OCL invariant in Listing 1 checks if all activated roles
of a session are included in the authorized roles of the session’s
user. The operation getRoles (cf. Listing 2) computes all po-
tential junior roles of a role including itself. The term user.role
selects the directly assigned roles from the UA relation.

The UML-based Specification Environment (USE) sup-
ports modeling features and their analysis through validation
and verification (Gogolla et al. 2007). Within USE, UML class,
object, statechart, sequence, and communication diagrams ex-
tended with OCL are available. USE assists the developer in
validating and verifying model characteristics. USE features
a model validator based on relational logic and SMT solvers.
Model properties to be inspected include consistency, redun-
dancy freeness, checking consequences from stated constraints,
and reachability. These properties are handled on the concep-
tual modeling level, not on an implementation level. Employing
these instruments, central and crucial model characteristics can
be efficiently verified.

3 From functional languages the iterate operation is known as a function reduce
or foldl (HASKELL) for folding from left to right. Reduction or folding also
allows one to express map and filter functions. OCL’s collect operation
corresponds to mapping, whereas select and reject is filtering.

6 Maeder et al.

class R operations

getRoles () : Set(R) = Set{self} end

class HR < R operations
getRoles () : Set(R) = juniors ()—including(self)
juniors () : Set(R) = junior—closure(junior)

constraints inv acyclic:
juniors ()—excludes(self) end
association RH between
HR[*] role senior
HR[«] role junior end

Listing 2 Specification of hierarchical roles

USE expects a model specification with constraints as text.
The classes R and HR as well as the RH association from the
class diagram in Figure 2 for roles, hierarchical roles, and the
role hierarchy are shown in Listing 2.

The subclass HR of R overwrites the operation getRoles from
the superclass to include all junior roles. The auxiliary opera-
tion juniors collects all proper junior roles using OCL’s closure
operation. The class HR also contains a constraint to ensure that
role hierarchies are acyclic. It is a matter of taste to specify con-
straints as part of a class, i.e. HR, or within a separate context as
done for the invariant in Listing | that is specified in the context
of the session class S. Having separate classes HR and R at all
was a design decision made to keep the basic super class R as
simple as possible. Yet, the class R has the operation getRoles
that yields a somewhat artificial singleton set of it self for roles
without a hierarchy but such an operation is indispensable for
an extension like a role hierarchy.

Given a class diagram, i.e. Figure 2, created from a textual
specification in a text file (with extension .use) as partly shown
in Listing 2, USE supports several ways to construct correspond-
ing object diagrams. The primary way is to construct an object
diagram with objects, attributes, and links of associations, in-
teractively. The objects, attributes, and links created can then
be saved to a script file. Additionally, the layout of object dia-

port_order()

_MLLT]
e cme e

- ‘port order number’_ _

Figure 4 Sequence diagram based on SOIL

grams created manually or via layout algorithms can be saved
separately similar to those of class diagrams.

Another way to create object diagrams works through the
integrated model validator. The search space of the validator can
be configured via a . properties file. For example, minimal
and maximal numbers of objects and links for classes and asso-
ciations can be set. The default configuration assumes exactly
one object for every class. However, this initial configuration
is unsatisfiable for the acyclic invariant of hierarchical roles HR.
At least two different roles are required for a simple role hierar-
chy RH. The configuration allows to set minimal values to zero
but then only partial solutions are generated because invariants
of classes without objects will never be checked. Invariants can
also be directly omitted from the search space to easy the anal-
ysis of inconsistencies caused i.e. by contradicting invariants.
The model validator can also extend a partial, yet consistent ob-
ject diagram that have been created earlier—possibly manually.
Eventually one wants to obtain object diagrams—manually or
through suitable configurations—that best reflect the reality.

USE also allows one to imperatively program class opera-
tions using the Simple OCL-based Imperative Language (SOIL)
described in Biittner & Gogolla (2011). The sequence diagrams
created from such SOIL programs show the participating ob-
jects and the operations invoked on such objects as incoming
and returning arrows. In Figure 4 the actor on the left declares
goods to customs and makes a transport order to a shipping line.
Method calls with return arrows are shown. Such a concrete
sequence diagram is different from the sequence diagram* de-
picted in Figure 1 for modeling purposes. Modeling is more
abstract than programming, i.e. roles instead of concrete players
are addressed.

4. Approach

The starting point of our modeling approach are sequence di-
agrams like the one of Figure | that was the result of several
discussions with actual stakeholders of the port community.
Helpful are also business process models or other informal or

4 created using PlantUML https://plantuml.com/

Order

order reference : Integer
mrn direction : Direction
state : State

Declaration

mrn : Integer
state : State

declaration
order
goods container
Item Container

number : Integer
type : ContainerType
attrs : Set(Attribute)
state : State
destination : String

position : Integer

kind : String

amount : Integer
dangerous : Boolean
description : Set(String)

container
content

container
«enumeration»

State vgm
created VGM
delivered weight : Integer
presented responsible : String
locked
cleared
loaded «enumeration»
unloaded Direction
released export
collected import
completed

Figure 5 Class diagram for container and port order goods

semi-formal process descriptions. Sequence diagrams depict
the flow of information between participants.

The first task is to find a useful set of roles that partici-
pants may adopt. Considering the numerous companies and
employees of these companies within a port community it is
non-trivial to come up with a manageable number of roles. Typi-
cally, companies are subdivided and have their own role models.
Furthermore, many activities are delegated to specialized agents,
counselors, secretaries, charterers, etc. that act on behalf of a
client with complicated legal consequences regarding responsi-
bilities. Our naturally subjective choice was to restrict the roles
to those described in Section 3.3.1.

The second task is to identify the important processing steps.
Eventually we aim for a useful initial sequence diagram like
Figure 1. Only after consolidation we create straightforward
object diagrams showing the associations between roles and
processing steps as permissions, like in Figure 3. As we look
at IT systems and not physical actions, all processing steps
create, send, receive, read, aggregate, extract, update, or delete
data. Therefore we focus on the data being processed. The data
model for our container export (or import) scenario is presented
as a class diagram in Figure 5.

Goods to be exported have to be declared item by item. Each
item has an internationally standardized name and number ac-
cording to the Harmonized System (HS) of tariff nomencla-
ture maintained by the World Customs Organization (WCO). A
single declaration usually comprises many items stating what
goods should be exported.

Modeling and Validating Role-based Policies for a PCS with UML and OCL 7

https://plantuml.com/

Container::ContainerLifeCycle {protocol})

)

create/ inspect()/

)

clear()/

created

~

presented

deliver()/ present()/

completed

D — clear()/

cleared

collect()/ load()/

released unloaded loaded
release()/ unload()/

Figure 6 Container life cycle statechart

complete()/
)

collected
~

The same individual items need to be put into containers for
transport. We assume that every item fits into a single container,
otherwise an item needs to be split into several items, each with
a lower amount. Containers determine how goods should be
transported.

Port orders join two views: customs want to know what and
shipping lines how to export. Items (for the same destination)
from several declarations may be inside a single container and
all items of a single declaration may have been packaged into
several containers.

The attributes of the classes ltem, Declaration, Container, and
(port) Order are only rough indications, i.e. in reality dangerous
goods would be far more elaborated. It is also a matter of style
or taste if attributes are kept inside a class or if associations for
non-primitive attributes are used.

For instance, the verified gross mass (VGM) of a container
is not a primitive attribute but an association to an extra class.
This weight of a container became mandatory in 2016 to in-
crease safety on sea, because wrong weights have sometimes
caused naval accidents. A VGM also comprises a person that
is responsible for the accuracy of the given weight. There are
only two legal ways to determine a VGM. One can either weigh
a container or sum up the weights of all items inside plus the
weight of the empty container. Containers without a VGM must
not be put on board of a sea ship.

Customs declarations, port orders, and containers all have a
state attribute, accidentally sharing an enumeration class. This—
mostly implicit—attribute indicates the current processing state
during a life cycle, where a life cycle of a container as shown in
Figure 6 begins when it is ordered for transport from an empty
container depot (#created’), and ends when the container is
emptied again after the voyage (#completed).

The states of declarations, port orders, and containers are
interdependent. Listing 3 shows an invariant for a declaration
d that has been fully presented to customs. This qualified pre-

3 Values of enumerations in USE are preceded by a # sign. The standard OCL
notation State::created is legal, too.

8 Maeder et al.

context d:Declaration inv qualified:
d.state = #presented implies
d.order—collect(container)
—select(c | c.state = #delivered)
—collect(content—includesAll(d.goods))

Listing 3 Qualified presentation to customs

sentation is done by the PCS as soon as all declared goods
(d.goods) are inside—i.e. content of—a container c at the termi-
nal. Containers at the terminal are in the state #delivered and
the PCS is informed about this fact via Gate-In messages. Any
container ¢ must also be known via a port order that references
the declaration (where d.order denotes the reverse reference).

The data described above are exactly those resources that are
the second components of permissions P from the RBAC model
as described in Section 3.3.2. The first components of permis-
sions P are operations and as generic operations one initially
only considers create, read, update, and possibly delete. The
combinations of operations and resources are permissions. The
name of a permission is simply the operation name connected
to a resource name via an underscore.

As third task we are able to draw a first picture of access
control. One simple way is to use an access control matrix as
laid out in Table 1.

The first column lists the roles, whereas the first row lists the
resources being accessed. As access within the matrix only cre-
ate and read operations are distinguished. We assume that data
is never (re-)written or deleted after creation. All presented data
is created by the exporter. Customs may know/read everything
about the goods to be exported but do not care about container
details. The shipping line and the terminal only need to roughly
know the content of containers but care about dangerous goods,
a VGM, and container attributes, i.e. for power supply of cool-
ing containers. The PCS has the additional permission to create
a VGM by summing up container content. The port authority is
only interested in information about dangerous goods at least
as long as no accidents occur. Access rights of authorities will
surely increase in cases of emergency but we restrict ourselves
to model normal operation.

Other interesting roles may be those of attackers or insiders.
Any attacker can read the information that is publicly available.
For instance, anyone could observe physical containers being
transported on road or rail near terminals. So an attacker could
collect some container numbers and dangerous good indica-
tors and enter container numbers into some container tracking
services. However, since this attack is manual and somewhat
tedious, we do not consider it further. Insiders would play the
roles of their companies.

Generally, the data presented above and traditionally ex-
changed as EDIFACT® is not supposed to be available to others
outside the port community.

An access control matrix can be presented differently,
i.e. column-wise as access control list (ACL) or row-wise as
capabilities (Anderson 2008). The readability of an equivalent

6 Electronic Data Interchange For Administration, Commerce, and Transport

data
value/description | destination/kind/amount | dangerous goods | container attributes | VGM
role
exporter create create create create create
customs read read read
shipping line read read read read
PCS read read read create
terminal read read read read
port authority read
Table 1 Access control matrix
xporter R of concrete vessels, they are supposed to only read the data
of their clients and no data of competing shipping lines or
[c — s = 'R valueDeseription® terminals. From the perspective of the port community or

| C_dangerousGoods:P %shipping_line:R [R_destKindAmount:P

| C VGM:P | | terminaI:RH 1 R_contAttributes:P

rt_authority:R R_VGM:P

Figure 7 Object diagram for access control matrix

presentation as object diagram like in Figure 7 with marked
roles is questionable but large tables are also problematic. For
our container export scenario, the given access control matrix is
still too simplistic and merely serves as overview.

As fourth task we refine our access control model using
authorization constraints. We first enumerate the authorization
constraints for a port community informally. Our analysis of
the port processes revealed the following constraints.

— The customs’ job is to control goods. Thus to avoid a
conflict of interest we demand a separation of duty con-
straint. Since only customs is allowed to clear containers,
customs must not also play any other role. We formalize
this separation of duty in Section 4.4.1.

— The terminal area as well as a vessel allow only physically
restricted access. The exact positions of containers at the
terminal or on board is supposed to be as secret as possible
not only for the public but in particular also for the initi-
ating exporters in order to impede physical manipulations
before or after custom clearance. Terminals only report
container positions to the PCS and also customs can query
container positions for inspection purposes.

— Exporters only create their own data and cannot read or see
any data created by other exporters. While shipping lines
and terminals closely communicate for stowage planning

a PCS we have multitenancy for exporters, shipping lines,
and terminals that we discuss in Section 4.4.2.

— Information about dangerous goods is very important for
piling containers at terminals or on board of a vessel. De-
spite hiding exact container positions, containers have dan-
gerous goods indicators that may be publicly spotted.

The last constraint is somehow contradictory and hard to
formalize. Containers with dangerous goods need to be recog-
nizable for cases of (traffic) accidents but i.e. a summary of all
dangerous goods at a terminal or of a vessel should definitely
not be available to terrorists.

Container positions could be made a simple attribute of the
Container class in Figure 5 but a separate association would
maybe better facilitate the extra protection required. Since we
do not further discuss these positions they are also omitted from
our access control matrix in Table 1.

4.1. Separation of Duty

Simple separation of duty constraints are easily modeled by
defining conflicting roles. From any set of conflicting roles at
most one role may be authorized for any user. In Listing 4
the class CR represents a set of conflicts via an association
ExclusiveRoles to at least two distinct roles. The terms exclusive
and conflicting roles are used interchangeably. The invariant
noConflicts ensures that authorized roles of every user (u.role
.getRoles()) contain at most one role from the set of conflicts .
Using the model validator we can check our specified constraints
at any stage, in particular before trying to construct an object
diagram manually. If the (properly configured) validator does
not find a solution, the specification might be (or definitely is)
inconsistent, i.e. no object diagrams, with all constraints verified,
exist.

For customs we need to define the following sets of conflict-
ing roles. From all elements of CR in Listing 5 at most one from
the two roles may be taken by any player. A representation of
these sets as object diagram is shown in Figure 8. The mere
existence of this object diagram proves the consistency of our

Modeling and Validating Role-based Policies for a PCS with UML and OCL 9

class CR constraints inv noConflicts:
U. alllnstances—forAll(u | u.role.getRoles ()
—intersection(conflicts)—»size < 1) end
association ExclusiveRoles between
CR[*]
R[2..x] role conflicts end

class UR < R constraints inv unique:
U. alllnstances—forAll(u | u.role.getRoles ()
—size < 1) end

Listing 4 Constraint for exclusive roles

Listing 6 Unique exclusive role

CR = {{customs, exporter},
{customs, shipping_line},
{customs, PCS},

{customs, terminal},
{customs, port_authority}}

inv i: UR()—=>forAll(r | U()
—forAll(u | uroles(Set{u})—includes(r)
implies uroles(Set{u})—size = 1))

Listing 5 Set of sets of conflicting roles

model if all constraints are true. It remains to discuss if the
model is appropriate.

With the set of sets CR of Listing 5 an alternative formal-
ization can be given via Ahn’s role-based constraint language
RCL 2000 (Ahn & Sandhu 2000).

| roles*(OE(U)) N OE(CR)| < 1

The authorized roles of any user OE(U) may at most contain
a single role from any conflict set OE(CR). OE denotes one
element of the argument set and since this may be any chosen
element, the statement must be valid for all elements.

Combining the role customs with all others roles bears the
problem that additions or deletions of roles also causes additions
and deletions of conflicting role sets. This can be overcome
by different or additional class definitions. An alternative class
without the need to create combinations but only a proper sub-
class instance, i.e. for customs, is displayed in Listing 6. This
constraint has the benefit that it is easy to add further unique
roles, for instance for port authorities, since they also play a
supervisory role, i.e. with respect to dangerous goods.

An alternative formalization using the following RCL state-
ment would ensure that one element of the user set can only
have a single role, if this user has a role from the set UR where
UR would contain the role customs as an element.

OE(UR) € roles*(OE(U)) = |roles*(OE(U))| = 1

Figure 8 Diagram of exclusive roles

10 Maeder et al.

Listing 7 RCL statement as OCL invariant

The function roles* computes all authorized roles of a user
that includes junior roles introduced by a role hierarchy. For
such RCL statements we have developed a translator to USE that
has not been published yet. The corresponding OCL invariant
for the above RCL statement is given in Listing 7 where the term
uroles(Set{u}) matches u.role .getRoles() from Listings 6 and 4.
In our extension of RCL the duplicated term roles* (OE(U)) could
be avoided via a let-construct as could be done in the OCL
translation for the duplicated term uroles(Set{u}). The opera-
tions uroles (for user roles), UR(), and U() are extra operations
(not shown here) that return sets where U() is identical to U.
alllnstances. The premise before implies replaces the subclass
specification of UR in Listing 6. The order of the quantifications
using forAll is irrelevant and chosen in the order of appearance
of OE terms within the RCL statement. In the end both OCL
formalizations in Listings 6 and 7 are equivalent.

The given constraints for unique roles must not be mixed up
with cardinality constraints as described in Berger et al. (2019).
A cardinality constraint restricts the number of users who may
be authorized for a role. It could be argued that there should
be only a single player’ for the customs role. Yet, this user
should also not take any other role, which is only ensured by the
above role exclusions and independent from cardinality. (The
RCL statement for a single user having the role customs would
be: |user(customs)| = 1). Without the cardinality constraint we
allow several employees working as customs, exclusively.

4.2. Multitenancy

The RBAC model as described so far is too static to model
fine-grained access for users having the same roles. Subdividing
roles, i.e. separate exporter roles for different terminals or ports,
may lead to role explosion (Elliott & Knight 2010). If we look
at our data, we omitted the fact that customs declarations, for
instance, are made by exporters and port orders by shipping
lines. This connection is not even easily modeled using UML,
because we only have a class of users U and no separate classes
for exporters and shipping lines. By joining the class diagrams
from Figure 2 and 5 we could only add associations with U (or
attributes with values from U).

Via the declaration an exporter is also indirectly associated
to all items of this declaration. A port order is associated to a
concrete voyage of a vessel of a shipping line. Associated to the

7 A single user of a customs role may be the German ATLAS system.

voyage is a terminal at a port where goods shall be loaded and
unloaded. These associations carry over to all containers of a
port order. Container items are matched against declared items,
thus one or several exporters are associated to containers. The
visibility or accessibility should be as follows:

An exporter may see only her own items in a container, and

maybe the fact that these are not all items of this container.

She may also know the container number, the state, and

some more attributes of such a container.

— Via the container number the voyage, vessel, shipping line,
and terminal may be looked up.

— A shipping line only sees containers destined for its vessels,
contact information of exporters (or importers) with goods
in these containers, and contact information of individuals
responsible for VGMs. Vessels know the terminals they
call at.

— A terminal basically sees information about vessels and

containers that are going to be loaded or unloaded. These

containers are known in advance for planning purposes.

The current state of the art for such fine-grained or dynamic
permissions is attribute-based access control (ABAC) (Hu et
al. 2015). As the name suggests, attributes of users, resources,
or even global data determine whether the access of a user to a
resource via an operation is granted or denied. A formalism and
key standard that implements ABAC is the XML-based eXten-
sible Access Control Markup Language (XACML) (Rissanen
2017). However, the major implementations® are extensive. Un-
fortunately, a profile of XACML called ALFA (Giambiagi et al.
2015) for Abbreviated Language for Authorization with a text-
based lightweight syntax seems to be non-free® and the state
of standardization via the Organization for the Advancement
of Structured Information Standards (OASIS) since 2015 is un-
known (Giambiagi et al. 2015) whereas a recent JSON'!? profile
of XACML 3.0 (Brossard & Legg 2019) exists but replacing
XML by JSON does not provide the readability promised by
ALFA.

ABAC alone is expressive enough to discard RBAC entirely.
Any role can be viewed as an attribute of a user or operation
and some recommend to transition away from RBAC to ABAC
(Fatima et al. 2016). However, since RBAC is so widespread
and comprehensible, the current practice should be to combine
RBAC and ABAC. OASIS acknowledged RBAC support for
XACML back in 2014 (Rissanen 2014) and the access manage-
ment system Apache Fortress™ based on RBAC advertised
ABAC support (McKinney 2019) in a release note 2019'!. Since
we merely concentrate on authorization and not on web-based
authentication, we prefer to continue to use OCL to express ad-
ditional ABAC (or context) constraints as described by Berger
et al. (2019). The idea is to have additional associations be-
tween users (from U) and resources (as parts of permissions
from P) or to have subclasses of users and resources with addi-
tional operations that allow to retrieve those attributes—if not

8 AuthZForce https:/authzforce.ow2.org/

9 Axiomatics https:/www.axiomatics.com

10 javaScript Object Notation

11 Fortress Feature Content 269 https://issues.apache.org/jira/browse/FC-269

abstract class Constraint operations
isAllowed (u:U, r:Resource):Boolean end
aggregation Owner between
U [0..1] role owner
Resource [«] end
class OwnerConstraint < Constraint operations
isAllowed (u:U, r:Resource):Boolean =
u.resource—includes(r)
or r.ocllsKindOf(ltem) and (
let i = r.oclAsType(ltem) in
u.resource—~includes(i.declaration) or
u.resource—includes(i.container.order))
or r.ocllsKindOf(Container) and (
let ¢ = r.oclAsType(Container) in
u.resource—includes(c.order) or
c.content»exists(i | u.resource
—includes(i.declaration))) end

Listing 8 Generic and owner constraint

directly given as UML attributes—that should further determine
access decisions. The common part of such constraints is a
simple Boolean predicate as shown in Listing 8. Given an owner
association between a user and resources (as aggregation) we
can express the constraint that the user u can only access any
of these resources r by u.resource— includes(r). The repeated'?
subexpression u.resource denotes all resources the user u owns.
Assuming further that the classes Iltem, Container, Declaration,
and Order from Figure 5 are all subclasses of Resource, we can
additionally express (using or) that:

1. all items i

(a) of a declaration can be accessed by the owner u of
the declaration,

(b) of a container of a port order can be accessed by the
owner u of the order;

2. all containers c

(a) of a port order can be accessed by the owner u of this
order,

(b) can be accessed that contain at least one item i of any
declaration owned by the accessing user u.

Note that items or containers may also be directly owned or
may not be associated to declarations or port orders, yet. The
owner multiplicity [0..1] only ensures that at most one owner
for any resource can exist.

The operation isAllowed of any constraint’s instance is eval-
uated shortly before accessing a resource but after the static
RBAC constraints have been evaluated. Whereas invariants can
be validated, the actual access to resources can only be tested.
The above disjunction (using or) within the owner constraint
is still quite restrictive as it does not allow access to any other
resources without owners that are not items or containers. It

12 The repetition could be avoided by a let-expression but a telling name would
not be shorter.

Modeling and Validating Role-based Policies for a PCS with UML and OCL 11

https://authzforce.ow2.org/
https://www.axiomatics.com
https://issues.apache.org/jira/browse/FC-269

is also cumbersome to express conditions within the body of
isAllowed that address the RBAC roles and permissions of the
user and resource arguments.

4.3. Discussion

Modeling the data (cf. Figure 5), i.e. the resources to be ac-
cessed, turned out to be a challenge.

— We have classes for items or containers with different ac-
cess rights for certain sensitive attributes, i.e. the value and
detailed description should be only visible for customs.

— We have collections, i.e. of containers with dangerous
goods, that should be collectively protected while every
container exposes a classification label.

— Most messages exchanged between players merely contain
reference numbers, i.e. for port orders, declarations / move-
ment (MRN), or container numbers. It is quite unclear how
sensitive these numbers are, if they are known to malicious
actors.

— Finally, the data is associated to various users with separate
roles and we have access restrictions like multitenancy.

Within our access control matrix in Table 1, we may no-
tice that the permissions for the roles shipping line, PCS, and
terminal are similar.

1. The given permissions for shipping lines and terminals are
the same.

2. Compared to shipping lines and terminals, the PCS has the
create permission rather than only the read permission for
a VGM.

From | we might conclude that there should only be a sin-
gle role for the two roles. From 2 we might conclude that the
PCS should be a senior role as creating a date surely subsumes
reading it. Because we ignored further resources and permis-
sions of shipping lines, PCS, and terminals in wider or other
scenarios, we refrained from joining roles or from introducing a
role hierarchy. For some separation of duty (SoD) constraints
(RBACQC),), arole hierarchy (RBAC{) may interfere (Sandhu et
al. 1996; ANSI 2012). If senior and junior roles are defined
as exclusive roles, the use of the senior role would establish a
conflict. Generally, conflicting roles should have no common
senior role.

We could easily model and validate the simple SoD between
customs and other roles (cf. Section 4.4.1). The alternative OCL
invariants are fairly readable. Yet, a domain specific language
like RCL (Ahn & Sandhu 2000) may be a better choice if there
is some tool support like a translation from RCL to OCL as
indicated by Sohr et al. (2008).

Multitenancy (cf. Section 4.4.2) goes beyond RBAC and a
suitable specification language seems to be missing if i.e. ALFA
(Giambiagi et al. 2015; Brossard et al. 2017) is not revived. The
OCL owner constraint given as definition of an operation is
more complex but having the USE tool allows to experiment
with object diagrams, evaluate OCL expressions and to run tests.

12 Maeder et al.

5. Conclusions

We presented the classical RBAC model from Sandhu et al.
(1996) using UML and OCL as done with minor variations in
earlier works that often also employed the USE tool. In a larger
case study we modeled typical authorization policies of port
communities with a PCS. Such systems are used by many sea
ports.

Authorizations constraints for RBAC, like separation of duty
(SoD) by exclusive roles, could be easily modeled and validated
using USE. Although RBAC is a frequently applied standard,
it is limited for fine-grained authorization. Adhering to RBAC
may lead either to a violation of the principle of least privi-
lege by coarse roles or to the acknowledged problem of role
explosion (Elliott & Knight 2010). A proposed solution was
the transition to next-generation ABAC with its own policy lan-
guage. We suggest to combine RBAC and ABAC; as common
language we prefer OCL over XACML also for fine-grained
ABAC policies like multitenancy. OCL allows to reuse the well-
established RBAC policies and concentrate on fewer complex
policies. A more adequate specification language is conceivable
but missing. RCL (Ahn & Sandhu 2000) and ALFA (Giambiagi
et al. 2015) are biased with respect to RBAC or ABAC and tool
support for these languages is unclear.

The formal and consistent specification of policies for a
community is only the starting point for the companies to imple-
ment enforcements. Such implementations are beyond USE but
code can be generated from UML and OCL using the Eclipse
Modeling Framework (EMF) (Steinberg et al. 2008) that is
more heavy-weight. An alternative implementation may target
XACML (Rissanen 2017). Summarizing, the light-weight USE
tool proved to be effective to obtain formal models for both clas-
sical RBAC as well as flexible ABAC authorization constraints.
The validation, testing and last but not least visualization func-
tions of USE helped to promote access control as an important
part of the overall security of port communities.

Acknowledgments

This work was supported by the German Federal Ministry of
Education and Research (BMBF) under the grant 16KIS0583
(PortSec project) and the German Federal Ministry of Transport
and Digital Infrastructure (BMVI) under the grant 19H18012E
(SecProPort project). Finally, we thank the anonymous review-
ers for their valuable feedback.

References

Ahn, G.-J., & Sandhu, R. (2000). Role-based authorization
constraints specification. ACM Transactions on Informa-
tion and System Security (TISSEC), 3(4), 207-226. doi:
doi:10.1145/382912.382913

Ahn, G.-J., & Shin, M. E. (2001). Role-based authoriza-
tion constraints specification using object constraint lan-
guage. In Proceedings tenth ieee international workshop
on enabling technologies: Infrastructure for collaborative
enterprises. wet ice 2001 (pp. 157-162). IEEE. doi:
doi:10.1109/ENABL.2001.953406

https://doi.org/10.1145/382912.382913
https://doi.org/10.1109/ENABL.2001.953406

Alam, M., Hafner, M., & Breu, R. (2008). Constraint based role
based access control in the SECTET-framework: A model-
driven approach. Journal of Computer Security, 16(2), 223—
260. Retrieved from https://dl.acm.org/doi/10.5555/1370687
1370692

Anderson, R. (2008). Security engineering. John Wiley & Sons.
Retrieved from https://www.cl.cam.ac.uk/~rjal4/book.html

ANSI. (2012). American national standard for informa-
tion technology—role based access control. New York,
NY, USA: American National Standards Institute, Inc.
(INCITS 359-2012 (R2017) Revision of INCITS 359-
2004 https://profsandhu.com/journals/tissec/ ANSI+INCITS+
359-2004.pdf)

Basin, D., Clavel, M., Doser, J., & Egea, M. (2009).
Automated analysis of security-design models. Infor-
mation and Software Technology, 51(5), 815-831. doi:
doi:10.1016/j.infsof.2008.05.011

Basin, D., Clavel, M., & Egea, M. (2011). A decade of model-

driven security. In Proceedings of the 16th acm symposium
on access control models and technologies (pp. 1-10). New
York, NY, USA: ACM. doi: doi:10.1145/1998441.1998443

Basin, D., Doser, J., & Lodderstedt, T. (2006). Model
driven security: From UML models to access control
infrastructures. ACM Transactions on Software Engi-
neering and Methodology (TOSEM), 15(1), 39-91. doi:
doi:10.1145/1125808.1125810

Berger, B. J., Maeder, C., Wete Nguempnang, R., Sohr, K., &
Rubio-Medrano, C. (2019). Towards effective verification
of multi-model access control properties. In Proceedings
of the 24th acm symposium on access control models and
technologies (pp. 149—-160). New York, NY, USA: ACM. doi:
doi:10.1145/3322431.3325105

Bertino, E., Bonatti, P. A., & Ferrari, E. (2001). TRBAC: A
temporal role-based access control model. ACM Transactions
on Information and System Security, 4(3), 191-233. doi:
doi:10.1145/501978.501979

Bertino, E., Ferrari, E., & Atluri, V. (1999). The spec-
ification and enforcement of authorization constraints in
workflow management systems. ACM Transactions on
Information and System Security, 2(1), 65-104. doi:
doi: 10.1145/300830.300837

Brossard, D., Gebel, G., & Berg, M. (2017). A system-
atic approach to implementing ABAC. In Proceedings
of the 2nd acm workshop on attribute-based access con-
trol (pp. 53-59). New York, NY, USA: ACM. doi:
doi:10.1145/3041048.3041051

Brossard, D., & Legg, S. (2019). JSON profile of XACML 3.0
version 1.1. (OASIS Standard https://docs.oasis-open.org/
xacml/xacml-json-http/v1.1/xacml-json-http-v1.1.html)

Brucker, A. D., Hang, I., Liickemeyer, G., & Ruparel, R. (2012).
SecureBPMN: Modeling and enforcing access control re-
quirements in business processes. In Proceedings of the
17th acm symposium on access control models and tech-
nologies (pp. 123-126). New York, NY, USA: ACM. doi:
doi:10.1145/2295136.2295160

Biittner, F., & Gogolla, M. (2011). Modular embedding of
the object constraint language into a programming language.

In A. Simao & C. Morgan (Eds.), Sbmf 2011: Formal meth-
ods, foundations and applications (Vol. 7021, pp. 124-139).
Berlin, Heidelberg: Springer. doi: doi:10.1007/978-3-642-
25032-3_9

Drougkas, A., Sarri, A., Kyranoudi, P., & Zisi, A. (2019).
Port cybersecurity: Good practices for cybersecurity in the
maritime sector. ENSISA. doi: doi:10.2824/328515

Elliott, A., & Knight, S. (2010). Role explosion: Acknowledg-
ing the problem. In H. R. Arabnia, H. Reza, L. Deligiannidis,
J. J. Cuadrado-Gallego, V. Schmidt, & A. M. G. Solo (Eds.),
Software engineering research & practice (pp. 349-355). Las
Vegas, Nevada, USA: CSREA Press. Retrieved from http://
knight.segfaults.net/papers/20100502%20-%20Aaron%
20Elliott%20-%20WOLRDCOMP%202010%20Paper.pdf

Fatima, A., Ghazi, Y., Shibli, M. A., & Abassi, A. G. (2016).
Towards attribute-centric access control: an ABAC versus
RBAC argument. Security and Communication Networks,
9(16), 3152-3166. doi: doi:10.1002/sec.1520

Fernandez-Medina, E., & Piattini, M. (2004). Extending OCL
for secure database development. In T. Baar, A. Strohmeier,
A. Moreira, & S. J. Mellor (Eds.), Uml 2004 — the unified
modeling language. modeling languages and applications
(Vol. 3273, pp. 380-394). Berlin, Heidelberg: Springer. doi:
doi:10.1007/978-3-540-30187-5_27

Georgiadis, C. K., Mavridis, I., Pangalos, G., & Thomas, R. K.
(2001). Flexible team-based access control using contexts.
In Proceedings of the sixth acm symposium on access control
models and technologies (pp. 21-27). New York, NY, USA:
ACM. doi: doi:10.1145/373256.373259

Giambiagi, P, Nair, S. K., & Brossard, D. (2015). Ab-
breviated language for authorization version 1.0. OASIS
eXtensible Access Control Markup Language (XACML)
TC. (https://www.oasis-open.org/committees/download.php/
55228/alfa-for-xacml-v1.0-wd01.doc)

Gligor, V. D., Gavrila, S. I., & Ferraiolo, D. (1998). On the
formal definition of separation-of-duty policies and their com-
position. In Proceedings. 1998 ieee symposium on security
and privacy (cat. no. 98cb36186) (pp. 172-183). IEEE. doi:
doi:10.1109/SECPRI.1998.674833

Gogolla, M., Biittner, F., & Richters, M. (2007). USE: A
UML-based specification environment for validating UML
and OCL. Science of Computer Programming, 69(1-3), 27—
34. doi: doi:10.1016/j.scic0.2007.01.013

Hamann, L., Sohr, K., & Gogolla, M. (2015). Monitoring
database access constraints with an RBAC metamodel: A
feasibility study. In F. Piessens, J. Caballero, & N. Bielova
(Eds.), Engineering secure software and systems (Vol. 8978,
pp. 211-226). Cham: Springer. doi: doi:10.1007/978-3-319-
15618-7_16

Hu, V. C., Ferraiolo, D., Kuhn, R., Schnitzer, A., Sandlin, K.,
Miller, R., & Scarfone, K. (2014). Guide to attribute based
access control (ABAC) definition and considerations. NIST
Special Publication 800-162. doi: doi:10.6028/NIST.SP.800-
162

Hu, V. C., Kuhn, D. R., & Ferraiolo, D. F. (2015). Attribute-
based access control. Computer, 48(2), 85-88. doi:
doi:10.1109/MC.2015.33

Modeling and Validating Role-based Policies for a PCS with UML and OCL 13

https://dl.acm.org/doi/10.5555/1370687.1370692
https://dl.acm.org/doi/10.5555/1370687.1370692
https://www.cl.cam.ac.uk/~rja14/book.html
https://profsandhu.com/journals/tissec/ANSI+INCITS+359-2004.pdf
https://profsandhu.com/journals/tissec/ANSI+INCITS+359-2004.pdf
https://doi.org/10.1016/j.infsof.2008.05.011
https://doi.org/10.1145/1998441.1998443
https://doi.org/10.1145/1125808.1125810
https://doi.org/10.1145/3322431.3325105
https://doi.org/10.1145/501978.501979
https://doi.org/10.1145/300830.300837
https://doi.org/10.1145/3041048.3041051
https://docs.oasis-open.org/xacml/xacml-json-http/v1.1/xacml-json-http-v1.1.html
https://docs.oasis-open.org/xacml/xacml-json-http/v1.1/xacml-json-http-v1.1.html
https://doi.org/10.1145/2295136.2295160
https://doi.org/10.1007/978-3-642-25032-3_9
https://doi.org/10.1007/978-3-642-25032-3_9
https://doi.org/10.2824/328515
http://knight.segfaults.net/papers/20100502%20-%20Aaron%20Elliott%20-%20WOLRDCOMP%202010%20Paper.pdf
http://knight.segfaults.net/papers/20100502%20-%20Aaron%20Elliott%20-%20WOLRDCOMP%202010%20Paper.pdf
http://knight.segfaults.net/papers/20100502%20-%20Aaron%20Elliott%20-%20WOLRDCOMP%202010%20Paper.pdf
https://doi.org/10.1002/sec.1520
https://doi.org/10.1007/978-3-540-30187-5_27
https://doi.org/10.1145/373256.373259
https://www.oasis-open.org/committees/download.php/55228/alfa-for-xacml-v1.0-wd01.doc
https://www.oasis-open.org/committees/download.php/55228/alfa-for-xacml-v1.0-wd01.doc
https://doi.org/10.1109/SECPRI.1998.674833
https://doi.org/10.1016/j.scico.2007.01.013
https://doi.org/10.1007/978-3-319-15618-7_16
https://doi.org/10.1007/978-3-319-15618-7_16
https://doi.org/10.6028/NIST.SP.800-162
https://doi.org/10.6028/NIST.SP.800-162
https://doi.org/10.1109/MC.2015.33

Joshi, J. B. D., Bertino, E., Latif, U., & Ghafoor, A. (2005). A
generalized temporal role-based access control model. /EEE
Transactions on Knowledge and Data Engineering, 17(1),
4-23. doi: doi:10.1109/TKDE.2005.1

Jiirjens, J. (2002). UMLsec: Extending UML for secure systems
development. In J.-M. Jézéquel, H. Hussmann, & S. Cook
(Eds.), Uml 2002 — the unified modeling language (Vol.
2460, pp. 412-425). Berlin, Heidelberg: Springer. doi:
doi: 10.1007/3-540-45800-X_32

Kuhlmann, M., Sohr, K., & Gogolla, M. (2011). Comprehensive
two-level analysis of static and dynamic RBAC constraints
with UML and OCL. In 2011 fifth international conference
on secure software integration and reliability improvement
(pp. 108-117). IEEE. doi: doi:10.1109/SSIRI.2011.18

Kuhlmann, M., Sohr, K., & Gogolla, M. (2013). Employing
UML and OCL for designing and analysing role-based access
control. Mathematical Structures in Computer Science, 23(4),
796-833. doi: doi:10.1017/S0960129512000266

McKinney, S. (2019). Towards an attribute-based role-based
access control system. (https://s.apache.org/rbac-abac Ac-
cessed: July 31, 2020)

Meyer-Larsen, N., & Miiller, R. (2018). Enhancing the cyberse-
curity of port community systems. In M. Freitag, H. Kotzab,
& J. Pannek (Eds.), Dynamics in logistics (pp. 318-323).
Cham: Springer. doi: doi:10.1007/978-3-319-74225-0_43

Meyer-Larsen, N., Miiller, R., & Zedel, K. (2019). New con-
cepts for cybersecurity in port communication networks. In
Hamburg international conference of logistics (hicl) (pp. 543—
558). doi: doi:10.15480/882.2483

OMG. (2014). Object constraint language, OCL version
2.4. Object Management Group. (https://www.omg.org/
spec/OCL/2.4)

Ray, I., Li, N., France, R., & Kim, D.-K. (2004). Using
UML to visualize role-based access control constraints. In
Proceedings of the 9th acm symposium on access control
models and technologies (pp. 115-124). New York, NY,
USA: ACM. doi: doi:10.1145/990036.990054

Rissanen, E. (2014). XACML v3.0 core and hierarchical
role based access control (RBAC) profile version 1.0. (OA-
SIS Committee Specification 02 http://docs.oasis-open.org/
xacml/3.0/rbac/v1.0/xacml-3.0-rbac-v1.0.html)

Rissanen, E. (2017). eXtensible access control markup language
(XACML) version 3.0 plus errata 01. OASIS eXtensible Ac-
cess Control Markup Language (XACML) TC. (OASIS Stan-
dard incorporating Approved Errata http://docs.oasis-open
.org/xacml/3.0/xacml-3.0-core-spec-en.html)

Rubio-Medrano, C. E., D’Souza, C., & Ahn, G.-J.
(2013). Supporting secure collaborations with attribute-
based access control. In 9th ieee international con-
ference on collaborative computing: Networking, appli-
cations and worksharing (pp. 525-530). IEEE. doi:
doi:10.4108/icst.collaboratecom.2013.254168

Sandhu, R. S., Coyne, E. J., Feinstein, H. L., & Youman, C. E.
(1996). Role-based access control models. Computer, 29(2),
38-47. doi: doi:10.1109/2.485845

Simon, R., & Zurko, M. E. (1997). Separation of duty
in role-based environments. In Proceedings 10th com-

14 Maeder et al.

puter security foundations (pp. 183-194). IEEE. doi:
doi:10.1109/CSFW.1997.596811

Sohr, K., Drouineaud, M., Ahn, G.-J., & Gogolla, M. (2008).
Analyzing and managing role-based access control policies.
IEEE Transactions on Knowledge and Data Engineering,
20(7), 924-939. doi: doi:10.1109/TKDE.2008.28

Sohr, K., Kuhlmann, M., Gogolla, M., Hu, H., & Ahn, G.-
J. (2012). Comprehensive two-level analysis of role-based
delegation and revocation policies with UML and OCL. In-
formation and Software Technology, 54(12), 1396-1417. doi:
doi:10.1016/j.infsof.2012.06.008

Steinberg, D., Budinsky, F., Paternostro, M., & Merks, E. (2008).
Emf: Eclipse modeling framework (2nd ed.). Addison-
Wesley.

Strembeck, M., & Mendling, J. (2011). Modeling process-
related RBAC models with extended UML activity models.
Information and Software Technology, 53(5), 456—483. doi:
doi:10.1016/j.infsof.2010.11.015

Warmer, J., & Kleppe, A. (2003). The object constraint
language: Getting your models ready for mda (2nd ed.).
Addison-Wesley.

Yu, L., France, R. B., & Ray, I. (2008). Scenario-based static
analysis of UML class models. In K. Czarnecki, I. Ober,
J.-M. Bruel, A. Uhl, & M. Volter (Eds.), Model driven en-
gineering languages and systems (Vol. 5301, pp. 234-248).
Berlin, Heidelberg: Springer. doi: doi:10.1007/978-3-540-
87875-9_17

Zhang, L., Ahn, G.-J., & Chu, B.-T. (2003). A rule-based
framework for role-based delegation and revocation. ACM
Transactions on Information and System Security, 6(3), 404—
441. doi: doi:10.1145/937527.937530

About the authors

Christian Maeder is a member of the Software Engineering
Group headed by Rainer Koschke https://www.informatik.uni
-bremen.de/st. You can contact the author at c.maeder@uni-
bremen.de.

Karsten Sohr is a senior researcher at the Center for Computing
Technologies (TZI) at the University of Bremen and the coordi-
nator for the development of the topic “Information Security”.
You can contact the author at sohr @uni-bremen.de.

Rodrigue Wete Nguempnang is a member of the Software
Engineering Group headed by Rainer Koschke https://www
.informatik.uni-bremen.de/st. You can contact the author at
wete @uni-bremen.de.

Nils Meyer-Larsen is a project manager at ISL in Bremerhaven
and head of ISL’s competence area “Maritime Security”. You
can contact the author at meyer-larsen @isl.org.

Rainer Miiller is a senior researcher at ISL in Bremen. Main
topics of his research are Supply Chain Risk Management, Sup-
ply Chain Security and resilience in maritime and intermodal
transport. You can contact the author at rmueller @isl.org.

https://doi.org/10.1109/TKDE.2005.1
https://doi.org/10.1007/3-540-45800-X_32
https://doi.org/10.1109/SSIRI.2011.18
https://doi.org/10.1017/S0960129512000266
https://s.apache.org/rbac-abac
https://doi.org/10.1007/978-3-319-74225-0_43
https://doi.org/10.15480/882.2483
https://www.omg.org/spec/OCL/2.4
https://www.omg.org/spec/OCL/2.4
https://doi.org/10.1145/990036.990054
http://docs.oasis-open.org/xacml/3.0/rbac/v1.0/xacml-3.0-rbac-v1.0.html
http://docs.oasis-open.org/xacml/3.0/rbac/v1.0/xacml-3.0-rbac-v1.0.html
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-en.html
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-en.html
https://doi.org/10.4108/icst.collaboratecom.2013.254168
https://doi.org/10.1109/2.485845
https://doi.org/10.1109/CSFW.1997.596811
https://doi.org/10.1109/TKDE.2008.28
https://doi.org/10.1016/j.infsof.2012.06.008
https://doi.org/10.1016/j.infsof.2010.11.015
https://doi.org/10.1007/978-3-540-87875-9_17
https://doi.org/10.1007/978-3-540-87875-9_17
https://doi.org/10.1145/937527.937530
https://www.informatik.uni-bremen.de/st
https://www.informatik.uni-bremen.de/st
mailto:c.maeder@uni-bremen.de?subject=Your paper "Modeling and Validating\ Role-Based Authorization Policies for a \ Port Communication System with UML and OCL"
mailto:c.maeder@uni-bremen.de?subject=Your paper "Modeling and Validating\ Role-Based Authorization Policies for a \ Port Communication System with UML and OCL"
mailto:sohr@uni-bremen.de?subject=Your paper "Modeling and Validating\ Role-Based Authorization Policies for a \ Port Communication System with UML and OCL"
https://www.informatik.uni-bremen.de/st
https://www.informatik.uni-bremen.de/st
mailto:wete@uni-bremen.de?subject=Your paper "Modeling and Validating\ Role-Based Authorization Policies for a \ Port Communication System with UML and OCL"
mailto:meyer-larsen@isl.org?subject=Your paper "Modeling and Validating\ Role-Based Authorization Policies for a \ Port Communication System with UML and OCL"
mailto:rmueller@isl.org?subject=Your paper "Modeling and Validating\ Role-Based Authorization Policies for a \ Port Communication System with UML and OCL"

