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Chapter I 

State of the art of embryo transfer in goats  
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The critical step in embryo transfer program (ET) is superovulation, which is responsible for 

the number of ovulations and the number of transferable embryos. One of the drawback 

aspects of superovulation is the variable response of donors to superovulatory protocols and 

premature regression of corpus luteum (CL). The extreme variability in ovulatory response to 

similar gonadotropin remains an unsolved problem particularly in goats and may related to 

estrus synchronisation ptotocols. None of the presently available means of controlling the 

estrous cycle in goats will bring about tight synchronization of preovulatory LH surge and 

ovulation. According to Baril and Vallet (1990) this is partly responsible for unsatisfactory 

pregnancy rates with timed insemination of estrus-synchronized does. The ‘ovsynch’ protocol, 

comprising induced ovulation, is commonly applied in the cattle industry for accomplishing 

fixed-time insemination and has recently been shown to be suitable for goats as well (Holtz et 

al., 2008). In the context of ovsynch, GnRH or hC may be used. 

 

The effectiveness of hCG in the context of estrus control and superovulation is controversial. 

In cows encouraging results were achieved with the synchronization of ovulation and timed 

AI (Schmitt et al., 1996); in goats hCG in the context of superovulatory treatment appears to 

be less effective (Saleh et al., in preparation). The rationale with the deployment of hCG for 

induction of ovulation in the context of estrus control is the appallingly high incidence of 

premature luteal regression encountered with the application of GnRH (Taponen et al., 2003; 

Holtz et al., 2008; Saleh et al., 2009). Whereas the pharmacodynamic effect of hCG in farm 

animals is well documented, its pharmacokinetics has received less attention. In order to 

design an effective protocol for ovulation induction it appears useful to study the 

pharmacokinetics of injected hCG. 
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Intensive application of AI and embryo transfer, selection for fecundity traits such as litter 

size and misidentification of parentage are potential contributors to inbreeding which may 

negatively affect the viability and reproductive fitness of the breeding stock (Pariacote et al., 

1997; Frankham et al., 2004). Drawbacks of traditional methods of paternity control i.e. 

progeny testing (Baron et al., 2002) have justified the application of more accurate methods. 

Recently, DNA technologies were introduced for molecular characterization of breeds and 

paternity testing in farm animals. Microsatellites have received the highest attention and have 

extensively been used for genetic profiling of individuals due to advantages over other DNA 

markers as they combine high genetic variability with nuclear co-dominance inheritance 

(Jarne and Lagoda 1996; Heyen et al., 1997). 

 

1.1 Physiology and endocrinology of the estrous cycle 

In regions other than the tropics, the goats are seasonally poly-estrus. Cycling begins under 

the influence of decreasing photoperiod. The term ’estrus cycle’ refers to the rhythmic 

phenomenon observed in the female involving regular period of sexual receptivity i.e. estrus. 

Estrus is the behavioural manifestation of sexual receptivity in the cow or doe and is 

characterized by the female being willing for others, male or female, to mount her (Phillips, 

2002). The length of the caprine estrus cycle averages 21.5 days (Camp et al., 1983). The 

estrus cycle is divided into four phases: proestrus, estrus, metestrus and diestrus. More 

commonly, the estrus cycle is divided into two phases; the follicular and luteal phase. The 

estrus cycle is regulated by hormones of the hypothalamic-pituitary- ovarian axis (Hafez and 

Hafez, 2000; Senger, 2005). The most important endocrine events during the estrus cycle are 

as follows: just before the onset of estrus there is a rise in estrogen concentration. Estrogen is 

secreted by the growing follicles and peak values occur at the beginning of the estrus with a 

subsequent decline to basal values at the time of ovulation. This rise in estrogen stimulates the 
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hypothalamus to secrete GnRH that causes the release of FSH and the LH surge (Senger, 

2005). Both gonadotrophins play an important role to induce final maturation of the 

preovulatory follicle resulting in increased secretion of estradiol which acts in the presence of 

basal levels of progesterone on specific receptors in the brain to induce sexual behaviour and 

releases the LH surge which in turn triggers the ovulation. The duration of behavioural estrus 

is quit variable among goat breeds and averages 37 hours in Boer goats (Greyling and van 

Niekerk, 1990a). The mean interval from onset of estrus to the preovulatory LH surge is 10.5 

to 13.1 hours and the ovulation occurs approximately 24.7 hours later (Cameron et al., 1988; 

Greyling and van Niekerk, 1990a).  

 

1.2 Follicular waves 

The process of follicular development from primary follicle stage to ovulation or atresia is 

known as follicular dynamics. Sequential ultrasonic inspections of ovaries, in cattle, have 

revealed that the follicular development during the estrus cycle occurs in a wave-like pattern; 

usually two and three waves are predominant but also one and four waves of follicular waves 

were reported (Aerts and Bols, 2008). Comparable follicular waves were also observed in 

goats with 1 to 4 follicular waves (Medan et al., 2003a), 2 to 4 follicular waves (de Castro et 

al., 1999) and 2 to 5 follicluar waves and the four follicular waves are the predominant pattern 

in goats (Rubianes and Menchaca, 2003). Studies have shown that 95% of bovine estrous 

cycles contain two or three waves (Lucy, 2007). Each follicular wave involves the following 

phases: recruitment, selection, dominance and finally ovulation or atresia (Fortune et al., 

2001; Aerts and Bols, 2008). Follicular recruitment is usually preceded by a transient rise in 

peripheral FSH concentrations. A single follicle from the pool of recruited follicles is selected 

and becomes the single large dominant follicle, which in turn, continues to grow and 

suppresses the growth of other smaller follicles (Savio et al., 1993; Fortune et al., 2001). In 
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polytocous species such as pigs, sheep and goats multiple follicles are selected. Therefore, 

follicular dominance in these species is less apparent than in cattle, and is more common 

during waves 1 and 4 than during waves 2 and 3 (Ginther and Kot, 1994). Dominance is a 

mechanism in which a single follicle (the dominant follicle) or several follicles undergo a 

rapid development in an environment where the growth and development of other follicles is 

suppressed (Fortune et al., 2001; Lucy, 2007). Follicular growth to diameters greater than 3 to 

4 mm is dependent upon FSH, but large antral follicles (about 7 to 9 mm diameter) transfer 

their gonadotrophic requirements to LH (Webb et al., 2004).  

 

1.3 Estrus synchronisation 

The goats are seasonal breeders and exhibit estrus only during few months of the year. 

Methods of induction and synchronisation of estrus can be divided into 2 main groups: 

hormonal and non-hormonal methods. The non-hormonal methods include manipulation of 

photoperiod and the male effect. The onset of ovarian cyclicity in the goats is dependent upon 

changes in the hours of daylight. The doe is stimulated to ovarian cyclicity by the effect of 

decreasing of photoperiod. Manipulation of photoperiod may increase the reproductive 

performance in goats (Robin et al., 1994). Exposure to males after a period of isolation can be 

used for induction and synchronization of estrus during the breeding and non-breeding season 

without additional treatments in goats (Veliz et al., 2002; Whitley and Jackson, 2004). The 

physiological basis for this response is due in part to smell and sight and the bucks don’t need 

to be in contact with the does to exhibit this effect (Senger, 2005). However, a direct contact 

with the buck increases the response (Chemineau, 1987). The presence of a buck can exert a 

positive effect upon the ovarian activity during the transition from non-breeding to breeding 

season (Romano, 1998). The hormonal methods are intended to shorten the life span of an 

existing corpus luteum by administering of an exogenous luteolysin, or to simulate the corpus 
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luteum function by administering progestogens for many 9 to 19 days. Alternatively, esrtus 

synchronisation may be achieved by manipulation of both follicular and luteal phase through 

GnRH in combination with PGF2α. 

 

1.4 Principles and methods of estrus/ovulation synchronisation 

1.4.1 Induction of corpus luteum regression 

Secretion of PGF2α by the endometrium of nonpregnant doe terminates the luteal phase by 

causing regression of the corpus luteum (CL) and initiates a new estrus cycle. Prostaglandin 

F2α or one of its analogs can be effectively used to synchronize estrus in cycling goats during 

the breeding season (Wildeus, 2000; Goel and Agrawal, 2005). Early studies have revealed 

that an injection of PGF2α, or one of its analogs, during the mid-luteal phase of the estrus 

cycle can induce a premature CL regression and does, therefore, can be expected to exhibit 

estrus symptoms approximately 50 hours later (Bretzlaff et al., 1980; Bretzlaff et al., 1983). In 

cattle, this treatment is effective only between days 5 to 16 after estrus to regress the CL 

(Wiltbank et al., 1995) and in goats between days 4 to 16 of the cycle (Holtz, 2005). This is 

followed by an augment in secretion of estradiol-17 β and gonadotropins culminating in the 

preovulatory surge of LH and finally ovulation. The drop in progesterone concentrations 

occurs rapidly, consistently reaching basal levels within 30 hours after injection. Occurrence 

of ovulation after the PGF2α injection can be quite variable. To achieve high synchronization 

rate, PGF2α has been used to control the estrus in several different methods, such as: 

 Following the identification of an active corpus luteum (by progesterone 

measurement, rectal examination and following estrus detection). 

 The two PGF2α injections protocol, 10 to 11 days apart, was reported in many studies 

with no adverse effects on fertility (El-Amrawi et al., 1993; Kumar and Thomas 1994; 

Holtz, 2005; Khanum et al., 2006). This was designed to synchronize groups of 
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animals cycling at random without prior knowledge of their accurate ovarian status. 

Artificial insemination is performed either 2 times, three and four days after the 

second injection of PGF2α, or animals may be bred at observed estrus. At the time of 

the first injection a portion of animals will have active CLs and be responsive to 

PGF2α, i.e. between days 5 and 16 of the cycle. These will experience a premature 

regression of CL in response to the first injection of PGF2α. Therefore, they will show 

estrus and ovulate after four days or later. At the time of the second injection of PGF2α 

(11 days later) all animals will have active CLs and will response to the second PGF2α 

(i.e. between day 5 to 8 of the cycle). The cows or does that did not response to the 

first PGF2α, i.e. those between days 18 to 4 of the cycle, would be between days 8 to 

15 at the time of the second injection. Therefore, in both cases, all animals will be in 

the responsive mid-luteal phase at the time of the second PGF2α and may be 

inseminated either at a fixed time or at detected estrus. To reduce cost and to improve 

the pregnancy rates, a modified two-PGF2α protocol is used. In this protocol, all 

animals are injected with PGF2α on the same day and observed for estrus during the 

following days, all females exhibit estrus are inseminated and those not exhibit estrus 

receive the second injection of PGF2α and inseminated as well. 

Administration of PGF2α is restricted to cyclic fenales during the breeding season. During the 

non breeding season, progesterone or one of its synthetic analogs is preferred (Holtz, 2005). 

 

1.4.2 Simulation of a functional corpus luteum by exogenous progestogens 

In this method, the function of the corpus luteum is simulated by application of progesterone 

or one of its analogous compounds. The release of gonadotropins is inhibited by progesterone, 

and, hence, the ovulation is also inhibited until progesterone is removed. If progesterone is 

applied for a group of females and withdrawn simultaneously, this will synchronize the estrus 
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and ovulation in this group. Progesterone was initially delivered for a period equal to the 

length of the natural luteal phase (i.e. 18 to 21 days). This period is long enough for corpora 

lutea to undergo timely regression in all animals no matter what stage of the cycle the animals 

were at the outset (Holtz, 2005). Long-term progesterone treatments (18 to 21 days) resulted 

in poor fertility rates. This is partially due to the ovulation of persistent follicles which 

contains oocytes of reduced quality. The poor fertility may also be due to adverse effects of 

progestagens in the intra-uterine environment, which affect sperm transport and survival 

(Leboeuf et al., 2003). Short-term progesterone treatments (7 to 12 days), generally, resulted 

in more acceptable fertility rates, but unfortunately the synchronization rate is reduced, 

because in such cases, the natural corpus luteum may outlive beyond the progesterone 

removal. Therefore, it is crucial to include a luteolytic agent in combination with short-term 

progesterone treatments in order to get rid of any natural corpus luteum. This technique is 

applicable for cycling and acycling does during the breeding and non-breeding season, but in 

this case, ovulation induction is required e.g. administration of 500 to 700 IU eCG (Corteel et 

al., 1988; Wildeus, 2000; Pierson et al., 2001). Equine CG is administered either upon 

progestagen removal or 48h before (Ritar et al., 1989; Greyling and van Niekrik, 1990b). 

Progestagens can be delivered through: 

 Intravaginal sponges impregnated with progesterone (i.e. flurogestone acetate FGA or 

methyl acetoxyprogesterone MAP). These sponges contain 30, 45 and 60 mg FGA or 

60 mg MAP. They are inserted over a period of 8 days (Greyling and Van Niekerk, 

1991), 11d (Freitas et al., 1996; Freitas et al., 1997; Pintado et al., 1998), 16 days 

(Battye et al., 1988) and 21 d (Cairoli et al., 1987). Ninety eight percent of treated 

does exhibited estrus between 24 to 72 hours after sponge removal (Baril et al., 1993). 

In other study, about 91% of does ovulated by 54 hours after sponge removal during 

the breeding season (Pierson et al., 2001). Vaginal sponges are not preferred, since 
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they may adhere to the vaginal wall, causing discomfort and other problems for the 

female at removal or they may be lost before the end of treatment (Holtz, 2005). 

 Controlled internal drug release (CIDR) devices: This device is made of progesterone-

impregnated medical silicone elastomers and used for 16 to 20 d (Ritar et al., 1989). 

 Implants impregnated with norgestomet, a potent synthetic progestagen, are inserted 

under the skin of upper side of the ear for 9 d (East and Rowe, 1989) and 11 d 

(Bretzlaff and Madrid, 1989; Freitas et al., 1997).  

Currently, from a practical point of view, CIDR and ear implants are more preferable than the 

vaginal sponges, especially for small or nulliparous does (Holtz, 2005). Comparison between 

vaginal pessaries and ear implant as estrus synchronizing agents have revealed no significant 

differences in terms of prevalence of estrus, time of onset of estrus or pregnancy rates 

(Bretzlaff and Madrid, 1989; Pendleton et al., 1992a). In a comprehensive study, no 

significant differences were recorded among PGF2α-based and progestagen-based treatments 

for estrus synchronisation in goats (Kusina et al., 2000). Fixed-time AI in progestagen-based 

synchronisation treatments is performed, relative to the time of progestagen removal, either 

once 43 hours or twice at 30 and 50 hours (Corteel et al., 1988; Baril et al., 1993), 40 to 48 h 

after progestagen removal (Ritar et al., 1989). In both estrus synchronisation strategies, the 

emphasis is placed on controlling or mimicking luteal function to control the time of estrus, 

and thus the ovulation. These two principles to cycle control are the basis for commercially 

available products that effectively synchronize estrus. 

 

1.4.3 GnRH in combination with prostaglandin F2α  

This strategy, is called Ovsynch protocol, was designed to reduce the variability in the time of 

ovulation permitting AI to be performed at a fixed-time (Pursley et al., 1995). In this protocol 

either gonadotropin releasing hormone (GnRH) or human chorionic gonadotropin (hCG) is 
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commonly used. GnRH and hCG have been shown to be effective for the synchronisation of 

LH surge and ovulation. GnRH is injected at a random stage of the estrus cycle (day 0), 

followed by an injection of PGF2α on day 7 and a further GnRH injection 48 hours later. 

Fixed-time AI is performed 16 hours later. The first GnRH injection is designed to either: 

 Manipulate ovarian follicular development by ovulating and/or luteinizing the existing 

dominant follicle and initiating the emergence of a new follicular wave with a new 

dominant follicle, or 

 It would be injected during a period of time in the estrus cycle when a new follicular 

wave, with the presence of active corpus luteum, was forming spontaneously so that it 

is still responsive to prostaglandin 7 days later. 

 The second GnRH injection is designed to synchronize ovulation further by 

synchronizing the LH surge (Pursley et al., 1995). Peters and Pursley. (2003) found 

that ‘Ovsynch’, with the second GnRH being given on day 9.5, was effective and 

suggested that the major role of the first injection appeared to be the extension of the 

cycle in late luteal phase cows and that the second GnRH injection was the most 

critical in determining the synchrony of ovulation.  

 

1.5 Superovulation  

Superovulation is the hormonal manipulation of ovaries to increase the development rate of 

subordinate follicles that would become naturally atretic by overcoming the effects of the 

dominant follicle (Mapletoft et al., 2002). More ovulations than normal rate may be achieved 

through either an exogenous gonadotrophic stimulation at a particular stage of follicular 

development to overcome the natural mechanism that would normally allow only one follicle 

to become dominant followed by control of luteolysis or a removal of the original dominant 

follicle (Bergfelt et al., 1997; Mapletoft et al., 2002). Gonadotropins are administered either 
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toward the end of estrus cycle or around the end of estrus synchronisation treatment (Ishwar 

and Memon, 1996). The majority of donors show the best superovulatory response when 

superovulatory treatment is initiated between days 8 and 12 of the cycle during the presence 

of full active CL (Bergfelt et al., 1997). Ultrasonic inspections of the ovaries had shown that 

at around this time the second or third follicular wave emerged (Bo et al., 2002; Aerts and 

Bols, 2008). Therefore, synchronisation of estrus cycle or more precisely the follicular waves 

increases the ovulation rate and reduces the variability in ovulatory response (Menchaca et al., 

2010). Superovulation is still not a well controlled technique. Variable response was observed 

among donors; about 20% of donors have yielded no transferable embryos, another 20% have 

yielded 1 to 3 transferable embryos. The best response was obtained from about one third of 

the donors and yielded 5 to 12 transferable embryos (Seidel and Seidel, 1991; Greve et al., 

1995). The number of transferable embryos averages 6 (Armstrong, 1993). Superovulation is 

traditionally induced using equine chorionic gonadotropin (eCG) (previously called PMSG: 

pregnant mare’s serum gonadotrophin) and follicle stimulation hormone (FSH) extracted from 

domestic animal pituitaries, particularly from the pig’s pituitary. Other hormones were used, 

with less intensive, to induce superovulation such as (hMG: human menopausal gonadotropin) 

extracted from women post-menopausal urine (McGowan et al., 1985), and HAP: horse 

anterior gonadotropin extracts (Staigmiller et al., 1992). Either multiple or single injection of 

HAP can also be used to induce a satisfactory superovulatory response comparable to that 

induced with FSH in cattle (Staigmiller et al., 1992). Alternatively, superovulation may be 

induced by means of immunization against endogenous inhibin. 

 

1.5.1 Equine chorionic gonadotropin (eCG) 

Equine CG is a glycoprotein, secreted by specialized trophoblast cells which invade the 

maternal endometrium between days 40 to 130 of gestation in mares, consists of 2 chemically 
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dissimilar α- and β-subunit. The β-subunit consists of 149 amino acids and is identical with 

the β-subunit of equine LH (Pineda et al., 2003). It has, among other gonadotropins, a unique 

property that possesses both FSH and LH biological activities (Mapletoft et al., 2002). The β-

subunit is responsible for this dual action. Furthermore, eCG has a very long half-life which 

extends to 5 days due to its high content of carbohydrate side chains and sialic acid which 

influences liver degradation (Betterigde and Rieger, 1993). The conventional protocol of 

superovulation in goats involves administering a single dose of 750 IU (Pendelton et al., 

1992b) to 1200 IU of eCG during the mid-luteal phase of the estrous cycle (Kumar et al., 

1992; Espinosa-Marquez et al., 2004). In cattle, the dose of eCG averages between 2000 to 

3000 IU (Hahn, 1992). A luteolytic dose of PGF2α or an analog is administered 

simultaneously or 2 to 3 days later to artificially induce the regression of CL. The donor is 

expected to show estrous symptoms 2 days after prostaglandin injection. The advantages of 

using eCG are: 

 its availability in large quantities for a low cost.  

 a single dose of eCG induces successfully superovulation compared with the 

multiple injections of FSH (Alfuraiji et al., 1993) due to its half-life being longer 

than FSH (Ishwar and Memon, 1996).  

Whereas, the disadvantages are: 

 Due to its prolonged half-life, it causes a continuous growth of a second 

postovulatory follicular wave, which secretes high levels of estrogen for a long 

time after estrus (Monniaux et al., 1984; Ishwar and Memon, 1996; Mapletoft et 

al., 2002). This may have a deleterious effect on early embryonic development and 

reduce the quality of recovered embryos.  
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 eCG induces the formation of eCG-antibodies, which in turn, reduces or inhibits 

ovarian response to further superovulatory treatment with eCG (Roy et al., 1999; 

Herve at al., 2004).  

 Increases the number of large follicles that fail to ovulate (Ishwar and Memon, 

1996; Mapletoft et al., 2002). This may be due to higher levels of estrogen which 

persisted longer in eCG- treated than FSH- treated does. 

 Increase the incidence of premature regression of the induced corpus luteum, 

resulting in short estrus cycles (Amoah and Gelaye, 1990). 

To alleviate the negative effects of eCG as superovulatory agent on the superovulatory 

response and embryo quality, four strategies were proposed: 

 Administration of eCG antibodies to neutralize eCG molecules. To get the best 

results, anti-eCG should be administered 6 to 8h after the preovulatory LH surge to 

suppress the continuous growth of follicles after eCG-administration (Alfuraiji et 

al., 1993; Dieleman et al., 1993; Vos et al., 1994; Mapletoft et al., 2002). This 

combination of eCG and anti-eCG increased ovulation rate, decreased number of 

unruptured follicles and decreased number of cysts. The beneficial effect of giving 

eCG- antiserum could be variable, because of the variability of timing the LH-

surge (Callesen et al., 1992). 

 Administration of progestins after mating (Cervantes et al., 2007). 

 Administration of luteotropic hormones (hCG or GnRH) 84h after the onset of 

estrus (Saharrea et al., 1998). 

 Administration of compounds that inhibit prostaglandin synthetase such as the 

aspirin-like drugs or meclofenamic acide (Flower, 1974; Cooke and Homeide, 1983). 
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1.5.2 Follicle stimulating hormone (FSH) 

Follicle stimulating hormone is a glycoprotein extracted from the domestic animal pituitaries. 

To induce superovulation, multiple consecutive injections are required due to its short half-

life, which is approximately 5 hours and disappears within 10 to 12 hours (Demoustier et al., 

1988; Mapletoft et al., 2002). The 2 most acceptable protocols comprise 6 or 8 injections of 

FSH twice daily in descending doses over 3 or 4 days. Administration of decreasing doses of 

FSH has proved to give better response than the administration of equal doses (Torres et al., 

1987). Prostaglandin F2α or one of its analogs is administered simultaneously to the last 2 

injection of FSH to induce the lysis of the corpora lutea to allow for precise timing of the 

onset of estrus and ovulation (Mapletoft et al., 2002). Purity degree of FSH preparations is of 

crucial importance since all FSH preparations are pituitary extracts and contain variable 

amounts of LH (LH:FSH ratio) (Kanitz et al., 2002). The LH:FSH ratio affects the 

superovulatory response; the high LH content in gonadotropin preparation reduces the 

superovulatory response and affects the fertilization rates and embryo quality (Kelly et al., 

1997; Kanitz et al., 2002). However, LH plays an important role in follicular development. 

Early studies indicated that LH should be delivered in FSH preparations used for 

superovulation with a FHS:LH ratio of approximately 5:1 (Murphy et al., 1984). Higher ratio 

in goats (40% LH) proved to be close to the optimum range (Nowshari et al., 1995).  

A series of comparisons between eCG and FSH as superovulatory agents have been 

performed and revealed evidence that FSH is superior (Tsunoda and Sugie, 1989; Pendleton et 

al., 1992b; Ishwar and Memon, 1996). Although the majority of superovulations were carried 

out using of multiple injections protocol, others attempted to reduce the number of injections 

of FSH. A single subcutaneous injection of FSH dissolved in polyvinylpyrrolidone for 

superovulation has been reported with encouraging results. This method is capable of 

achieving a similar profile to that obtained with well established multiple-injection procedure 
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(Yamamoto et al., 1993; Takedomi et al, 1995; Satoh et al., 1996). An alternative approach to 

reduce the dose and number of FSH-injections to induce superovulation is the administration 

of a single dose of FSH combined with a low dose of eCG (Watanbe et al., 1998). In goats, a 

single injection of FSH combined with eCG resulted in responses comparable to those of 

multiple injections of FSH (Batt et al., 1993). However, others didn’t find benefit in a 

combined gonadotropin treatment (Peebles and Kidd, 1994). There is an evidence supporting 

that a higher and more consistent response can be obtained with FSH preparations than with 

eCG in terms of ovulatory response and embryos yield (Tsunoda and Sugie, 1989; Pendelton 

et al., 1992b). Up to date, not a single superovulatory protocol fulfils all desired expectations 

from the treatment. The large variability in the number of ovulations and viable embryos 

remains a major drawback (Holtz, 2005). 

 

1.5.3 Immunization against inhibin 

This technique was established based on the observation that the increase in maturing follicles 

and rate of ovulation is preceded by an overall decrease in ovarian output of inhibin and 

elevation in secretion of FSH. Suppression of the endogenous inhibin occurs after either 

passive or active immunization against inhibin. 

 Passive immunization can be achieved by administration of inhibin antiserum i.e. 

anti-inhibin antibodies (Medan et al., 2003b). In this protocol estrus was synchronized 

by 2 injections of prostaglandin F2α 11 days apart. On day 10 inhibin antiserum was 

injected and 48 hours later another PGF2α injection was administered to induce estrus 

and ovulation.  

 Active immunization can be achieved by vaccination against inhibin (Padilla et al., 

2008). This protocol, as described by Padilla et al. (2008), comprises an initial 

injection of inhibin followed 4 weeks later by a booster injection and another 51 weeks 
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a second booster injection. Formation of antibodies considerably increased 2 weeks 

after administration. 

Though ovulations and ovarian activity enhanced by immunization against inhibin (Wrathall 

et al., 1992; Glencross et al., 1994; Morris et al., 1993; Tannetta et al., 1998; D’Alessandro et 

al., 1999; Medan et al., 2003b; Padilla et al., 2008), it led to formation of inhibin antibodies 

accompanied by a large proportion of retained follicles and a high incidence of short estrous 

cycles (Padilla et al., 2008). 

 

1.6 Ovulation induction 

Ovulation induction is an effective means of helping females which do not ovulate or ovulate 

irregularly and involves stimulating the ovary to produce one or more oocytes. It may be 

accomplished using a number of different treatment regimens such as GnRH or hCG. 

 

1.6.1 Gonadotropin releasing hormone (GnRH) 

Gonadotropin releasing hormone is a decapeptide of small molecular weight synthesized and 

released in pulsatile manner by specific neurons in the hypothalamus and causes the release of 

FSH and LH from the pituitary (King and Millar, 1995; D’Occhio et al., 2000; Parhar, 2002; 

Senger, 2005). Binding of GnRH to its receptors causes internalization of these receptors and 

induces a transient insensitivity to GnRH until new receptors are synthesised and returned to 

the surface of the gonadotropic cells (D’Occhio et al., 2000). The GnRH receptor is a member 

of the large family of G-protein-coupled receptors which have seven transmembrane domains 

(Flanagan et al., 1997). GnRH exerts effects in other peripheral tissues including the brain, 

gonads and placenta (King and Millar, 1995). Its release is controlled by the positive and 

negative feedback mechanisms (Senger, 2005). Since it triggers the release of pituitary 

gonadotropins in mammals, this has justified the use of ‘GnRH’ or one of its analogs to 
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manage the animal reproduction. The physiological response of the pituitary is caused by 

specific pathways including phosphatidylinositol-specific phospholipase C (PLC), the release 

of calcium (Ca2+) from intracellular stores and Protein kinase C (PKC) (Parhar, 2002). GnRH 

analogs can be divided into 2 categories according to the action mode: 

1. GnRH antagonist competitively binds to the pituitary GnRH receptors and causes a 

prolonged inhibition of gonadotropin release (Heber et al., 1982). 

2. GnRH agonist, which also can be divided into 2 sub-groups: 

 Decapeptide agonist is an oligopeptide containing ten amino acid 

residues such as Gonadorelin. 

 Nonapeptide agonist is an oligopeptide containing nine amino acid 

residues such as Buserelin and Fertirelin. 

GnRH agonist is characterized by a higher affinity for GnRH-receptors and protects against 

enzyme degradation, thus, increasing half life in the circulation from 8 min to 5 hours 

(Thatcher et al., 1993; D’Occhio et al., 2000; Ghumman, 2006). It exerts a biological action 

through ’flare effect’, followed by downregulation. Due to alteration in the chemical structure, 

GnRH agonists stimulate the pituitary with different potencies (Thatcher et al., 1993). 

According to Ghumman. (2006) a single dose of GnRH agonist increases both the release of 

high levels of gonadotropins from the pituitary and the number of their receptors (5 fold in 

FSH- receptors and 10 fold in LH- receptors). In cattle, the GnRH agonist Buserelin is 10 to 

20 times more potent than Fertirelin and this (Fertirelin) is 2.2 to 10 times more potent than 

Gonadorelin (Chenault et al., 1990). On the other hand, continuous administration of GnRH 

agonist causes the opposite effect. It down-regulates or desensitizes the pituitary to 

endogenous GnRH preventing the release of LH surge and inhibiting the ovulation (Heber et 

al., 1982; D’Occhio et al., 2000; Parhar, 2002; Ghumman, 2006). 
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1.6.2 Human chorionic gonadotropin (hCG) 

Human chorionic gonadotropin (hCG) is a heterodimeric glycoprotein of 57 kDa consisting of 

a noncovalently bound α- (92 amino acids) and a distinctive β-subunit (134 amino acids). The 

β-hCG has an 80% homology to the 121 amino acid subunit of the LH β-subunit (Norman and 

Litwack, 1997). Some glycoproteins hormones contain 2 side-by-side polypeptide chains (α- 

and β-subunits). The glycoprotein hormones hCG, LH, FSH and TSH have the same α-

subunits but different β-subunits which gives a specific function of the hormone (Gupta and 

Dighe, 2000; Senger, 2005; De Rensis et al., 2010). Due to the similar structure of hCG and 

LH (Lei and Rao, 1994; Birken et al., 1996), the β-subunit of hCG is believed to interact 

specifically with LH receptors to stimulate the production of progesterone by the corpus 

luteum during the first stages of embryo development until the placenta becomes able to 

produce adequate levels of progesterone in the pregnant woman (usually at 6 to 8 weeks) 

(Norman and Litwack, 1997). Both hCG and LH can directly regulate GnRH gene expression 

in the hypothalamus (Lei and Rao, 1994). Receptors for LH/hCG are located in follicular 

theca, granulosa cells and the corpus luteum with similar binding characteristics (Henderson, 

1984). hCG specifically binds to the theca interna and slowly dissociates in a biphasic process 

(Henderson, 1984; De Rensis et al., 2010). Binding of hCG to its receptors is a time- and 

temperature- dependent process (Henderson, 1984). At 37°C, specific binding to theca interna 

rapidly increased for the first 4 h, but thereafter proceeded more slowly to reach a maximum 

by 20 hours. The theca interna LH/hCG receptor shows a greater affinity for hCG than for LH 

(Henderson, 1984). hCG stimulates the synthesis of progesterone and maintains the CL 

beyond its normal life span in the cow (Litch and Condon, 1988) and has a biological half-life 

12 times longer than LH (24 vs. 2 h) due to greater glycosylation rates (Birken et al., 1996; 

Speroff and Fritz, 2005; De Rensis et al., 2010). Early reports have indicated that hCG may be 

commercially used as substitute for LH to induce ovulation and CL formation in infertile 
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cows. hCG can initiate a normal luteinisation even in the absence of an endogenous LH surge 

as deduced from the normal luteal function in treated cows and ewes (Dobson, 1975; Bolt, 

1979; Kamomae et al., 1989). Furthermore, it induces ovulation and formation of accessory 

corpora lutea when large follicles are present (De Rensis et al., 2010). The estimated time for 

hCG to induce the ovulation is about 36 hours after treatment in ovarian quiescent cattle 

(Kamomae et al., 1989). hCG may add a valuable contribution to estrus synchronization 

protocols by reducing the luteolytic effect of PGF2α, or even, when it is available in sufficient 

quantity, would prevent PGF2α-induced luteal regression (Bolt, 1979; Litch and Condon, 

1988; Fonseca and Torres, 2005). 

Exogenous GnRH and hCG had been used in livestock to synchronize the ovulation and 

improve the reproductive performance (Rajamahendran and Sianangama, 1992; Pursley et al., 

1995; Schmitt et al., 1996a; Pursley et al., 1997; Santos et al., 2001; Thatcher et al., 2001; 

Fischer-Tenhagen et al., 2008). Though GnRH and hCG proved to be potent agents to induce 

ovulation (Rajamahendran and Sianangama, 1992; Schmitt et al., 1996a), hCG was superior in 

terms of better luteotropic effect on the original CL, formation of accessory CLs (Schmitt et 

al., 1996b) and progesterone production (Schmitt et al., 1996bc). 

 

1.7 Embryo collection 

Embryos are usually collected from donors 7 days after breeding or AI at this time; embryos 

are freely suspended in a small amount of fluid in the uterus horns. Methods of embryo 

recovery are divided into a surgical (Amoah and Gelaye, 1991), Laparoscopic (Mckelvey, 

1986) and non- surgical procedure (Suyadi et al., 2000). 

 
1.8 Satellite markers 

Tandemly repeated DNA sequences can be categorized according to the size of the repeat-

unit, into three groups: satellites, minisatellites and microsatellites (Charlesworth et al., 1994; 
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Ellegren, 2004). The term satellite came up after DNA extraction in equilibrium density 

gradient centrifugation when two minor satellite bands were observed (Geldermann, 2005).  

 Satellite DNA, the largest repeat units ranging in size between 100 to more than 

1000 bp is predominantly found surrounding the centromeric regions 

(Charlesworth et al., 1994; Schueler et al., 2001). 

 The medium repeat-units, with a size of approximately 10 to more than 100 bp in 

length, are defined as minisatellites or as variant number of tandem repeats 

(VNTRs). In humans, minisatellites are a class of highly polymorphic GC-rich 

tandem repeats that are mainly located in the subtelomeric chromosomal regions 

(Valdes et al., 1993; Bois 2003).  

 The shortest repeat units with a size of approximately 1-6 bp in length are referred 

to microsatellites, simple sequence repeats (SSR) or short tandem repeats (STR).  

  

1.9 Definition, nature and polymorphism of microsatellites 

Microsatellites are flanked by conserved sequences and generally found in non-coding regions 

of the genome but are relatively rare in protein-coding regions (Li et al., 2002; Ellegren, 

2004). They are extremely plentiful in eukaryotic genomes, but also in prokaryotes and 

eubacteria at lower frequencies. Moreover, they dispersed frequently over a genome with at 

least one STR every 10kb of DNA sequence in eukaryotes (Tautz, 1989), whereas, they are 

less frequently in the human genome with at least one STR every 300 to 500 kb (Edwards et 

al., 1992). Regardless, microsatellites account for approximately 3% of the total human 

genome, where dinucleotide repeats dominate, followed by mono- and tetranucleotide repeats, 

whereas trinucleotide repeats are least dominant (Ellegren, 2004). The nature of 

polymorphism is due to high mutation rate which was estimated to be about 2 × 10-3 per 

meiosis in humans to 6 ×10-6 - 9 ×10-6 in Drosophila melanogaster (Ellegren, 2000). 
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1.10 Microsatellite evolution 

There are two different mechanisms causing microsatellite loci to be hypervariable: strand 

slippage and unequal crossing-over:  

1.10.1 Strand slippage occurs during DNA replication (Schlötterer and Tautz, 1992; 

Ellegren, 2004). A replicating DNA strand can slip one or more repeat units within a 

repeat resulting in formation of ‘transiently unpaired bulges’ or single stranded 

regions. If DNA replication continues on this molecule, the non-paired bases will be 

added or deleted resulting in altered strands. In vivo, most of these errors can be 

repaired, because of exonucleolytic proofreading and mismatch DNA repair enzymes, 

but some of them can escape repairs and become mutations (Li et al., 2002). These 

’repair enzymes’ can reduce the mutation rate of microsatellites 100-1000 fold 

(Schlötterer, 2000). There is evidence that the addition or deletion (increase or 

decrease of allele size caused by mutations) usually involves a single repeat unit of a 

up to 4 bp sequence stretch (Valdes et al., 1993; Garza et al., 1995; Holm et al., 2001). 

The most widespread mutations are modifications of a single repeat unit, which allow 

microsatellite mutations to be interpreted as a very good approximation of a stepwise 

mutation process (Schug et al., 1997). The rate of slippage depends on the size of the 

repeat unit (highest for dinucleotides such as AAT/ATT) and on its sequence 

composition (lowest for GC-rich repeats such as GCC/GGC) (Schlötterer and Tautz, 

1992; Valdes et al., 1993). Moreover, the mutation rate may be correlate with the 

repeat length. In the Drosophila melanogaster genome, the short length of 

microsatellite repeats is most likely the factor that contributes to relatively lower 

mutation rates compared to the numbers known for vertebrates (Schug et al., 1997; 

Ellegren, 2004). 
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1.10.2 Unequal crossing-over (gene conversion) occurs during recombination at meiosis 

(Valdes et al., 1993). Recombination could potentially alter the lengths of 

microsatellites by unequal crossing-over (Li et al., 2002). Gene conversion results in 

alteration of motif numbers when crossing-over occurs between misaligned 

microsatellites on sister chromatids of homologous chromosomes (Wierdl et al., 

1997). Misalignment between sister chromosome strands occurs more easily for longer 

tandemly repeated sequences. Although, the strand slippage appears to be the most 

predominant mechanism generating microsatellite variability (Schlötterer, 2000; 

Valdes et al., 1993), other studies reported that in some cases a combination of strand 

slippage and crossing over effects/causes microsatellite stability (Li et al., 2002).  

 

1.11 Putative roles of microsatellites 

Although a large fraction of microsatellites is considered as non-functional or neutral 

(Charlesworth et al., 1994), they play in some cases important roles in chromatin 

organization, regulation of DNA metabolic processes and gene function (Schlötterer, 2000; Li 

et al., 2002; Ellegren. 2004). Furthermore, microsatellites may also be linked to genes that 

contribute to some diseases such as the STR locus TGLA116 which closely linked to the 

Weaver disease gene in cattle (Georges et al., 1993a). In humans, microsatellites associated 

with diseases are mainly located in the coding region (Ellegren, 2004).  

 

1.12 Multiplex PCR 

One of the key factors to analyze populations on a large scale is the investigation of multiple 

loci in one reaction tube to reduce the time and the amount of pipetting work as well as to 

spare DNA. The multiplex PCR techniques, is the simultaneous amplification of several 

microsatellite loci in a single PCR tube (Luikart et al., 1999; Tettlin et al., 1999). Prior to that 
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microsatellites should be selected carefully, i.e. strong clean signals and the ability to be 

combined with further primers. Furthermore, the multiplex PCR primers must be chosen to 

amplify STR with different size ranges across different chromosomes in order to avoid 

linkage among loci on the same chromosome and overlapping of alleles from different loci 

(Maudet et al., 2001). The primers are provided with different fluorescent dyes to distinguish 

among overlapping allele sizes. Although microsatellite multiplexing is advantageous, some 

factors could limit its usage such as allelic drop out and production of null alleles (Luikart et 

al., 1999).  

 

1.13 Applications of microsatellites 

Microsatellite loci have a wide range of applications: 

 Studies of gene mapping (Barendse et al., 1993; Vaiman et al., 1996) and disease 

diagnostics (Georges et al., 1993a). 

 Parentage and kinship testing (Luikart et al., 1999; Wenk, 2004).  

 Population structure, genetic diversity and linkage studies (Vaiman et al., 1996; 

Saitbekova et al., 1999; Aggrawal et al., 2007).  

 They are also used as markers linked to economic trait loci, such as the ovine 

Booroola fecundity gene, gene controlling ovulation rate in sheep (Montgomry et al., 

1993; 2001; Davis, 2004) and ‘horn development’ in Bos taurus (Georges et al., 

1993b). Horn development is under control of the autosomal polled locus 

characterized by 2 alleles: ‘P’ dominant over ‘p’ and causing the polled or hornless 

phenotype. There is a genetic linkage between polled locus and 2 STR markers: 

GMPOLL-1 and GMPOLL-2. 

 

1.14 References 
See chapter V 
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Abstract 

 

The aim of the present investigation was to devise an efficient protocol for getting a 

satisfactory embryo yield accomplished by combining the recently established ovsynch 

protocol with pFSH superovulatory treatment. Furthermore, the intention was to minimize the 

incidence of premature luteal regression frequently encountered in superovulated goats by 

substituting hCG for GnRH. A total of 51 pluriparous Boer goat does, 2-6 years of age, was 

subjected to superovulatory treatment and, thereafter, randomly allocated to one of three 

treatment groups. The does of Group 1 were subjected to an im injection of 0.004 mg of the 

GnRH analog Buserelin (Receptal®) 18 hours after the superovulatory treatment; does of 

Group 2 received 500 IU hCG (Chorulon®) and does of Group 3, 1 mL sterile physiological 

saline solution. Blood samples, collected every 2 h from 1 h before until 42 h after treatment, 

were analyzed for plasma LH concentration. With the intention to exactly determine ovulation 

time, in a subsample of each group ovaries were scanned ultrasonically at 2 hour intervals 

from 18 hours after the ovulation inducting treatment until after ovulation had taken place. 

Estrous does were mated and embryos were flushed non-surgically 6 or 8 d after the last 

mating, depending on whether morulae or blastocysts were to be collected. In GnRH-treated 

does the LH surge was tightly synchronized; it commenced 1.0 (SEM 0.03) h after treatment. 

In the hCG- and saline treated groups it commenced 11.8 (SEM 0.5) hours and 14.9 (SEM 

1.2) hours after treatment, respectively (P<0.05). The duration of the LH surge was 7.2 (SEM 

0.6) hours for the GnRH group, which was significantly shorter than the 11.2 (SEM 0.8) hours 

for the hCG- and 12.1 (SEM 0.6) hours for the NaCl group (P<0.05). Ovulation was 

synchronized most effectively with GnRH. With regard to number of transferable embryos 

(3.2 (SEM 1.2) for the GnRH-, 1.9 (SEM 1.0) for the hCG- and 4.6 (SEM 1.3) for the NaCl 

group) there were no significant differences. After GnRH and hCG treatment the incidence of 
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corpus luteum insufficiency amounted to 100% and 88%, respectively; after saline treatment it 

was 56%, which is significantly less (P<0.01), though still substantial. Application of ear 

implants compensating premature luteal regression resulted in a substantial increased in 

number of transferable embryos (P<0.05). This study indicates that both GnRH and hCG are 

suited for synchronizing ovulation in does superovulated in connection with an ovsynch 

protocol, permitting fixed-time insemination. GnRH, however, was more effective in 

synchronizing groups of does. The expected reduction in the incidence of luteal insufficiency 

when substituting hCG for GnRH did not materialize. Only when luteal insufficiency was 

compensated by providing the does with norgestomet-releasing ear implants, a modest yield 

of transferable embryos was accomplished. 

 

Key Words: Superovulation, GnRH, hCG, goats 
 

2.1 Introduction 

 

Estrus control is a management tool helping to reduce time and effort involved with estrus 

detection by clustering individual estrous periods and, if combined with ovulation induction, 

permit timed AI. Traditionally in goats estrus is controlled by the use of progestogen-

impregnated vaginal pessaries (polyurethane sponges or CIDR) combined with an injection of 

eCG just before or at the time of withdrawal (Corteel et al., 1988; Leboeuf et al., 1998; Freitas 

et al., 1997; Holtz et al., 2005). Occasionally a luteolytic dose of prostaglandin F2α is 

administered toward the end of progestogen treatment (Ritar et al., 1989; Freitas et al., 1997; 

Fonseca et al., 2005). Especially in nulliparous does intravaginal pessaries tend to cause 

discomfort (Leboeuf et al., 2003; Holtz, 2005). Alternatively, prostaglandin F2α or one of its 

analogs may be administered, either as a single injection or as two injections 10 to 14 days 
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apart (Goel and Agrawal, 2005). Prostaglandins have the disadvantage that they are only 

effective in the presence of functional corpora lutea, hence during the breeding season. None 

of the presently available means of controlling the estrous cycle in goats will bring about tight 

synchronization of ovulation. This is, according to Baril and Vallet (1990), partly responsible 

for unsatisfactory pregnancy rates with timed insemination of estrus-synchronized does. The 

‘ovsynch’ protocol, comprising induced ovulation, is commonly applied in the cattle industry 

for accomplishing fixed-time insemination and has recently been shown to be suitable for 

goats (Holtz et al., 2008).  

In goats, FSH has repeatedly been shown to be more effective than eCG for eliciting a 

superovulatory response; yet, FSH application is more laborious and time consuming 

(Tsunoda and Sugie, 1989; Nowshari et al., 1992, 1995; Yuswiati and Holtz, 1996). None of 

the superovulation protocols commonly in use will deliver fully satisfactory results in terms of 

a predictable and reliable superovulatory response (Holtz, 2005). Neither alterations of 

traditional protocols, such as temporary LH-suppression by progestogens or a GnRH 

antagonist, followed by LH or hCG administration (Krisher et al., 1994; Baril et al., 1996); 

hCG administration at the onset of estrus (Tsunoda and Sugie, 1989; Goel and Agrawal, 2005) 

nor active or passive immunization against endogenous inhibin (Dietrich et al., 1995; Medan 

et al., 2003; Padilla et al., 2008), delivered satisfactory solutions. 

 

The objective of the present study was to devise an efficient protocol for getting a satisfactory 

embryo yield accomplished. The recently established ovsynch protocol (Holtz et al., 2008) 

was combined with pFSH administration, an approach that ought to, eventually, permit fixed-

time insemination. Furthermore, the intention was to minimize the incidence of premature 

luteal regression frequently encountered in superovulated goats (Pintado et al., 1998; Saharrea 
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et al., 1998; Espinosa-Marquez et al., 2004; Cervantes et al., 2007) by substituting hCG for 

GnRH. 

 

2.2 Materials and Methods 

 

The experiment was conducted on 2 to 6 year old pluriparous Boer goat does from our own 

breeding stock in Goettingen, Germany (9º 41' E, 51º 46' N) during the breeding season 

(October to January). The does were group-housed in open barns with straw-bedding and 

outdoor concrete runs, fed a daily ration of 600 g concentrate consisting of equal parts of a 

pelleted diet for breeding ewes (16% crude protein, 10.2 MJ ME/kg, supplemented with 43 

mg/kg Se, 12 mg/kg I and 5000 mg/kg Zn), oats and dried sugar beet pulp, and had free 

access to wheat or barley straw, salt lick and water. Once daily the complete flock was 

routinely tested for estrus with an aproned male. 

 

Donor does were tested for plasma progesterone concentration from day 5 of the cycle 

onward. Does with a progesterone level exceeding 5 ng/mL were subjected to im treatment 

with 5.0 mg of the prostaglandin F2α preparation Dinoprost (1mL Dinolytic®, Pfizer, 

Germany) followed, seven days later, by an im injection of 0.004 mg of the GnRH analog 

Buserelin (1mL Receptal® Intervet, Unterschleissheim, Germany). Five days later does were 

treated with 4, 4, 2, 2, 2 and 2 armour units (AU) pFSH, supplemented with 40% pLH 

(Nowshari et al., 1995) administered at 12 h intervals. Along with the last two FSH injections, 

5 mg Dinoprost was administered im. Thereafter, the does were randomly allocated to three 

groups of 17. One group received, 18 hours after the last Dinoprost injection, an im injection 

of 0.004 mg buserelin. Another group was, instead, treated with 500 IU hCG (Chorulon®, 

Intervet, Unterschleissheim, Germany) and the third group with 1 mL of sterile physiological 
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saline solution. From that time onward until 6 hours after the end of estrus does were tested 

for estrus with an aproned adult buck every six hours (6 am, 12 am, 6 pm, 12 pm). Estrous 

does were hand mated twice daily as long as they would permit a male to mount. When it was 

noticed that a substantial portion of the does returned to estrus prematurely, of each group 11 

does were provided with subcutaneous progestogen-containing ear implants (Crestar®, 3.3mg 

Norgestomet, Intervet, Beaucouze, France) 12 hours after the last mating. Twenty hours 

before embryo collection the implants were removed simultaneously with an im 

administration of 5.0 mg Dinoprost.  

 

Blood samples of 5 mL were drawn via jugular venipuncture at 2 day-intervals from the first 

prostaglandin injection until the onset of the FSH treatment. Thereafter, sampling frequency 

was increased to once daily until embryo collection. Ten randomly selected does of the GnRH 

group, 9 does of the hCG group and 11 does of the control group were provided with 

permanently indwelling jugular catheters and subjected to sampling at 20 minute intervals 

from one hour before until four hours after the ovulation inducing treatment. Thereafter 

sampling frequency was reduced to once hourly for three hours and to once every two hours 

for the next 32 hours. Collection tubes contained three drops of Na-citrate to prevent clotting. 

Within less than four hours after collection the blood was centrifuged for 10 minutes at 1000 g 

and plasma was stored at -20°C until being assayed for progesterone content by ELISA 

according to Van de Wiel and Koops (1986), modified by Moeller (1991) and for LH content 

by ELISA according to Moeller (1991). The onset of the LH surge was defined as the time 

when the plasma LH concentration exceeds basal levels by two standard deviations.  

 

From 6 hours before until 42 hours after the ovulation inducing treatment ovarian structures 

were monitored at 12 hour intervals with the aid of a real-time ultrasound scanner (ALOKA 
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SSD 500, Japan) equipped with a 7.5 MHz rectal linear array transducer. Antral follicles more 

than 3 mm in diameter were counted and measured with electronic calipers. The number of 

ovulations was deduced from the reduction in number of large follicles between two 

consecutive observations. With this approach ovulation rate can be closely approximated as 

shown by data correlating laparoscopic and ultrasonic measurement on 50 does (r = 0.82, 

P < 0.01) by Suyadi and Holtz (unpublished). On 4 does of the GnRH group, 3 does of the 

hCG group and 5 does of the control group, ovaries were inspected at 2 hour intervals to 

precisely pinpoint the time when ovulation occurs. 

 

Non-surgical embryo collection was conducted as described in Suyadi et al. (2000) and Holtz 

et al. (2000). For obtaining morulae, does were flushed 6 days after mating, for obtaining 

blastocysts, 8 days after mating. Collection was preceded by an im luteolytic dose of 5.0 mg 

Dinoprost, administered 20 hours in advance. After ten lavages with 20 mL Dulbecco’s 

phosphate buffered saline supplemented with bovine serum albumin per uterine horn, 

embryos were recovered from the flushings and inspected under a stereo microscope at X 20-

50.  

 

Data were statistically analyzed using the program SAS® 9.2 according to the model fitted by 

the GLIMMIX procedure: Yi = Xiβ + Ziγ + εi where, Yi is the response variable for the ith 

observation (LH parameters, time of ovulation and area under the LH curve). The quantity Xi 

is a column vector of explanatory variables for observation i that is known from the 

experimental setting and is considered to be fixed (the treatment of ovulation induction). The 

vector of unknown coefficients β is estimated by a least squares fit to the data Y. The ε is 

assumed to be independent, normal random variables with zero mean and constant variance, 

and γ is an unknown vector of random-effects parameters (age, animal) with known design 
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matrix Z, and εi is an unknown random error vector whose elements are no longer required to 

be independent and homogenous. Differences between the mean values were tested for 

significance by t-test with the predicted difference PDIFF adjusted to Tukey (SAS 9.2; 2008). 

The area under the LH curve was calculated by the linear trapezoidal approximation as 

described by Jambhekar and Breen, (2009). 

 

2.3 Results 

 

Of 51 does treated (17 per treatment group) two, belonging to the saline control group, had to 

be excluded from the statistical analysis; one, because it came into estrus before being treated, 

the other because it responded with atypical delay (Fig. 2).  

 

As shown in Table 1, all does responded. The time from ovulation inducing treatment to onset 

of estrus was 6.3 hours (SEM 1.0, range 3-17) for the GnRH group, 5.9 hours (SEM 0.9, 

range 3-15) for the hCG group and 6.6 hours (SEM 1.3, range 3-15) for the saline controls. 

The corresponding data for estrus duration were 34.2 hours (SEM 2.2, range 18-54), 40.6 

hours (SEM 3.2, range 18-66) and 37.4 hours (SEM 3.4, range 14-66), respectively. None of 

these differences were statistically significant (P>0.05). The onset of tail flagging and 

immobility reflex did always coincide. At the end of estrus tail flagging outlasted the 

immobility reflex in 22% of the does by, on average, 7.2 hours. A significant difference 

(P<0.05) was detected for the proportion of does exhibiting short estrous cycles. It comprised 

100% of GnRH treated does, 88% of hCG-treated does and 56% of saline treated control 

does.  
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As depicted in Fig. 1, the plasma progesterone concentration, averaging 12.5 (SEM 1.0) 

ng/mL at the outset of the experiment, dropped to 1.0 (SEM 0.1) ng/mL within two days after 

prostaglandin treatment. By the time of the first FSH injection the progesterone level had 

recovered to 16.7 (SEM 1.0) ng/mL. At the time of prostaglandin F2α injection at the end of 

FSH treatment, within a single day a decline from 20.1 (SEM 0.8) ng/mL to 1.7 (SEM 0.1) 

ng/mL took effect. One day later a basal level of 1.3 (SEM 0.1) ng/mL had been reached and, 

since estrous symptoms occurred, it was considered day 1 of the estrous cycle. Four days after 

prostaglandin treatment (day 3 of the cycle) plasma progesterone had increased to between 2.8 

ng/mL (saline group) and 6.8 ng/mL (hCG group), which was substantially higher than the 

concentrations from 0.9 ng/mL (saline group) to 1.2 ng/mL (GnRH group) recorded at the 

comparable stage after the previous prostaglandin treatment (day -12). On day 6 of the estrous 

cycle, in 8 of 17 (44%) saline-treated control does progesterone levels had further increased to 

24.4 (SEM 0.7) ng/mL, whereas, in the remaining nine control does, as well as all does of the 

GnRH- and 15 of 17 (88%) does of the hCG-group, progesterone had dropped to basal level 

(Fig. 1).  

 

In 10, 9 and 11 randomly chosen animals in the GnRH-, hCG- and saline group, respectively 

that had been provided with indwelling jugular catheters, LH profiles were established. These 

are presented in Fig. 2; the corresponding data are provided in Table 1. The does treated with 

GnRH exhibited a tightly synchronized LH surge commencing, on average, 1.0 hours after 

injection and reaching a peak of 88.9 ng/mL 2.5 hours after treatment to return to basal level 

7.2 hours after commencement. In a single goat a secondary LH peak of almost similar 

magnitude than the initial peak made its appearance 11.7 hours later. In hCG treated does LH 

surges emerged, on average, 11.8 hours after injection and peaked 15.1 hours after treatment. 

The average duration of the LH surge was 11.2 hours. The LH surges were much less 
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synchronous as evidenced by a SEM of 0.50 vs. 0.03 for the GnRH group. The differences 

between the two groups were significantly different (P<0.05). In saline treated does onset and 

peak of the LH surge were 14.9 and 17.6 hours after treatment; the surge lasted 12.1 hours. 

The peaks were even less synchronous than after hCG treatment (SEM for commencement: 

1.2), but the differences were not significant. One doe trailed the mean of the others by 18 

hours (Fig. 2) but was excluded from the statistics.  

 

Average pattern and amplitude of the LH surges recorded after GnRH, hCG and saline 

treatment are summarized in Fig. 3. The general appearance was quite uniform. After GnRH 

administration the incline was somewhat steeper, the amplitude higher (P<0.05) and the 

duration until return to basal non-significantly less than in the saline controls yet, due to the 

higher amplitude, the area under the curve was similar (P>0.05). The LH surge recorded after 

hCG treatment appeared to be slightly, though non-significantly, lower in amplitude than 

those of the other groups. Kinetic parameters for the LH surge in the respective treatment 

groups are presented in Table 1. The time from LH peak to half the peak concentration (t1/2) 

was 1.9 hours for GnRH-, 2.6 hours for hCG- and 1.8 hours saline treated animals, 

respectively. The clearance rate was as high as 1.6, 2.4 and 1.8 L/hour for the GnRH-, hCG- 

and saline group, respectively, with no significant difference among treatment groups. 

 

Five of nine does of the saline control group in which LH was recorded featured normal luteal 

function. In these the LH surge commenced more than 44 hours after PGF2α administration 

and in four of these the amplitude of the LH surge exceeded 70 ng/mL. 

 

Number and size of ovarian follicles recorded ultrasonically at 12 hour intervals from 6 hours 

before until 42 hours after the ovulation inducing treatment are presented in Table 2. 
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Throughout the inspection period the number of large follicles (>7mm in diameter) did not 

differ among treatment groups (P<0.05). According to the limited data available on does 

inspected at two hour intervals (Table 3), does of the GnRH group ovulated, on average, 24.5 

hours after GnRH treatment, accordingly 23.5 hours after the onset of the LH surge, with a 

range of six hours (21 to 27 hours). The average interval from the peak of the surge to 

ovulation was 22.0 hours. In the hCG-treated does ovulation came to pass, on average, 34.3 

(range 31 to 41) hours after hCG injection, respectively 21.7 (range 17 to 31) hours after the 

onset and 19.0 hours after the peak of the LH surge. In the saline controls, time from injection 

to ovulation amounted to 39.3 (range 32 to 44) hours and from onset and peak of the LH surge 

to ovulation 26.8 (range 22 to 32) and 24.3 hours, respectively. Ovulations in the GnRH 

treatment does occurred, on average, 15.0 (range 13 to 19) hours after the onset of estrus, as 

compared to 27.3 (range 22 to 38) hours and 34.8 (range 28 to 41) hours in the hCG- and 

saline treated does, respectively. 

 

In does of the GnRH-, hCG- and saline treated group not provided with progestogen releasing 

ear implants between mating and flushing merely 0, 1 and 1 transferable embryo, respectively, 

was yielded. When luteal insufficiency was compensated, from the same groups, on average, 

3.2, 1.9 and 4.6 transferable embryos were obtained, additionally from three does of the 

GnRH-, two does of the hCG- and one doe of the saline group another 3, 6 and 2 unfertilized 

ova, respectively. The differences among groups were not statistically significant. 
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Table 1. Characterization of the LH surge in superovulated does induced to ovulate with 
GnRH (n=10) and hCG (n=9) as compared to saline controls (n=10).  
 

Parameter GnRH hCG Saline d 
Ovulation induction to commencement of LH surge (h)     

 Mean 1.0 a  11.8 b  14.9 b 

 SEM 0.03  0.5  1.2  

 Range 0.7-1 10-14 10-20 

Ovulation induction to peak of LH surge (h)     
 Mean 2.5 a 15.1 b 17.6 b 
 SEM 0.2 0.8 1.4 
 Range 1.7-4 12-20 12-24  
Commencement of LH surge to LH peak (h)    

 Mean 1.6 a 3.7 b 2.7 b 

 SEM 0.2 0.8 0.3 

 Range 1-3 12-20 2-4 

Duration of LH surge (h)    
 Mean 7.2 a 11.2 b 12.1 b 
 SEM 0.6 0.8 0.6 
 Range 3-10 8-15 10-16 
Amplitude of LH surge (ng/mL)    
 Mean 88.9 a 50.4 b 69.7 b 
 SEM 3.0 6.1 8.6 
 Range 68-99 24-74 31-103 
Area under LH surge (h ng/mL)    
 Mean 372.5 a 277.2 a 320.7 a 
 SEM 41.6 33.7 30.4 

 Range 161-559 156-480 185-492 
Clearance rate of peripheral LH (L/h)    
 Mean  1.6 a 2.4 a 1.8 a 
 SEM 0.2 0.3 0.2 
 Range 1-3 1-4 1-3 
Onset of estrus to commencement of LH surge (h)    
 Mean -7.6 a 5.9 b 8.5 b 
 SEM 1.2 1.1 1.4 
 Range -16.2--2 -1-9 3-17 
Onset of estrus to LH peak (h)    
 Mean -6.1 a 9.2 b 11.2 b 
 SEM 1.5 1.0 1.4 
 Range -15.3-0.3 5-13 7-19 

abc Within rows values with different superscripts differ (p<0.05, t-test)  
d Excluding one doe that came into estrus before treatment and one that responded with 
atypical delay (see Fig 1) 
 
 

 35



Table 2. Number of small (3 to 7 mm in diameter) and large follicles (> 7 mm) from 6 hours 
before until 42 hours after ovulation induction with GnRH and hCG as compared to saline 
controls (17 does per treatment group). 
 

 GnRH hCG Saline Time after 
treatment Parameter Small Large  Small Large  Small Large 
-6 hours         

 Mean 12.0 a 2.2 a  12.5 a 2.6 a  14.8 a 1.3 a 
 SEM 1.5 0.5  1.2 0.6  1.2 0.4 
 Range 0-21 0-5  2-19 0-8  9-22 0-3 
+6 hours         
 Mean 15.8 ab 4.2 a  18.6 b 3.9 a  19.8 b 3.7 ab 
 SEM 2.4 0.9  1.4 0.7  2.1 0.8 
 Range 0-27 0-9  11-33 0-8  10-38 0-9 
+18 hours         
 Mean 18.8 b 3.8 a  17.3 b 5.4 ab  17.1 b 4.9 b 
 SEM 2.2 0.7  1.2 0.7  2.0 1.0 
 Range 3-28 0-7  9-27 0-9  8-30 0-10 
+30 hours         
 Mean 14.6 ab 2.2 a  17.7 b 3.6 a  19.8 b 4.9 b 
 SEM 1.8 0.6  0.9 0.5  2.5 1.2 
 Range 3-23 0-6  12-26 1-7  10-38 0-13 
+42 hours         
 Mean 15.5 ab 2.1 a  16.1 ab 2.6 ac  15.8 ab 3.0 ab 
 SEM 1.9 0.5  1.4 0.3  1.5 0.6 
 Range 7-27 0-6  9-24 1-4  6-26 1-9 

abc Within columns values with different superscripts differ (p<0.05, t-test) 
Within rows there were no significant differences (p>0.05, t-test) 
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Table 3. Time relationships assessed on a subsample of does subjected to 2-hourly monitoring 
of ovarian structures. 

 
abc Within rows values with different superscript differ (p<0.05, t-test)  
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Fig 1: Mean plasma progesterone concentrations in three groups of does treated with PGF2α (PG) during the luteal phase, followed by an 

Ovsynch regimen in combination with superovulatory pFSH treatment and ovulation induction with GnRH or hCG as compared to physiological 

saline (NaCl) controls. Dotted lines and open symbols indicate premature corpus luteum regression.  

* Does were flushed for obtaining morulae. 
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Fig 2: Plasma LH in individual does after ovulation induction with GnRH or hCG as 

compared to physiological saline (arrows). The single spike trailing the others in the GnRH-

treated group is second to a previous one. 
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Fig 3: LH surges after treatment with GnRH, hCG and physiological saline (NaCl), 

respectively. Data were arranged around the LH peak (dotted line). 
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2.4 Discussion 

 

Estrous symptoms were typical for the Departmental flock with no apparent effect of 

treatment. This is an indication that estrogen secretion, playing a pivotal role in the exhibition 

of estrous symptoms (Jeong and Kaiser, 2006; Etgen and Garcia-Segura, 2009) was normal 

regardless of treatment. The observation that immobility reflex and tail flagging at the onset 

of estrus coincided agrees with earlier findings on the same population of goats (Holtz et al., 

2008). This observation is of practical relevance in that tail flagging may be considered a 

reliable sign of estrus and it is not necessary to go to the trouble of having a teaser mount a 

doe before being able to decide whether she is ready to be inseminated.  

 

The prompt luteolytic response recorded in all does after the two prostaglandin treatments is 

proof of the high susceptibility of cyclic corpora lutea in goats to prostaglandin F2α. The 

double injection of prostaglandin F2α conducted at 12 hour interval in association with the 

administration of FSH, therefore, might have been redundant. In cows two injections are 

considered necessary to assure complete corpus luteum regression (Drost et al., 1986). On the 

second day after prostaglandin administration estrous symptoms were recorded in all does 

(Fig. 1). 

 

The plasma progesterone pattern between first and second prostaglandin treatment was typical 

for goats (Boscos et al., 2003; Gonzalez et al., 2004; Fonseca and Torres, 2005; Khanum et 

al., 2006). After the superovulatory treatment of the does, in those not subject to premature 

corpus luteum regression progesterone reached a higher level (Fig. 1). This indicates the 

presence of supernumerary corpora lutea brought about by FSH treatment. Similar 

observations have been reported before (Quirke et al., 1979; Jarrell and Dziuk, 1981); in fact, 
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a direct linear relationship with a correlation coefficient of r = 0.9 between number of corpora 

lutea and serum progesterone level in superovulated goats was observed by Appavu and Holtz 

(1992).  

The high mid-luteal level of progesterone, as compared to several other reports, appears to be 

assay-related, as pointed out elsewhere (Holtz et al., 2008).  

 

The finding that in almost all does subject to induced ovulation - no matter whether with 

GnRH or hCG - and more than half of the saline treated controls corpora lutea failed to 

function beyond day 4 was most disconcerting. Short cycles are not uncommon in goats early 

and late in the season (Armstrong et al., 1983; Chemineau et al., 1986; Rivera et al., 2003), 

after superovulatory treatment (Espanosa-Marquez et al., 2004; Cervantes et al., 2007) 

especially when eCG is involved (Pendleton et al., 1992b) or when applying the ovsynch 

regimen (Holtz et al., 2008). According to Horton and Britt (1990), Saharrea et al. (1998) and 

Taponen et al. (2003) a reason for luteal malfunction might be untimely prostaglandin F2α 

secretion, presumably caused by elevated plasma estrogen level (Filicori et al., 2005; Clifton 

and Steiner, 2009; Kaiser et al., 2011). Others suspect an inadequate LH surge (Armstrong et 

al., 1983; Taponen et al., 2003), insufficient progesterone priming (Rivera et al., 2003) or the 

lack of responsiveness to LH of corpus luteum cells derived after prostaglandin F2α-induced 

estrus (Hansen et al., 1987; Skarzynski, et al. 2009). We do not have a plausible explanation 

for the extent of the phenomenon in the present study. 

 

The pattern of the LH surge recorded in the three treatment groups was quite uniform. The 

rapid clearance, responsible for the short half-life, could be a consequence of a lack of sugar 

moieties which are responsible for the protracted clearance rate of hCG (0.2 L/h; Saleh et al., 

in preparation). The prompt and closely synchronized response to buserelin is indicative of 
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immediate binding of the GnRH agonist to hypophyseal GnRH receptors as has been shown 

to be the case by Catt et al. (1985). A single injection of buserelin was found to be just as 

effective as the endogenous GnRH release which occurs in a pulsatile fashion (Schuiling et 

al., 1984). Studies in cattle (Nawito et al., 1977) and sheep (Schilling and Minar, 1971) have 

shown that the gonadotropin releasing effect of the nonapeptide buserelin is 50 to 70 times as 

intense as that of a decapeptide with the amino acid sequence of endogenous GnRH.  

 

From the data of the present investigation it appears unlikely that there is a direct effect of 

hCG on the release of LH. Time and degree of synchronization of the LH surge following 

hCG administration closely resembled that in the saline group. Whether hCG was responsible 

for the induction of ovulation is not entirely clear either. It may be deduced from Tables 2 and 

3 that the hCG treated does ovulated slightly sooner than the saline controls. Yet, the interval 

between LH surge and ovulation being not significantly different from that of the other 

treatment groups, it is more likely that ovulation was a sequel to the endogenous LH release. 

If this were the case, it would not sensible to use hCG as a means of inducing ovulation in 

goats. 

 

The ovsynch protocol is designed to permit fixed-time insemination. Nevertheless, in the 

present experiment the does were mated when displaying estrous symptoms, the reason being 

that the prime intention was to produce viable embryos and at the time the most suitable time 

for insemination was not known. With the majority of the goats being affected by corpus 

luteum insufficiency, a prerequisite for embryo collection was administration of norgestomet 

releasing subcutaneous implants from mating to embryo collection. Even then embryo yield 

was not up to expectations. Under comparable conditions with regard to breed and husbandry 
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of goats, FSH preparation and treatment regimen, with the only difference being the means of 

synchronization which was accomplished by intravaginal progestogen sponges, a yield of 9.1 

(SEM 1.5) transferable embryos was achieved (Nowshari et al., 1995) as compared to, on 

average, 3.2, 1.9 and 4.6 transferable embryos in GnRH-, hCG- and saline treated does in the 

present experiment. 

 

By way of conclusion, it was possible to induce superovulation by combining the ovsynch 

protocol with the administration of FSH. The response to prostaglandin F2α was prompt and 

all does showed estrous symptoms. The objective to attain timed ovulation appears to have 

been accomplished by treatment with GnRH 30 hours after prostaglandin F2α as it caused a 

prompt and full-fledged LH release. On the average the LH surge made its appearance almost 

20 hours in advance of the saline controls. The role of hCG as an ovulation inducing agent 

was found to be questionable. The kinetics of the LH release emerging after GnRH-, hCG- 

and saline treatment was quite uniform, the GnRH-induced discharge being slightly steeper, 

higher and longer-acting. Ovulation occurred, on the average, 24.2 hours after the onset and 

22.0 hours after the peak of the LH surge with no significant difference among treatment 

groups. A dominant feature of the present study was the disconcertingly high incidence of 

corpus luteum insufficiency, affecting factually all animals subjected to ovulation inducing 

treatment and more than half of the saline treated goats. As a consequence, in order to yield 

transferable embryos, does have to be provided with progestogen releasing implants from 

mating to embryo collection. From a quantitative point of view embryo yield was not up to 

expectations. More research will be needed to solve the pending problems of premature luteal 

regression and unfavorable embryo yield. 

2.5 References 

See chapter V 
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Chapter III 

Pharmacokinetics of human chorionic gonadotropin 

(hCG) in superovulated goats 
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Abstract 

 

The present investigation addresses the pharmacokinetics of human chorionic gonadotropin 

(hCG) administered as a single im injection as ovulation inducing agent in the context of 

superovulation treatment. Nine pluriparous Boer goat does, 2 to 6 years of age, received a 

single im injection of 500 IU hCG (Chorulon®) 18 h after the end of superovulatory FSH-

treatment. Blood samples were drawn two-hourly until 22 hours after hCG administration, 

thereafter at 26, 32, 38, 42, 66, 90 and 114 h. Plasma hCG concentration was assessed by 

electro-chemiluminescence immunoassay. Lag time (0.4, SEM 0.1) h, absorption rate 

constant (0.34, SEM 0.002) h and absorption half life (2.7, SEM 0.5) h, elimination rate 

constant (0.02, SEM 0.002) h, biological half life (39.4, SEM 5.1) h and apparent volume of 

distribution (16.9, SEM 4.3) L were calculated as pharmacokinetical parameters of hCG. The 

hCG curve was characterized by an absorption phase of 11.6 h (SEM 1.8) h and an 

elimination phase of 70.0 h (SEM 9.8). Considerable individual variation was found in both 

bioavailability and pharmacokinetical parameters. Biological half life was correlated with 

peak concentration (r=-0.76), absorption rate constant (r=-0.78) and elimination rate constant 

(r=-0.87). These results indicate that, following intramuscular administration, hCG is rapidly 

absorbed, whereas clearance occurs rather gradually, with considerable individual variation in 

bioavailability and pharmacokinetical parameters.  

 

Key Words: human Chorionic Gonadotropin, hCG, Superovulation, Goat, Pharmacokinetics 
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3.1 Introduction 

 

Human chorionic gonadotropin (hCG) is a heterodimeric glycoprotein of 57 kDa consisting of 

a noncovalently bound α- (92 amino acids) and a distinctive β-subunit (134 amino acids). The 

α-subunit is common among other glycoprotein hormones such as LH, FSH and TSH 

whereas, the β-subunit is unique for each glycoprotein and responsible for a specific function 

of the hormone (Gupta and Dighe, 2000; Senger, 2005; De Rensis et al., 2010). The β-hCG 

has an 80% homology to the 121 amino acid subunit of the LH β-subunit (Norman and 

Litwack, 1997). hCG is primarily produced by trophoblast cells of human embryo and after 

implantation by villous syncytiotrophoblast cells of the placenta (Cole, 2010). 

 

This hormone contributes to the maternal recognition of the developing embryo (Senger, 

2005; Cole, 201), initiates angiogenesis caused by growth factors to prepare the uterus for 

implantation (Zygmunt et al., 2002; Filicori et al., 2005; Cole, 2010), and stimulates the 

production of progesterone by the corpus luteum during the first stages of embryo 

development until the placenta becomes able to produce adequate levels of progesterone in 

the pregnant woman (usually at 6 to 8 weeks) (Norman and Litwack, 1997). 

 

Due to the similar structure with LH (Lei and Rao, 1994; Birken et al., 1996), hCG exerts its 

effects through binding to LH receptors. This action is characterized by a prolonged duration 

owing to high glycolysation rate (Cole, 2010) which is also responsible for the low clearance 

rate from the circulation. More than 75% of the hCG molecules are cleared from the 

circulation by the lever and the remainder by the kidney (Cole, 2010). The pregnant woman 

is, therefore, used to extract hCG for commercial administration (Farrag et al., 2008). 

Alternatively, hCG can be derived by genetic modification i.e. recombinant hCG (Farrag et 

al., 2008). 
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In human fertility, hCG is extensively used as an ovulation inducing agent in lieu of LH 

(Nader and Derkowitz, 1990), and after introduction of IVF and ICSI, in the final maturation 

of oocyte in women (Farrag et al., 2008). In the man, it is used to stimulate the Lydig cells to 

synthesize testosterone production which is necessary for spermatogenesis (Heller and Leach, 

1971). In domestic animals, hCG has a wide range of application. It was used in the context of 

estrus synchronisation in cattle and horse (Schmitt et al., 1996, Ginther et al., 2009), ovulation 

induction in fish (Kahkesh et al., 2010), superovulation in sheep and goat (Wani et al., 1997; 

Saleh et al, in preparation), to overcome the negative effect of premature CL regression after 

superovulatory treatment in goat (Saharea et al., 1997) and to improve pregnancy rates in 

cattle and goat (Rajamahendran and Sianangama, 1992; Fonseca and Torres, 2005). The 

effectiveness of hCG in the context of superovulatory treatment was unsatisfactory (Saleh et 

al., in preparation). To our knowledge, except for cat, no information is available about 

pharmacokinetics of hCG in the circulation of domestic animals. The objective of the present 

study was, therefore, to characterize the pharmacokinetics of hCG after im injection in 

superovulated goats. 

 

3.2 Materials and Methods 

 

The experiment was conducted at Goettingen, Germany (9º 41' E, 51º 46' N) during the 

breeding season (October to January) on pluriparous Boer goat does, 2 to 6 years of age, from 

our own breeding flock. The does were group-housed in open barns with straw-bedding and 

outdoor concrete runs. They were fed a daily ration of 600 g concentrate, consisting of equal 

parts of a pelleted diet for breeding ewes (16% crude protein, 10.2 MJ ME/kg, supplemented 

with 43 mg/kg Se, 12 mg/kg I and 5000 mg/kg Zn), oats and dried sugar beet pulp, and had 
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free access to wheat or barley straw, salt lick and water. Once daily the complete flock was 

routinely tested for estrus with an aproned male. 

 

Donor does in the luteal phase with plasma progesterone concentration in excess of 5 ng/ml - 

assessed by ELISA as described by Van de Wiel and Koops (1986), modified by Moeller 

(1991) - received an im injection of 5.0 mg Dinoprost (1mL Dinolytic®, Pfizer, Karlsruhe, 

Germany), followed, seven days later, by an im injection of a GnRH analog (1mL Receptal® 

= 0.004mg Buserelin, Intervet, Unterschleissheim, Germany). Five days later superovulation 

was induced by 6 sc injections of 4, 4, 2, 2, 2 and 2 armour units of pFSH supplemented with 

40% pLH (Nowshari et al., 1995) at 12 hour intervals. Along with the last 2 pFSH-injections 

the does received im injections of 1 mL Dinolytic®. Ovulation was induced 18 hours after the 

last Dinoprost injection by im injection of 500 IU hCG (Chorulon®, Intervet, 

Unterschleissheim, Germany). To counteract occasionally occurring premature corpus luteum 

regression, of 9 does treated, 6 were provided with progesterone-containing ear implants 

(Crestar®, 3.3 mg Norgestomet, Intervet, Beaucouze, France) 12 hours after the end of 

standing estrus. Twenty hours before embryo collection the implants were removed together 

with an im injection of 1mL Dinolytic®. Does were monitored for estrus symptoms by 

confronting them with an aproned buck at 6 hour intervals from 6 hours before treatment until 

6 hours after the end of estrus. Estrous does were handmated twice daily as long as they 

would allow a male to mount. 

 

Daily blood samples of 5 mL were drawn via jugular venipuncture from the initial 

prostaglandin treatment until 7 days after the end of the experiment. Sampling frequency was 

increased to once every two hours for 24 hours following hCG administration and once every 

six hours for the subsequent 18 hours. Collection tubes contained three drops of Na-citrate to 

prevent clotting and were centrifuged at 1000×g for 10 min. Plasma was stored at -20°C until 
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being analyzed for hCG concentration by ECLIA (Electro - Chemi Luminescence Immuno 

Assay; ELECSYS®, Roche) as described by Forest et al. (1998). The assay is based on an 

electro-chemiluminescent label (Ruthenium (II) tris (bipyridyl)
3
2+; Ru(bpy)

3
2 ) which can 

undergo multiple oxidation-reduction cycles when immobilized at the surface of an electrode 

in the presence of a co-reactant included in the assay buffer. The co-reactant, tripropylamine 

(TPA), when oxidized at the electrode, produces a radical cation which acts as reducing agent. 

After the release of a proton, a TPA radical is formed that reacts with the oxidized form of the 

label to generate Ru(bpy)
3
2  in an excited state. After emission of a photon, the label can 

undergo another cycle and, therefore, generate multiple photons for each labeled molecule. 

Immobilization of the labeled complex is achieved by using magnetic microparticles coated 

with streptavidin which bind to biotin, linked, covalently, to reaction antibodies. A magnet 

immobilizes the bound fraction at the electrode to allow elimination of the unbound label 

before proceeding to the electrochemiluminescent detection. 

+

+

 

To characterize the pharmacokinetic parameters of hCG; lag time (T0; onset after treatment) 

absorption rate constant (Ka), absorption half life (T0.5Abs), elimination rate constant (Ke), 

elimination half life (T0.5Elm) and the apparent volume of distribution (Vd) were assessed 

(Jambhekar and Breen, 2009). The absorption rate- and elimination rate constants were 

calculated as Ka= 0.693/T0.5Abs and Ke= 0.693/T0.5Elm, respectively. To assess the absorption 

half-life T0.5Abs and the biological half life T0.5Elm, plasma hCG concentrations of individual 

does were plotted against time. Thereafter, the absorption half-life was determined as the time 

required for half the hCG to be absorbed from the administration site and the biological half 

life was assigned as the time necessary for the maximum concentration of hCG in plasma to 

decrease by half. The apparent volume of distribution, the volume to which a given dose of 
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hCG would have to be diluted in order to have a concentration equal to the concentration 

detected in blood, was calculated as Vd= Dose / hCG concentration. 

 

To characterize bioavailability parameters for hCG, observed and calculated peak 

concentration (Cpeak), observed and calculated time of its occurrence (Tpeak) and the area under 

the hCG curve (AUC0-114) were determined. The observed values were calculated based on 

individual plasma concentration, whereas the calculated values for the peak concentration and 

the time of its occurrence (Tpeak) were determined using Tpeak = Ke-Ka
 Ke) / ln(Ka  and  

Cpeak = I × [e-KeTpeak – e-KaTpeak], respectively, where I stands for intercept. The intercept was 

assigned after subjection of individual elimination curves to linear regression analysis. The 

area under the hCG curve (AUC0-114) was calculated by means of the linear trapezoidal 

approximation using (AUC)  
=1

2
t
t

2
 Cp2)  (Cp1+
× (t2–t1), where Cp1 and Cp2 are hCG concentrations 

at the corresponding times t1 and t2, respectively. Pearson correlation coefficients were 

calculated to identify relationships between the pharmacokinetics parameters using the 

procedure CORR (SAS 9.2). Means and standard errors were calculated using the MEAN 

procedure (SAS 9.2). 
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3.3 Results and Discussion 

 

The present study addresses the pharmacokinetics of hCG in goats. The pharmacodynamics 

were discussed in a different context elsewhere (Saleh et al., in preparation).  

 

Figure 1 depicts mean, standard deviation as well as minimum and maximum plasma 

concentration over time in relation to im administration of 500 IU hCG. Fitting the hCG curve 

to the most appropriate model revealed that hCG follows a two-compartment pharmacokinetic 

model with absorption and elimination phases (Fig. 2). The same pattern was also observed in 

human (Weissman et al., 1996; Chan et al., 2003) and domestic cats (Swanson et al., 1997). 

Bioavailability and kinetic parameters for hCG are presented in Tables 1 and 2. In the 

absorption phase hCG concentration increased from pretreatment level in a linear fashion 

(Fig. 2). Bio-availability of plasma hCG became evident as early as 0.4 hours (T0) after 

administration, indicating rapid absorption from the administration site with an absorption 

rate constant (Ka) of 0.34, to reach a maximum (Cpeak) of 64.6 mIU/mL (SEM 4.9) after 11.6 

hours. Peak hCG levels showed considerable individual variation (range 40 to 85 mIU/mL, 

Table 1) which may be due to individual differences in the hypothetical volumes of 

distribution (range 12 to 25 L, Table 2). The more the hCG molecules bind to target tissues, 

the lower will be the plasma concentration which is, therefore, an indication of the 

hypothetical volume into which hCG is distributed.  

 

The absorption rate constant showed a negative relationship with elimination half life (r=-

0.78; p=0.01) indicating that, when hCG is rapidly absorbed, it is also rapidly cleared from 

the circulation. Pearson’s correlation coefficients showed that, in does with low peak 

concentration, half-lives were longer (r=-0.76; p=0.02); elimination rate constants were lower 
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(r=0.67; p=0.05); apparent volumes of distribution were higher (r=-0.97; P=0.0001), whereas 

the clearance rate was not affected (r=0.06; p=0.90). 

 

hCG was eliminated from the circulation in a manner resembling that described by a two-

compartment model by Jambhekar and Breen (2009). The elimination phase (Fig. 2) reflects 

the time the hCG molecules reside in the circulation. It is characterized by a gradual decrease 

in hCG concentration over a relatively long duration of, on average, 70 hours (SEM 9.8, range 

30 to 106). This phase was approximately 7 times as long as the absorption phase, indicating 

that hCG was cleared from the circulation rather slowly. hCG remained in the system for 114 

hours owing to sialic acid residuals on the β–subunit (Kalyant et al., 1982; Nisula et al., 1989; 

Kobata, 2010). This is responsible for the low clearance rate of 0.2 L/h which is very slow in 

comparison with LH (1.9 L/h; Saleh et al., in preparation). Compared to data reported for 

woman (Weissman et al., 1996), cattle (Schmitt et al., 1996) and domestic cats (Swanson et 

al., 1997) duration of hCG in the circulation in this study fell within an intermediate range. 

The sialic acid residuals are enzymatically dissociated from the hCG molecule which is, 

thereafter, degraded after binding to hepatic receptors. This takes care of more than three 

quarters of the biological activity; the remainder is cleared via the kidney (Kalyant et al., 

1982; Apparailly and Combarnous, 1994, Cole, 2010). Approximately 21% is excreted into 

urine as heterodimeric hCG, nicked heterodimeric hCG, free subunits (some nicked), and, 

predominantly, as the hCG β core fragment. Elimination rates by liver and the kidney might 

differ according to physiological state (Rao, 1985), interactions with other hormones or 

substances (Liu et al., 1995), administration route (Saal et al., 1991; Wikland et al., 1995; 

Stelling et al., 2003), body mass index (Chan et al., 2003; Detti et al., 2007), and the presence 

of large ovarian follicles (Detti et al., 2007). The biological half life was, on average, 39.4 

hours (SEM 5.07, range 25 to 66). This value is almost comparable to that in human (36 h: 

Cole, 2010) but longer than that in domestic cats (Swanson et al., 1997). According to Liu et 
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al. (1995) the term biological half life is not a constant value. It represents the theoretical 

volume of blood which is completely cleared of hCG per unit time and does not indicate how 

much hCG is being removed.  

 

From the present study it may be concluded that hCG, injected intramuscularly, will rapidly 

appear in the circulation, whereas clearance from the blood occurs rather gradually and may 

last more than 80 hours. By means of ultrasonography it was determined that ovulation 

occurred approximately 34 hours after treatment. Taking this into consideration a prolonged 

bioavailability of hCG for approximately 47 hours after ovulation may be supportive of the 

function ability of newly formed corpora lutea and may thus reduce the incidence of 

premature luteal failure. This aspect of hCG administration will be addressed in a separate 

study. 
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Table 1. Characterization of plasma hCG profile (observed and calculated time of maximum 

concentration: Tpeak; observed and calculated peak plasma concentration: Cpeak; duration and 

the area under the curve: AUC) after im administration of 500 IU hCG in superovulated Boer 

goat does.  

Parameter Mean SEM Range 

Tpeak (h)    

 Observed 11.6 1.8 4-20 

 Calculated 11.0 1.9 5-20 

Cpeak (mIU/mL)    

 Observed 64.6 4.9 40-85 

 Calculated 70.9 4.6 50-99 

Duration (h)    

 Absorption phase 

(h) 

11.6 1.8 4-20 

 Elimination phase 

(h) 

70  9.8  30-106  

AUC (h mIU/mL) 2427  177  1632-3118 
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Table 2. Pharmacokinetic parameters; lag time (To), absorption rate constant (Ka), absorption 

half life (T0,5abs), elimination rate constant (Ke), elimination (biological) half-life (T0,5elm), 

apparent volume of distribution (Vd) and clearance rate after intramuscular administration of 

500 IU hCG in nine adult Boer goat does. 

 

Parameter Mean SEM Range 

To (h) 0.40 0.06 0.33-0.66 

Ka (per h) 0.34 0.06 0.13-0.62 

T0,5abs (h) 2.70 0.54 1.1-5.3 

Ke (per h) 0.02 0.002 0.01-0.03 

T0,5elm (h) 39.4 5.1 25-66 

Vd (L) 16.9 4.3 12-25 

Clearance rate (L/h) 0.2 0.02 0.2-0.3 
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Fig 1. Change in hCG level (mean, standard deviation, minimum and maximum values) in 

nine adult Boer does after a single im injection of 500 IU hCG (arrow). 
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Fig 2. Absorption (top) and elimination phase (bottom) of the plasma hCG profile in the wake 

of a single im injection of 500 IU in nine adult Boer goat does, fitted with polynomial trend 

lines. 

 

3.4 References 

 
See chapter V 
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Chapter IV 

Parentage analysis of Boer goats using  

microsatellite markers 
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Abstract  

 

Parentage testing of 13 ET kids using 13 microsatellite markers originally isolated from sheep 

and goats was done. In addition, means for expected and observed heterozygosity, number of 

alleles per locus, effective number of alleles, inbreeding coefficient, polymorphic information 

content and exclusion probabilities were calculated for 80 unrelated individuals. Four loci 

(McM527, OarFCB20, BM1258 and INRA0132) deviated significantly (p<0.01) from the 

Hardy-Weinberg equilibrium; 69% of the loci were highly polymorphic with an average 

number of 7.46 alleles per locus. The inbreeding coefficient was 0.178, the average expected 

heterozygosity 0.632 and the mean polymorphic information content 0.591. Considering all 

loci, the probability of excluding two putative parents was 99.99974% and the probability of 

identity was instead 4.9×10-11. Paternities of 13 kids were resolved with an estimated pedigree 

error rate of 15.4%. Mismatching of alleles in at least 4 microsatellite loci led to the exclusion 

of paternity. 

Dropping of loci with (PIC) values less than 0.4 did not affect the effectiveness of other 

markers to distinguish individuals. From the results it may be concluded that the investigated 

set of 13 loci may indeed serve as a suitable tool for herd management, enabling confirmation 

of progeny records prior to selection of breeding animals. 

 

Key Words: Microsatellites, Parentage, Boer goat 
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4.1 Introduction  

 

Boer goats have been introduced into Germany since 1980. The nucleus herd has been 

maintained at the Department of Animal Science in Göttingen. To reduce inbreeding, frozen 

semen and embryos have been imported from South Africa. Intensive application of artificial 

insemination (AI), selection for fecundity traits such as litter size and misidentification of 

parentage are potential contributors to inbreeding which may negatively affect the viability 

and reproductive fitness of the breeding stock (Pariacote et al., 1997; Frankham et al., 2004). 

Drawbacks of traditional methods of paternity control i.e. progeny testing (Baron et al., 2002) 

have justified the application of more accurate methods. Recently, DNA technologies were 

introduced for molecular characterization of breeds and paternity testing in farm animals. 

Microsatellites have received the highest attention and have extensively been used for genetic 

profiling of individuals due to advantages over other DNA markers as they combine high 

genetic variability with nuclear co-dominance inheritance (Jarne and Lagoda 1996; Heyen et 

al., 1997). Moreover, microsatellite loci can be successfully amplified across related species 

(Pepin et al., 1995; Vaiman et al., 1996; Yang et al., 1999). For parentage analysis several 

polymorphic microsatellite markers have been recommended by the International Society for 

Animal Genetics (ISAG) and the Food and Agriculture Organization (FAO). A set of 10 

microsatellites should be enough to exclude a parentage with a high confidence level (Tautz, 

1989; Tracey, 2001). The objectives of this study were to utilize microsatellite markers to 

quantify the rate of pedigree errors in the local Boer goat population, to evaluate the degree of 

inbreeding and to investigate if less informative markers could be dropped from the panel 

with a negligible effect on the probability of exclusion. This study might, therefore, serve as a 

valuable mean for the genetic management of herds and to design rational strategies for 

optimum utilization and conservation of genetic diversity in a population.  

 

 61



4.2 Materials and methods 

 

Blood samples were drawn by jugular venipuncture using EDTA-tubes from 13 embryo 

transfer program kids, 46 putative dams and 10 putative sires. Semen samples of further 5 

putative sires were also included in the study. The does were either naturally or artificially 

inseminated. Genomic DNA was extracted from the blood samples by the SDS/Proteinase 

K/NaCl/Ethanol procedure and from frozen semen samples by the Phenol-Chloroform 

procedure according to Miller et al. (1988) and Sambrook et al. (1989). 

 

4.2.1 Microsatellite Amplification 

A panel of 13 polymorphic microsatellites was chosen according to the recommendation of 

the International Society for Animal Genetics (ISAG) (Table 1), due to their highly 

polymorphism and location on different chromosomes. Furthermore, they have been 

successfully amplified in different goat and sheep breeds worldwide. This permits a better 

comparison among breeds with different evolution histories. The primers used for the 

polymerase chain reaction (PCR) were fluorescent end-labelled with different fluorescent 

dyes.  

 

Nine of the 13 microsatellite markers were originated from sheep and combined into two 

multiplexes (CSRD247, HCS, INRA63, OarFCB11) and (INRA63, INRA23, MAF65, 

McM527, OarFCB20). The remainder four markers were originated from goat and amplified 

separately. For the ovine multiplexes, PCR reactions were performed in a total volume of 14 

μL containing 1 μL genomic DNA (20 ng), 1.4 μL primermix, 7 μL Multiplex-Mastermix and 

4.6 μL double distilled water. The PCR amplification was performed in a thermo cycler 

(Biometra®) using an initial denaturation at 95°C for 15 min, 32 cycles of denaturation at 94 
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°C for 30s, primer annealing at (Table 1) for 90s, primer extension at 72°C for 1min followed 

by a final extension at 60°C for 30 min.  

PCR reactions for the caprine markers (BM1258, BM1329, BM1818 and INRA0132) were 

performed in a total volume of 25 μL containing 1 μL (20 ng) genomic DNA, 2.5 μl 10X PCR 

buffer, 0.5 μl dNTP, 1 μL of each STR primer unit (forward and reverse), 0.3 μL Taq- 

polymerase. MgCl2 was added to the reactions at 0.5, 0, 1.5 and 0.5 μL, respectively, and 

double distilled water was added to achieve final volume of 25 μL. The PCR reactions were 

performed on a Biometra T-Gradient Thermocycler (Biometra®, Germany) using an initial 

denaturation at 94°C for 1.5 min, 34 cycles of denaturation at 94°C for 1 min, primer 

annealing at (see Table 1) for 1 min, primer extension at 72°C for 1 min followed by a final 

extension at 72°C for 5 min. To check fragment integrity PCR products were loaded on 1.5% 

agarose gels. 

 

At the end of the PCR reaction, the total ovine- and caprine- PCR product was diluted with 

100 μL and 40 μL double distilled water, respectively, and then 1.5 μL was loaded with 12.5 

μL Hi-Di Formamide and 0.5 μL GenScan 500-ROX to put into in the ABI-3100 Genotyper 

(Applied Biosystems®) for microsatellite genotyping. 

 

4.2.2 Genotyping 

For genotyping of samples, the size separation was performed on an ABI PRISM® 3100 DNA 

analyzer (ABI, Weiterstadt, Germany), using GENSCAN-500ROXTM as internal size standard 

according to the manufacturers’ specification. Evaluation of microsatellites and size 

determination of alleles were done with appropriate ABI-Software GENSCAN and 

GENOTYPER software (Applied Biosystems, Applera Europe B.V.), respectively. 
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4.2.3 Data analysis 

The observed (NA) and the effective number of alleles (Ne), the estimates for probability of 

excluding two putative parents (EPP) and the probability of identity (PI) were calculated using 

GenAlEX 6 software v.6.3 (Peakall and Smouse, 2006). Observed (Ho) and expected 

heterozygosity (HE), polymorphic information content (PIC), tests for deviation from Hardy–

Weinberg equilibrium and null alleles were calculated using CERVUS® v3.0.3 (Kalinowski et 

al., 2007). Inbreeding coefficient (FIS) was estimated according to (Weir and Cockerham, 

1984) using FSTAT® v2.9.3 (Goudet, 2001). To resolve suspected paternities, 15 sires and 46 

does were considered as putative sires/dams. Mismatching of alleles at least 4 microsatellite 

loci led to the exclusion of paternity. 
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4.3 Results and Discussion 

 

All selected markers were successfully amplified and generated multiple alleles at each locus 

(Table 3.1). The most important parameters for paternity testing are (HE) and (PIC), because 

they take into account the number and frequency of alleles (Fig. 3-1) in a given population. 

Expected heterozygosity (HE) ranged from 0.417 (BM1818) to 0.846 (INRA5) with an average 

of 0.632. The average number of alleles across all loci amplified was 7.46 ranging from 4 

(CSRD247) to 12 alleles (INRA5) suggesting that all markers were suitable for parentage 

testing. Expected heterozygosity (HE) was slightly higher than was previously reported for 

Boer goats in South Africa, which have been subjected to intensive artificial selection for 

improved production and application of A.I (HE = 0.617; Visser et al., 2004; Pieters, 2007). 

The same microsatellites have generated variable number of alleles when they were amplified 

in different breeds or, even, in the same breed indigenous to different regions (Yang et al., 

1999; Martinez at al., 2004; ISAG, 2005; Pieters, 2007), indicating events of different 

historical evolution, degree of genetic improvement, intensity of selection and population 

size. Three ovine microsatellite loci (CSRD247, INRA23 and McM527) showed an expected 

heterozygosity (HE) lower than Italian sheep breeds (ISAG, 2005). Deficiency of 

heterozygosity is a phenomenon occasionally observed after amplification of microsatellite 

markers in closely related species due to lack of conservation in flanking regions during 

evolution (Pepin et al., 1995; Jarne and Lagoda, 1996). Generally, segregation of null alleles, 

selection and inbreeding significantly decrease gene diversity (Dakin and Avise, 2004). In this 

study, deficiency of gene diversity is unlikely to result from segregation of null alleles and 

inbreeding (Tab 1). Low inbreeding level (FIS=0.178) and high heterozygosity indicate that 

this population is maintained at an acceptable level of genetic variation probably due to an 

effective breeding system, exclusion of suspected individuals from the breeding stock and 

introduction of new genetic material (frozen semen and embryos).  



HSC

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

267 271 273 275 281 283 286 288 301

Allele

Fr
eq

ue
nc

y

 
CSRD

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

217 228 230 238

Allele

Fr
eq

ue
nc

y

 
OarFCB11

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

131 133 136 145 154 156

Allele

Fr
eq

ue
nc

y

 
INRA63

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

171 174 176 178 180

Allele

Fr
eq

ue
nc

y

 
INRA5

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

122 124 126 128 138 140 142 144 146 148 151 153 155 160

Allele

Fr
eq

ue
nc

y

 
 

OarFCB20

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

94 96 99 101 109 112 114 116 118

Allele

Fr
eq

ue
nc

y

 
McM527

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

155 160 163 166 168 170 173

Allele
Fr

eq
ue

nc
y

 
MAF65

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

107 110 114 116 119 121 125 128 130 133 135

Allele

Fr
eq

ue
nc

y

 
BM1329

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

167 169 171 175 177

Allele

Fr
eq

ue
nc

y

 
BM1818

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

251 253 255 257 263 265

Allele

Fr
eq

ue
nc

y

 
 



BM1258

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

99 101 105 107 111 113 121 124 127

Allele

Fr
eq

ue
nc

y

 

INRA0132

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

128 136 138 140 142 154

Allele

Fr
eq

ue
nc

y

 
INRA23

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

198 200 204 208 211 218

Allele

Fr
eq

ue
nc

y

 

 

Fig 1. Allele frequency 
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After Bonferroni correction, genotype frequencies of 4 markers (McM527, INRA0132, 

BM1258 and OarFCB20) were not within the expected Hardy-Weinberg Equilibrium. 

Disequilibrium of three loci (McM527, INRA0132 and BM1258) could be demonstrated as a 

result of potential segregation of null alleles and an high inbreeding index (Table 1; Dakin 

and Avise, 2004). Otherwise, departure from HWE could be due to other factors such as 

selection and insufficient sample size (Frankham et al., 2004). The equilibrium state of the 

other 9 loci in this population provides a rational indicator for the present level of genetic 

variability. In South Africa, HWE differs according to the region (Pieters, 2007). Similar 

deviation from HWE was also reported in Indian goat breeds (Rout et al., 2008). 

The overall mean of the PIC over all loci was 0.591. The most informative locus was (INRA5 

with 0.822) while the least informative locus was (BM1818 with 0.338). Nine microsatellites 

were highly polymorphic with a PIC value higher than 0.5, indicting that these loci are very 

informative for parentage testing (Zhiguo et al., 2007). 
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Table 1. Measures of polymorphism among the microsatellites in terms of number of alleles (NA), effective allele number (Ne), observed (Ho) and 

expected (HE) heterozygosity, polymorphic information content (PIC), inbreeding coefficient (FIS), exclusion probability when both parent 

known (PE1), exclusion probability when one parent known (PE2), probability of excluding two putative parents (PE3), exclusion probability of 

identity (PI), and null allele frequencies. 

 
Locus Chromo- 

some 

Tm 

 

Allele 

Size (bp) 

NA 

 

Ne 

 

PIC HE 

 

HO 

 

FIS 

 

PE1 PE2 PE3 

 

PI 

 

F(null) 

HCS  62 267-301 9 4.237 0.737 0.769 0.738 0.041 0.571 0.389 0.767 0.083 +0.0377 

INRA0132 ***  64 136-142 6 2.405 0.542 0.588 0.313 0.470 0.355 0.188 0.536 0.215 +0.3055 

OarFCB11 2 62 131-231 6 4.040 0.710 0.757 0.438 0.424 0.521 0.343 0.700 0.103 +0.2608 

OarFCB20 *** 2q23 53 94-118 9 3.354 0.661 0.706 0.813 -0.151 0.479 0.304 0.675 0.130 -0.0949 

INRA23 3 53 198-208 8 2.470 0.557 0.599 0.613 -0.023 0.376 0.205 0.568 0.202 -0.0402 

McM527 *** 5 53 155-170 7 1.723 0.399 0.422 0.213 0.498 0.247 0.096 0.412 0.357 +0.3368 

BM1329 6q15 58 167-177 5 2.516 0.545 0.606 0.613 -0.010 0.349 0.194 0.518 0.215 -0.0102 

INRA5 12 53 124-160 12 6.293 0.822 0.846 0.263 0.691 0.683 0.514 0.854 0.045 +0.5292 

CSRD247 14 62 217-238 4 1.757 0.376 0.433 0.463 -0.068 0.211 0.094 0.338 0.379 -0.0377 

MAF65 15 53 110-135 11 3.784 0.703 0.740 0.738 0.004 0.529 0.348 0.727 0.102 -0.0084 

INRA63 18q22 62 171-180 5 2.152 0.482 0.539 0.550 -0.021 0.298 0.152 0.459 0.270 -0.0256 

BM1818 23 58 251-265 6 1.707 0.338 0.417 0.463 -0.110 0.235 0.920 0.390 0.369 -0.0599 

BM1258 *** 23 68 99-124 9 4.735 0.757 0.794 0.550 0.308 0.586 0.304 0.768 0.077 +0.1836 

Multilocus    7.46 3.157 0.591 0.632 0.521 0.178 0.9994 0.9828 0.9999 4.9×10-11  

Three asterisks as superscripts mean a significant deviation (p<0.001) from Hardy–Weinberg equilibrium. (Tm) Annealing temperature  
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The estimated probability of excluding two putative parents (EPP) per locus varied from 0.338 

(CSRD247) to 0.854 (INRA5) reflecting the relative informativeness of the markers.  

The combined probability of excluding two putative parents over all loci was 99.99974% 

providing a high confidence level. These results are similar to exclusion probability of 22 

microsatellites in Cashmer, Angora and Murciana-Granadina goats (Luikart et al., 1999). 

Excluding loci BM1818, CSRD247 and McM527 yielding PIC values less than 40%, the 

exclusion probability of putative parents dropped to 99.9989 %. Regarding the rate of 

erroneous paternities within the 13 kids resulted from ET program, the estimated value 

(15.4%) was slightly lower than reported previously in Murciano-Granadina dairy goats 

(16.2%; Jiménez-Gamero et al., 2006). Important factors contributing to misidentification are 

erroneous recordings of the semen source or the embryo(s) transferred to the recipients and 

when multiple does kidded in the same pen. Erroneous implications may also arise due to 

segregation of null alleles (Dakin and Avise, 2004), mutation and deviation from HWE 

(Luikart et al., 1999), which may cause a rejection of a correct parent. This reveals the 

importance of paternity testing using DNA markers for accurate assignment of sires/dams 

used in breeding programs.  

From the results it may be concluded that this set of microsatellites was successfully 

amplified in the Boer goat and may indeed serve as a suitable tool for herd management, 

enabling confirmation of progeny records prior to selection of breeding animals. 
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This dissertation includes three studies that address aspects associated with in-vivo embryo 

production in goats.  

 

In Study 1, as a novel approach the Ovsych protocol (Holtz et al., 2008) was combined with a 

superovulatory dose of pFSH in an effort to achieve a satisfactory embryo yield. Furthermore, 

by substituting hCG for GnRH, it was attempted to minimize the incidence of premature 

luteal regression frequently encountered when superovulating goats (Pintado et al., 1998; 

Saharrea et al., 1998; Espinosa-Marquez et al., 2004; Cervantes et al., 2007). Estrous 

symptoms, ovarian functions, preovulatory LH surge and embryo yield were studied. The 

results obtained were unsatisfactory, both in terms of the maintenance of luteal function and 

embryo yield, in particular after ovulation induction with hCG. The findings from this 

experiment were as follows: 

• Tail flagging and immobility reflex, as reflection of estrus, coincide and commence 

approximately 36 hours after prostaglandin-induced luteolysis. This observation is of 

practical relevance in that tail flagging may be considered a reliable sign of estrus 

when having to decide upon the best time for insemination. 

• Injection of a GnRH analog 30 hours after prostaglandin treatment advanced ovulation 

by almost 20 hours in comparison to saline treated controls. Therefore, in these does 

AI should best be conducted 16 to 18 hours after GnRH treatment, respectively 46 to 

48 hours after prostaglandin administration, especially when using cryopreserved 

semen.  

• Five of nine does of the saline control group in which LH was recorded featured 

normal luteal function. In these the LH surge commenced more than 44 hours after 

PGF2α administration and in four of these the amplitude of the LH surge exceeded 70 

ng/mL. 
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• Ovulation induction with a GnRH agonist 30 hours after prostaglandin treatment, as 

executed in the present experiment, might not be appropriate. It is, therefore, 

recommended that the time of ovulation induction should not be less than 44 hours 

after prostaglandin treatment. This time will permit the follicles to reach the 

appropriate state of maturity when the preovulatory LH surge commences. In this 

respect GnRH is preferable due to its immediate and highly synchronized induction of 

the LH surge. This leads to an efficient control of ovulation and provides for a LH 

surge of sufficient amplitude.  

 

In Study 2, characterization of the pharmacokinetics of intramuscularly injected hCG in 

female goats was addressed. It became apparent that peripheral hCG concentration increases 

rapidly after injection, whereas clearance from the blood occurs rather gradually, lasting up to 

more than 80 hours. Individual variability was substantial, which might be responsible for the 

variability in time of ovulation, as compared to GnRH-treated does. By way of 

ultrasonography it was determined that ovulation occurred approximately 34 hours after 

treatment. Taking this into consideration, it may be concluded that the ovulation, if not 

occurred with physiological LH surge, is triggered approximately 10 hours after hCG 

treatment. Consequently AI ought to be conducted 26 to 28 hours after hCG administration. 

The prolonged presence of hCG, lasting approximately 47 hours after ovulation, did not 

enhance the function of the corpora lutea and thus was ineffective in reducing the incidence of 

premature luteal failure as had been hoped for. Therefore, hCG is not recommended as 

ovulation inducing agent in the context of superovulatory treatment since it did not effectively 

synchronize the LH surge and, in comparison to saline controls, significantly increased the 

incidence of premature luteal regression. More research will be needed to solve the pending 

problems of premature luteal regression and unfavorable embryo yield. 
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Study 3 was complementary to an embryo transfer program and addressed the application of 

microsatellite markers, isolated from sheep and goats, for the confirmation of parentage in 

kids born to embryo transfer recipients. Furthermore, microsatellite markers were utilized to 

genetically characterize the population of Boer goats maintained at the Department of Animal 

Science. The departmental flock represents the nucleus of the national Boer goat population. 

Quantifying the inbreeding coefficient was considered an indicator of long-term breeding 

management. Eventually, it was attempted to reduce cost and labor of the use of microsatellite 

markers by reducing the number of markers required. Dropping the three less informative loci 

from the system did not diminish the effectiveness of the system. Resolving of the paternities 

of 13 kids revealed that two kids were assigned to the wrong parents. Since the set of markers 

used in this study corresponds with that used in sheep and goats worldwide, we were able to 

compare the genetic structure of the departmental Boer goat population with the Boer goat 

population of South Africa, where the breed originates from, and other breeds. The results of 

the present study indicate that the genetic structure of the population is comparable to its 

ancestors in South Africa, due to avoidance of inbreeding and introduction of semen and 

embryos imported from South Africa. It may be concluded, that this set of microsatellite 

markers may serve as a valuable means for the genetic management of breeding herds and the 

design of rational strategies for efficient utilization and conservation of genetic diversity in 

populations. 
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Die vorliegende Arbeit besteht aus drei separaten Versuchen: Die erste Untersuchung 

beschäftigt sich mit der Frage der Ovulationsinduktion bei superovulierten Ziegen. Die zweite 

mit der Pharmakokinetik von injizierten hCG und die dritte mit der Elternschaftskontrolle bei 

Burenziegen mit Hilfe von Mikrosatelliten. 

 

In dem ersten Versuch sollte untersucht werden, ob das Ovsynch-Verfahren in Kombination 

mit einer Superovulationsbehandlung bei der Burenziege eingesetzt werden kann. Die 

Untersuchung an 51 pluriparen Burenziegen erfolgte während der Paarungssaison von 

Oktober bis Januar. Tieren mit hohem Plasmaprogesteronwert (Gelbkörperphase) wurde 1 mL 

des Prostaglandinpräparats Dinolytic® verabreicht. Sieben Tage später erfolgte eine 

Receptal®-Gabe (GnRH-Analog; 1 mL = 0.004 mg Buserelin), und 5 Tage darauf eine 

Superovulationsbehandlung bestehend aus insgesamt 16 AU FSH/40%LH, verabreicht in 

absteigender Dosierung (4, 4, 2, 2, 2 und 2 AU) im Abstand von 12 Stunden. Gleichzeitig mit 

den letzten beiden FSH/LH-Gaben erfolgte eine weitere Dinolytic®-Behandlung. Nach 

weiteren 30 Stunden wurden die Tiere in drei Gruppen unterteilt, die unterschiedlichen 

Behandlungen unterworfen wurden. 

 Gruppe 1: 0.004 mg Buserelin (1mL Receptal®) 

 Gruppe 2: 500 IE hCG (Chorulon®)  

 Gruppe 3: 1 mL 0.9% NaCl-Lösung (Kontrolle) 

Um bei Ziegen häufig auftretenden Kurzzyklen entgegenzuwirken, wurde einem Teil der 

Tiere aus jeder Versuchsgruppe 12 Stunden nach Brunstende ein subkutanes gestagenhaltiges 

Ohrimplantat (3 mg Norgestomet®) gelegt. Um den LH-Verlauf zu bestimmen, wurden 

Blutproben wie folgt entnommen: Von einer Stunde vor bis vier Stunden nach der letzten 

Hormonbehandlung alle 20 Minuten, anschließend 3 Stunden stündlich und für weitere 32 

Stunden zweistündig. Die Brunstbeobachtung mit einem Suchbock wurde alle 6 h, beginnend 

6 h vor der Behandlung bis zum Brunstende, durchgeführt. Die Ovulation wurde festgestellt, 
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indem bei einigen Ziegen aus jeder Versuchsgruppe die Ovarien 18 h nach der Behandlung im 

Zweistundenintervall ultrasonographisch beurteilt wurden. 

Bei den 17 Tieren der GnRH-Gruppe setzte durchschnittlich 57 min (20 bis 60 min) nach 

Receptal®, noch vor dem Brunsteintritt der LH-Anstieg ein. Dieser wies im Vergleich zum 

physiologischen Verlauf (9,6 h bei NaCl-Gruppe) eine verkürzte Dauer von 7,2 h auf, und 

verlief bei allen Tieren synchron. Bei einem Tier zeigte sich etwa 10 Stunden später ein 

zweiter Anstieg. Die Ovulationen erfolgten durchschnittlich 20,5 h (20 bis 22 h) nach dem 

LH- Gipfel. Zeitverzögert und asynchron erfolgte die LH-Ausschüttung bei den Tieren der 

hCG-Gruppe. Die Ovulationen fanden etwa 16 h nach dem LH-Gipfel bzw. 34,7 h nach der 

hCG-Gabe statt. Vermutlich war das verabreichte hCG nicht für die Ovulationauslösung 

verantwortlich. Bei dem physiologischen LH-Verlauf (NaCl-Gruppe) erfolgte der LH-Anstieg 

unsynchronisiert durchschnittlich 16.8 h (10 bis 32 h) nach der NaCl-Injektion und die 

Ovulationen 43,4 h (32 bis 58 h) danach. Wiewohl sich bei allen Tieren der GnRH-Gruppe 

Ovulationen einstellten, bildeten sich die Gelbkörper innerhalb von 4 bis 5 Tagen wieder 

zurück, so dass sämtliche Tiere Kurzzyklen aufwiesen. Der Anteil Kurzzyklen bei der hCG-

Gruppe betrug 88,2 % und bei der NaCl-Gruppe 56,3%. Durch den Einsatz von gestagen-

haltigen Ohrimplantaten ließ sich die Luteolyse zwar nicht verhindern, doch wurden die 

Spülergebnisse verbessert durchschnittlich 3.2, 2.0 und 4.6 transfertauglichen Embryonen 

gewonnen, gegenüber lediglich 0, 1 und 1 den Tieren ohne Ohrimplantat. 

Schlussfolgernd ist zu sagen, dass eine synchronisierte Ovulationsauslösung bei 

superovulierten Ziegen mit Hilfe von GnRH möglich ist, während hCG bestenfalls eine 

geringe Wirkung ausübt. Bei einer terminorientierten Besamung ist der optimale 

Besamungstermin abhängig vom verwendeten Präparat. Aufgrund des vermehrten Auftretens 

von Kurzzyklen nach einer Ovulationsauslösung mit GnRH oder hCG sollten die 

superovulierten Tiere bis zur Embryonengewinnung einer Gestagenbehandlung unterzogen 

werden.  
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Ziel des zweiten Versuchs was, die Pharmakokinetik von hCG nach einer i.m. Verabreichung 

bei superovulierten Ziegen zu charakterisieren. Pharmakokinetik beschäftigt sich damit, den 

zeitlichen Verlauf von hCG im Organismus, d.h. in verschiedenen biologischen Flüssigkeiten 

und Geweben, zu beschreiben. Die Pharmakokinetik beinhaltet die Prozesse der Resorption, 

der Verteilung, der Metabolisierung und der Beseitigung. 

Die Untersuchung erfolgte an 9 pluriparen Burenziegen, denen im Ausschluss an eine 

Superovulationsbehandlung hCG induzieret wurde. Um den hCG-Verlauf zu bestimmen, 

wurden Blutproben wie folgt entnommen: Vom Anfang bis 22 Stunden nach der 

Hormonbehandlung alle 2 Stunden, dann nach 26, 32, 38, 42, 60, 90 und 114 Stunden.  

Die hCG-Konzentration im Blut stieg 20-40 min nach der hCG- Verabreichung an, um nach 

etwa 11 Stunden ihren Höhepunkt zu erreichen. Absorptionskonstante (0.34, SEM 0.06), 

Absorptionshalbwertszeit (2.7, SEM 0.5 h), Eliminationskonstante (0.02, SEM 0.002 h), 

Halbwertzeit von hCG (39.4, SEM 5.1 h) und scheinbares Verteilungsvolumen (16.9, SEM 

4.3 L) wurden als pharmakokinetische Parameters berechnet. Die individuelle Variabilität war 

hoch. Die Halbwertzeit von hCG korreliert mit der Gipfelkonzentration (r=-0.76), der 

Resorptionskonstante (r=-0.78) und der Eliminationskonstante (r=-0.87).  

Schlussfolgernd kann festgestellt werden, dass hCG nach einer intramuskulären 

Verabreichung schnell im Blut nachgewiesen werden kann, während sich der 

konzentrationsabfall über einen langen Zeitraum erstreckt. 

 

Ziel des dritten Versuchs war, die Effizienz der Elternschaftskontrolle bei Burenziegen mit 

Hilfe von caprinen und ovinen Mikrosatelliten zu beurteilen. Mit dem Set von 13 

Mikrosatelliten wurde zum einen die genetische Vielfalt innerhalb der Göttinger 

Burenziegenpopulation, zum anderen die Elternschaft von 13 ET-Lämmern untersucht. Die 

statistische Auswertung des Ausschlusses bzw. der Bestätigung der korrekten Abstammung 

wurde mit Hilfe der Programme CERVUS® und GenAlEX® vorgenommen. Der 
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Inzuchtkoeffizient wurde mit Hilfe des Programms F-STAT berechnet. An 112 mit 13 

Mikrosatellitenloci analysierten Tieren wurden insgesamt 97 unterschiedliche Allele ermittelt. 

Alle untersuchten Marker erwiesen sich als polymorph, wobei die Anzahl der Allele zwischen 

vier (CSRD247) und 12 (INRA5) lag. Die mittlere Anzahl an Allelen betrug 7,46. Die 

erwartete Heterozygosität erstreckte sich von 0,42 (BM1818) bis 0.85 (INRA5) und betrug im 

Durchschnitt 0,63. Sie lag somit höher als die der südafrikanischen Herdbuch-Burenziegen. 

Der PIC (Polymorphism Information Content), erstreckte sich von 0,34 (BM1818) bis 0,82 

(INRA5) mit einem Mittelwert von 0,59. Die Allelfrequenzen der vier Loci McM527, 

OarFCB20, BM1258 und INRA0132 wichen signifikant (p<0,01) vom Hardy-Weinberg-

Gleichgewicht ab. Diese Abweichungen können sowohl auf Inzucht als auch auf Nicht-

Äquilibrium innerhalb der Population zurückzuführen sein. Bei drei dieser Marker (McM527, 

BM1258 und INRA0132) gibt es Hinweise auf das Vorliegen von Nullallelen. Der 

Inzuchtkoeffizient war mit 0,18 sehr gering, was sowohl auf eine erfolgreiche Vermeidung 

von Inzucht als auch auf den Import von Tiefgefriersperma und -embryonen aus Südafrika 

zurückzuführen ist. Die mit Hilfe der 13 Mikrosatelliten erzielbare 

Ausschlusswahrscheinlichkeit betrug 99,99%. Bei Nicht-Berückschtigung von drei der loci 

(CSRD247, McM527 und BM1818) verringerte sie sich nur unmassgeblich. Es gelang, die 

vermeintliche Elternschaft von zwei der 13 ET-Lämmer aufgrund der Nichtübereinstimmung 

an mindestens vier Loci auszuschließen. Der Stammbaumfehler betrug somit in diesem Fall 

15.4 %. 
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