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Abstract

This paper presents an H_ controller synthesis method for discrete time fuzzy dynamic systems based on a piecewise smooth Lyapunov

function. The basic idea of the proposed approach is to construct controllers for the fuzzy dynamic systems in such a way that a piecewise

smooth Lyapunov function can be used to establish the global stability with #H_ performance of the resulting closed loop fuzzy control
systems. It is shown that the control laws can be obtained by solving a set of Bilinear Matrix Inequalities (BMIs). An example is given to

illustrate the application of the proposed method.
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1. Introduction

Fuzzy systems have been used to represent various nonlinear
systems and fuzzy logical control (FLC) has proved to be a
successful control approach for certain complex nonlinear
systems, see [1]-[8] for example. Despite the increasing
number of industrial applications of fuzzy control, the
development of systematic methods for analysis and design of
fuzzy control systems is still lagging behind.

Recently, there have appeared a number of stability analysis
and controller design results in fuzzy control literature [9]-[17],
where the Takagi-Sugeno's fuzzy models are used. The stability
of the overall fuzzy system is determined by checking a
Lyapunov equation or a Linear Matrix Inequality (LMI). It is
required that a common positive definite matrix P can be found
to satisfy the Lyapunov equation or the LMI for all the local
models. However this is a difficult problem to solve since such
a matrix might not exist in many cases, especially for highly
nonlinear complex systems. The controller designs are also
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based on a common positive definite matrix P. Most recently, a

stability result of fuzzy systems using a piecewise quadratic

Lyapunov function has been reported [18]. It is also
demonstrated in the paper that the piecewise Lyapunov
function is a much richer class of Lyapunov function
candidates than the common Lyapunov function candidates and
thus it is able to deal with a larger class of fuzzy dynamic
systems. In fact, the common Lyapunov function is a special
case of the more general piecewise Lyapunov function.

During the last few years, we have proposed a number of
new methods for the systematic analysis and design of fuzzy
logic controllers based on a so-called fuzzy dynamic model
which is similar to the Takagi-Sugeno’s model [19]-[22]. The
basic idea of these methods is to design a feedback controller
for each local model and to construct a global controller from
the local controllers in such a way that global stability of the
closed loop fuzzy control system is guaranteed. However, for
the methods based on the piecewise Lyapunov function, certain
restrictive boundary conditions have to be imposed.

Motivated from the results of piecewise continuous
Lyapunov functions in [18], we have developed some stability
analysis methods for fuzzy dynamic systems based on
piecewise Lyapunov functions in [23]-[26] recently. The work
presented in this paper is an extension of the preliminary results
[22]-[26]. In this paper we will propose a new constructive
controller synthesis method for the fuzzy dynamic systems
based on a new stability theorem. It should be noted that with
this kind of piecewise Lyapunov function, the restrictive
boundary condition existing in our previous controller design
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can be removed and global stability of the resulting closed loop
system can be easily established. Under the proposed piecewise
Lyapunov function based approach, the conservatism arising
from common Lyapunov function based approach for
stabilization of fuzzy system can be reduced. Moreover, the
design procedure is to solve a set of BMIs.

The rest of the paper is organized as follows. Section 2
introduces the discrete time fuzzy dynamic model and the
stability theorem. Section 3 presents an H_ controller synthesis
method for fuzzy dynamic systems. A numerical example is
shown in section 4. Finally, conclusions are given in section 5.

2. Fuzzy dynamic model and its piecewise
quadratic stability

The following fuzzy dynamic model proposed in [14]-[26]
can be used to represent a complex discrete-time system with
both fuzzy inference rules and local analytic linear models as

follows.
R:IF x, is F/, AND .. x, is F'
THEN x(t + I)= 4,x(t)+ Bu(t)+ Dp(t) + a, 2.1)
) =Hx()+Gu(@t) [=12,...m,

where R'" denotes the /-th fuzzy inference rule, m the number
of inference rules, | (j=1.2,...,n) the fuzzy sets, x(1)e R" the
state variables, u(t) e®®” the control outputs, z(s)e®R" the
controlled outputs, v()eR? the disturbances which belong to
L[0,0), (A,,B,,D,,H,,G,,a) the I-th local model of the fuzzy
system (2.1), and a, are the offset terms.

Let 4,(x(#)) be the normalized membership function of the
inferred fuzzy set ' where F =37 F' and

3=l 2.2)

=]

By using a centre-average defuzzifier, product inference and
singleton fuzzifier, the dynamic fuzzy model (2.1) can be
expressed by the following global model

Xt +1) = Ay x(0) + B(ou(t) + Doy +a(w)  (2.3)
2(t) = H()x(D)+ Gou()
where
A =37 mA, B=37 uB ., D=y " uD,
a(p)=3" wa, , Hu=3 " uwH, , Guy=3" uG, .

The objective of this section is to design a suitable controlier
for the system (2.3) with a guaranteed performance in the
H, sense, that is, given a prescribed level of disturbance
attenuation y >0, find a controller such that the induced /-
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norm of the operator from v(t) to the controlled output z(t) is
less than y under zero initial conditions,

2], <7l

for all nonzero w(r)e/,. In this case, the closed loop control
system is said to be globally stable with disturbance attenuation

Y.

Remark 2.1: 1t is noted that the system models defined in (2.1)
or (2.3) are in fact affine systems instead of linecar systems.
They include an additional offset term. These models have
much improved function approximation capabilities [27].

Define m regions in the state space as follows,

5,=5,08S,, I=12,...m (2.4)

where

S ={xt g (0>, (x), i=12.,m i=l}, 2.5)

and its boundary
A8, ={x| w(x)=p(x) , i=12..m izl}. (2.6)

And also define L as the set of region indexes, I, cL as
the set of indexes for regions that contain the origin and
L c L the set of indexes for the regions that do not contain the
origin. Then the global model of the fuzzy dynamic system can
also be expressed in each region by

X(1+1) = (A + AA4,()x(21) +(B, + AB.(1)u(t)

2.7)
HDy+AD, (1) + a, + Aa, (1)

()= (H, + AH ,()x(t) + (G, + 4G, (p))u(t)

for x(t)e S, , where

A4, ()= Z:u:l'ulAA” ’ AB,(/J) = Zi:l,ia]yiAB” ’

AD,(u1) = ZZLR/'“"AD” , da ()= ZZ],f;[”anli s

AH(0 =30 mAHy s AG (W =3, 1A, .

AA;=A,—-A,, AB,=B,~B,, AD,=D,-D,,

da;,=a,—a,, AH,=H.-H, , AG,=G.-G,.

It should be noted that many membership functions could be
equal to zero, that is, many fuzzy rules could be inactive when
the /-th subsystem plays a dominant role, that is, x()eS,.

m

For convenience, we introduce the following notation,

Z~A’ a, E—B‘ l_)—D’ E_x
L I/ O VIR A I R N

_ = [44, 4 - [4B
H,=[H, 0], AA,:[ . (ﬂ, AB,:[O'}, (2.8)

— [ap, -
AD,:{ o } 4H,=[4H, 0].
where it is assumed that a,=0 and d4a,=0 for all /ey, .

Then using this notation, the system model (2.7) can be
expressed as
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X(t+1) = (A, + A4, () X(6) + (B, + AB,(1))u(t) +(D, + AD, (1)) (z) ,
x(t)eS§,

2(t)=(H,+ AH,(10)%(1) + (G, + AG,(1))u(?) 2.9

For purpose of stability analysis and subsequent use, we
introduce the following upper bounds for the uncertainty term
of the fuzzy system (2.7) or (2.9),

[dA(1) Aa(W]'[AA () da(u]<[E, E,T1E, E,l
[4B,(1) (4B, ()] < E,E,, ,

(4D, ([ 4D, (1)) <E,E,, (2.10a)
[4H () [4H (1)) < E" Eyy , [4G ()] [4G,(1)] < E E; .

Then
(4A, ()] [44, (W) < ELE; =|E,, E,JE, E,],
(4B, ()] (4B, < EZE = ELE,, , (2.10b)

[4D,()[4D, ()] < E5E}y = {E‘Df’f’ (ﬂ ,

[4H, G0 [4H,)| < EG E, {E'"OE“' ﬂ :

It is noted that there are many ways to obtain these bounds,
the interested readers can refer to [19-26] for details.

With such a state space partition, we proposed a number of
controller design methods based on a piecewise Lyapunov
function. The key idea is to design a local controller for each
region based on the subsystem (2.7), and then to use the
piecewise Lyapunov function to establish the global stability of
the resulting closed loop fuzzy control system. Due to the
discontinuity of the function across the boundaries of the region,
certain boundary conditions are developed to ensure the
stability of the system [19-22]. However, most of these
boundary conditions are very restrictive in the sense that they
are not checkable a priori or very hard to check. Recently, the
authors in [18] independently introduced a different kind of
piecewise Lyapunov functions and developed a stability result
based on this piecewise Lyapunov function for continuous time
systems. The key idea is to make the piecewise Lyapunov
function continuous across the region boundaries and thus
avoid the boundary conditions we encountered in our design.

As in [18], to reduce the conservatism of the stability result

the S-procedure <can be used. Construct matrices,
E =[E, ¢l /el with ¢ =0 for /ei, suchthat

—lx —

E,[l}zo, xeS, lel. 2.11)

It should be noted that the above vector inequality means
that each entry of the vector is nonnegative.

Remark 2.2: A systematic procedure for constructing these
matrices E,,/eL for a given fuzzy dynamic system can be
found in [I8]. The procedure is directly based on the
information in the fuzzy rule base. The interested readers
please refer to [18] for details.

Then we are ready present the following stability result [24].

Theorem 2.1: Consider the fuzzy dynamic system (2.1) with
u=0 and v=0. If there exist a set of positive constants
£,1=12,,m, a set of symmetric matrices P.leL,, P,lel,,
symmetric matrices U,,W, and @,/ jeQ, such that U, W,
and @, have nonnegative entries, and the following LMls are

satisfied,
0<P-E/UE,, Icl, (2.12)
AITPIAI _Pl +lELI:lEL»l +E1T"V1Et AITI,I
0> K 1 , lel, (2.13)
P4, ~(—I-F)
L & J
0<P-ETUE,, lel, (2.14)
ATPA-F+—ELE,+EWE, AR
0> ! . , lel (2.15)
P4, ~«(—1-F)
L & ]
AITPjAl_PI +iEZ1EL«1 +E11‘QyEr AITPj
0> ‘i , LjeQnl,
1
P4, ~(—1-P)
L 81
(2.16)
SR o .
[ P.A - ,+8—ELT—|EH+E,TQEE, /P,
0> ! ) , LjeQnl,
P.A, i
L ]
2.17)
APA-F4—ELE;+E/QE AP
0> ! . ,
PA ~(—I-P
] % (61 ,)_
lel,,jel,,l,jeQ (2.18)
APA-R+—EE+EIQE AP
0> ! | .
P4, ~(—I-P)
L & i
lel,,jel,,ljeQ (2.19)

where we define P.=[1,, 0,1Pll,, 0,1 for jel, in
(2.18), and B =1, 0,TP(,, 0,1 for reL, in (2.19),
and the set Q represents all possible transitions from one

xn m<n

region to another, that is, Q:={/j|x()eS, xz+DeS,,j=1},
then the fuzzy dynamic system is globally exponentially stable,
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that is, x(2) tends to zero exponentially for every continuous
piecewise trajectory in the state space.

Proof: See [24] for details. A%

The above conditions are linear matrix inequalities in the
variables Q,,U,, and W,. A solution to those inequalities
ensures V(x) defined in (2.20) to be a Lyapunov function for
the fuzzy dynamic system. The LMI in (2.12) or (2.14) for each
region guarantees that the function is positive and the LMI in
(2.13) or (2.15) for each region guarantees that the function
decreases along all system trajectories. The LMIs in (2.16)-
(2.19) guarantee that the function decreases when the state of
the system transits from one region to another. In addition,
E[UE,, EWE, E/UE,, E/WE, EQE, and EQ,E,
in those LMIs are terms of the S-procedure used to reduce the
conservatism of the Lyapunov function.

Remark 2.3: The stability checking of the fuzzy dynamic
system in eqn. (2.12)-(2.19) can be easily facilitated by a
commercially available software package Matlab LMI toolbox
[28].

Remark 2.4: The set Q can be determined by the reachability
analysis [29]. If it is possible for the transitions happen between
all regions, then Q=LxL, which is defined as a set of
{LjlLjel, j=1}.

3. H,_ Controller synthesis

In this section, we will address the controller synthesis
problem for the discrete time fuzzy dynamic systems
introduced in the section 2. The proposed controller synthesis
approach is based on the local subsystem defined in each
region. However, the interactions from other subsystems must
be accounted for in order to guarantee the stability of the global
system.

Consider the fuzzy system in each region

x(t + )= (A, + AA,(10)X(£) +( B, + AB,(1))ue(t) G.1)
+(D, + AD,(L)v(t) +a, + da, (1) ’
z(t)=(H, + AH,(1))x(1) + (G, + 4G, (1))u(t)
For x(e §, , or in the more compact form,
X(t + 1) = (A, + 44,(10)X(6) + (B, + 4B, (u))u(t) + (D, + AD,(1))v(2) ,
x(yes, (3.2)
2(t) = (H, + AH,(u)X(1) + (G, + 4G, (1))u()

With the following piecewise controller,
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Kx() x(eS, lel,

__ _ . (3.3)
KXx(t) x(t)eS, lel

u(ty=K(x)x= {

the global closed loop system can be described by the
following equation,

X(t+1) = A, () %)+ D (o) (34)
2(t)=H ()%(0)

where  A4,(u)=A(u)+ Bu)K(x), D(p)=D(),
H, ()= H(u)+ GK(x) .

The equ.(3.4) can also be expressed in each local region as
follows,

X(t+1) = A, ()XW + Dy (uyp()) XY €S, (3.5)
(0= H ,(1)X(1)
where A, (u)= A, +4A4,(11)+ (B, + AB,(u)K, ,
D,=D,+4D,(u), H, (u)=H,+AH (1) +(G,+ 4G (1)K, .
For Ie1,,(3.5) becomes
x(t+1)= A,(0)x(0) + Dy(up(t) XY €S, (3.6)
z(1) = H (1) x(1)

where A, (u)= A, + AA(1)+ (B, + AB, (1)K, , D, =D+ AD, (1) ,
Hcl()u): H, +AH1(/1)+(GI +AG{(/1))K1 .

Then we are ready to present the following lemma.

Lemma 3.1: Given a constant y >0, the fuzzy system (3.1) or
(3.5) are globally stable with disturbance attenuation y, if
there exist a set of symmetric matrices P,lely,P,lel,,
symmetric matrices U, W, and @,,/,jeQnL,, such that
U,W, and @, have nonnegative entries, and the following
inequalities are s'alisﬁed,

0<P-EU,E, 3.7
0> A PA, - P+ E/WE +APD,(y’I-D,"PD,)" (.8)
DyPA,+HyH,
with Y I-D,/PD,>0,for Iel,,
0<P-E'UE, (3.9)
0> —51_’1/11 - ;;l + EITVVIEI + ZZ;I-;IECI(}’ZI - 5:1”_)154 S (3.10)
55}_)1201 +FI:;FICI .
with y*I-D,"BD, >0, for /eL,,
0> A P A, — P, +E[Q,E, + ALP,D,(y'1- D,/ P,D, )" 31
- DPA,+H'H T
CRl ] g
with »’I-D,SPD, >0, for 1,jeQnL,,
0>ALPA,~P+E QE,+APD,(y*I-D,"PD, )" 5.12)
DIPA,+H'H T
ol ® j<% e |
with »’1-D,PD,>0,for IjeQnlL,
0>A,PA,—P+EQE,+APD,y'I-D,/PD,)" 3.13)
D'PA, +H'H T
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with y*I-D,'PD,>0,for ,jeQ, Iel,,jel,,and

o Tj

. 3.14)

with »*1-D,"PD,>0, for 1,jeQ, ieL,,jecl,, where we
define P =(I,, 0,1Pll, 0,1 for jes in (3.13), and
p=[1, 0.,PIL, 0, for ieL, in(3.14).

Proof: 1t is easily seen that equ.(3.8) and (3.10)-(3.14) imply
the following inequalities respectively,

nxn

AYPA,—P+EIW,E <0, lcL,
"PA,-P+EWE, <0, Icl,
ALPA, - P+E/QE <0, LjeQnl,,
TPA,~P+EQE <0, I,jeQnl,,
WPA,-P+E/QE <0, LjeQ, leL,, jel,
AP A, ~PB+E[QE <0, ljeQ, lel,, jel,
and thus it follows from Theorem 2.1 and its proof that the

closed loop system is globally stable.

Now we show the disturbance attenuation performance, that
is v(#) =0 . Consider the Lyapunov function,

x'Px, xeS, lel,
V=1 [x] =[x = (3.15)
) P e xeS,lel
or in a more compact form,
Vix)=X"PX, x5, l<L. (3.16)

Then its difference along the solution of the system (3.1) or
(3.5) can be described as follows,
AV(Y=V(i+D)-V(@)
=X(t+ 1) PX(e+1) - X(t) BX(1)
=X(t) (A} P, 4, - PYX(t)+v(t)' D} P, A, %(0)+ (1) 43 P,D,v(1)
+v(1) DP,Dv(t)
<X()'[-E/Q,E,~ A;P,D,(y"1 -D,"P,D,Y' D} P,A, - H H I%(t)
+v(0)" DLP,AT(0)+X(t) ALP,D,v(t)+v(tY DLP,D,v(1)
<X(0)'[-ALP,D,(y*I-D,"P,D,)" D}P,A, - HH ,Ix(1)
+v(t) DL P,A,X(6) +X(t) ALP,D,v(t)+v(t)" D}P,D,v(r)

=—z(1)" 2() + Y@ v(1) = w(t)” M()w(1) (3.17)

where  M(t)=y*I1-DyPD,, w(t)=v(t)-M ()" D;PA,X ., and
Jj=1 when the state stays in the region S, and ,=/ when

the state transits from the region §, to §,. Then it follows

from (3.17) that
AV () —z(t) 2+ ¥ v(@) v(0) (3.18)

which implies that

V(x(0)) =V (x(0) < —i 20 z(t) + i yv) vy, (3.19)
t=0

=0

that is, with x(0)=0,
lzl<7lvl;»

and thus the proof is completed. Vv
Then based on the Lemma 3.1, we have the following result.

Theorem 3.1: Given a constant y >0, the system (3.1) or (3.5)
is globally stable with disturbance attenuation y, if there exist
a set of positive constants g,/=1,2,---,m, a set of positive
definite symmetric matrices P,/ L, P,lel, , symmetric
matrices W, and Q,,/,jeQ, such that W, and @, have

nonnegative entries, and the following BMIs are satisfied,

P, P,
<! » . s |s lel,  (3.20)
P el +2y"(D,D] + E,E)]
Q  (4+BKYR 0 0 0 KE,KG KE|
P(4+BK) -B  BD, BE, B 0 0 0
0 DB —4#I 0 0 0 0 0
T
0¥ = 0 EP 0 -y¥r 06 0 0 0
0 P 0 0 -y1 6 0 0
EK, ] 0 6 0 41 0 0
GK, 0 0 0 0 0 -4I 0
E.K, 0 o 0o o0 0 o0 -4I|
lel, (3.21)
P P
0<| 2 = co ]t (322)
P (el +2y (DD + EgER)]
|8  (A+BKYPR 0 0 0 KE,KG KEL
PA-+BK) -B  ERD RE; PR o 0
0 D'P -¥y1 06 0 0 0 0
0% = 0 ETP 0 -Yyr 0 6 0 0
0 P 0 0 -y1 0 0 0
EK, 0 0 0 0 -1 0 @
GK, 0 6 0 0 0 -YI 0
EK, 0 o 0 0 0 0 -4I|
lel, (3.23)
0 5 B LjeQnlL, (3.24)
< . s Ljeldnm .
P [l +2y7 (DD} + EyER |* Y "
Q  (A+BKYP 0 0 0 K'E,KG KE]
}3('41 + BIK[) _B P/Dl }}Em l:; 0 0 0
0 DP -4y1 0 0 0 0 0
T 2
05, - 0 ELP 0 ~4y¥1r 06 0 0 0
0 P 0 0 -41 0 0 0
E,K, 0 0 0 0 %I 0 0
GK, 0 o6 0 0 0 -YI o0
| EGK, 0 o 0 o0 o0 0 -yI
LjeQn L, (3.25)
P, P,
0<| = =, rot|s BJEQNL (3.26)
P [l +2y"(D,D] + EZE )]
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2, (4+BKYP 0 0 0 KE K'GKE,
FG+BR) B b BE, B 0 0 0
0 DP -y¥1r 9 0 o0 o0 0
_ 0 E’P 0 YY1 0 0o o0 0
0>¥, = ol w
0 P 0o 0 -4I 0 o0 0
E;K, 0 0 0 0 -YI 0 0
GK 0 0 0 0 0 -YI 0
| E.K, 0 o0 0 0 0 -4I|
L,jeQnI, (3.27)
P, P,
P [ed+2y*(D,D] +EEL)’
LjeQ, lel, jel, (3.28)

[ & @+BEYR o o o KE KG KE,
F(4+BK) B PD PE, B 0 0 0
0 DP -p/r 0 0 6 0 0
SR BN (P A
_ J &
EK, 0 6 0 0 -4 0 0
GK, 0 6 0 0 -4I 0
| EK, 0 0 0 0 0 0 -4I|
Lje&, lel,, jel, 3.29)
<5 b
P [ed+2y*(DD] +EZED)" |
- LjeQ, jel, lel, (3.30)
|8, A+BKYP 0 0 0 KE.KGKE,
P(4,+BK) -P PD, PE; P 0 0 0
0 DIP -pyr 0 6 0 o0 @
059, = 0 ELP. 0 -4 0 0 0 0
0 P 0 0 -yI1 0 6 0
EK, 0 0 0 0 %1 0 0
GEK, 0 0 0.0 0 —4I 0
EcK, 0 0 0 0 0 0 -4I|
LjeQ, jel,, lel, (3.31)

where

2
9 =-P +'6_ELT1E1,| +4(H[H, +E111Eu1)+EzT"V:Et

!

Q2,=-P +2EE +4(H'H, +ECE_)+EIWE,,
&

(X 7] i

2 )
Q,=-P, +€—E[|E“ +4H{H,+ELE, )+ E/QE,,

]

_ — 2 — = - =
Q,=-P, +S—E[-IE1-I +4(H/H +ELE; )+ E/Q,E,,
f’
and we define 7,=01,, 0,7Pl,, 0, for jei, in
(3.28) and (3.29), and P =[1,, O,1Pl, 0,] for lei,
in (3.30) and (3.31).

nxn nxn

Proof: According to Lemma 3.1, we know that the system (3.1)
or (3.5) is globally stable with disturbance attenuation y, if the
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conditions (3.7)-(3.14) are satisfied. Because P and P are
positive definite symmetric matrices, the conditions (3.7) and
(3.9) are satisfied naturally. We will show that (3.20) and
(3.21) imply (3.8).

We will first show that the inequality (3.20) implies
#I-D,;PD,>0,lcL,. It follows from (3.20) using Schur
Complement Lemma A.2 that

P, - Pled +2y(D,D] + E E )P, >0,

Using Lemma A.4, the left hand side of the above inequality
implies that
P.—Pcd +2y*(D,D] + E,EL)P,
=P, - Pled +y7(2D,D] +2E,E;)|P,
<P - Pled +y?*(D,D] +ELEp + DEy, + E,DDIP,
<P —Pled +y (D, D] + ADAD] + DAD] + AD,D] )P (3.32)
=P, = Pled +y7 (D, +AD,)(D; + AD) )P,
=P -Plgl+y*D,D,)P,
=P~y PD,D}F -¢ PP,

which implies that
P =y " PD,DIP - PP >0.

Multiplying D and D, from the left hand side and the
right hand side of the above inequality respectively leads to,

DiPD, - yAZDZ;})chIDL'T;I)IDcI _EIDZ;BBD 20.

o =

Since P, >0, there exists a small enough constant &> 0
such that

DiFD,—y DDy D PD, ~ 56D PD, >0,

o =
that is,
(I1-y?DiPD,

cl

,~6e 1 )DLRD, >0,

o =
which implies that
(I-y*DIPD,~661)20.

Thus the desired result follows directly from the above
inequality.

We then show that the inequality (3.21) implies the
inequality (3.8). It is noted that via the Matrix Inversion
Lemma A.3 the right hand side of the inequality (3.8) can be
expressed as,

RH:= A RA,~ P+ E[WE, + A;PD,(y'I - D,"PD,)"
D};l)lArl + HZ;Hcl
AP -y'D,D, ) A, - P+ E/W,E, + H[H,,
[A, + 44, + (B, + AB)K, Y [P/ —y* (D, + AD,Y D, + A4D))' 1"
[A, + 44, + (B, + AB)K,]~ P, + E]W,E, +[H, + 4H,
+G, + AG,)K,]T[H, +A4H, +(G, + 4G,)K,]

i

i

Let @=[P"'-2y*(D,D] +ELEL)" , which
definite via (3.20). Using Lemma A.1, we have

is positive
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RH< (A, +BK)Y O, +BK,)+ (A +BK,) OUA, + AB,K,)
+(AA, + ABK,) O(A4, + BK,))+(4A4,+ AB,K,) O(4A, + AB,K))
~P+E/W,E, +2(H,+ 4H,) (H, + AH,) + 2[(G, + AG)K,T"
[(G, + 4G,)K,]

IA

A +BK,) O, +BK)+ (4 + B,K,)T@(il -0)y'e
&

“,+ B,K,)+i(AA, + AB,KY (44, + ABK))- P, + E]W,E,
€
+4HTH,+ AH] AH, )+ 4K] (G] G, + AGT AG)K,

< (A4, + BK,)'O(4, + BK,) + (4, + BK,Y O(<-1 -0)'0(4, + BK)
&

1

+l(AA, +A4B,K,)Y (44, + AB,K,)~ P, + E[W,E,
€
+4(HH,+ AHT AH, )+ 4K] (G] G, + AGT AG)K,

< (A4, +BK) [0 -l (A4 + B,K,)+3(AA,T AA, +
£

{
K/AB'ABK)-P,+ E]W,E +4(HH + AH]AH )
+4K] (G]G, + AG] AG)K,

o _ 2 - "
<(4,+ B,K,)7 [e" —&l] ](A1 + BIKI)+g_(E54EIA +KITEIIKEIBKI)_ P

1

+E/W,E, +4H]H,+ ELE,)+4K] (GIG, + EGE,,)K,

< (A, +BK) [0 511 (4, +BK) +1E,§EM'~ P +ETW,E,
&,

!

. . 2 . "
+4(H H,+ELE,)+ K/ (—ELE, +4G] G, +4ELE)K,
&

3.33)
On the other hand, the following inequality

0>(A4,+ BIKI)T[@_] _8/1]71('41 +B,K,) +‘2-ELT4E1A -P+ EIT’/VIEI
&

+4H H, +ELE )+ K] (;2— ELE, +4G G, +4E4E K,
fl

(3.34)
implies (3.8). Using Schur complement formulas, it is easily
shown that the inequality (3.34) is in turn equivalent to the
bilinear matrix inequality (3.21). Thus, we have shown that the
inequality (3.21) implies (3.8). Following the similar procedure,
we can also show that the inequality (3.22) and (3.23) implies
y“1-D,"PD,>0 and the inequality (3.10). Similarly, we can
also show that other inequalities (3.24)-(3.31) imply the other
conditions in Lemma 3.1. Therefore, it can be concluded from
the Lemma 3.1 that the closed loop control system is globally
stable with disturbance attenuation y and thus the proof is
completed. Vv

It is noted that the matrix inequalities in (3.20)-(3.31) are the
BMIs. They can be solved by V-K iteration method [30]. The
details of the solution procedure can be summarized in the
following algorithm.

Algorithm 1:
V-Step. Given a fixed controller gain K,.lc L, K, lel,
solve the following optimization problem

mi )
E-'_’:-WIAEQ{/ Aoty

s.£.(3.20),(3.22), (3.24), (3.26), (3.28), (3.30)
W, -40<0, ¥,-241<0, ¥,-A41<0,and ¥;,-11<0.

with P, and P, defined in (3.15) for a set of positive definite
matrices P,lely, P,lel, .

K-Step. Using the matrices P, and P obtained in Step V,
solve the following optimization problem

min 4,4,

KK W05

st W-AI<0 , ¥ -A4I<0 , ¥,-4I<0 , and

¥, -2,1<0,

for a set of matrices K,,/e L, l?,,le L.
The above iteration stops when 2, <0,/e LAy <0LjeQ.

In the case of a,=0 forall /el and Q=LxL, we have
the following corollary.

Corollary 3.1: Given a constant y >0, the system (3.1) is
globally stable with disturbance attenuation y, if there exist a
set of positive constants ¢,/=12,-,m, a set of positive
definite symmetric matrices P,/el , symmetric matrices
W,and @, such that W, and @, have nonnegative entries,
and the following BMls are satisfied,

0{1’, F

P, [gI+2y(D,Df +E”’E‘2)]_li| , lel (3.35)

[ @ 4+BKYR 0 0 0 KE,KG KE]|
F (A +BK) -F, ED, RE, H 0 ¢ 0
0 DP -y¥/r 0 0 0 0 0
T -
0> = 0 ELP 0 Y1 6 0 o0 0
0 P 0 0 -1 0 0 0
E.K, 0 0 0 0 %I 0 0
GK, 0 0 0 0 0 -4I 0
E.K, 0 6 0 o0 0 0 -4I]
lel (3.36)
P, P,
0<| ’ B ro | LjeQAL 3.37
P, [sd+27(D,D] +E,,,E,§,)]“:| I (3:37)

o  A4+BKYR 0 0 0 KE,KG KE,
P(A+BK) P ED BE, B 0 0 0
0 DP -4 0 0 0 0 0
T _ 2
0>¥, = 0 EyP, 0 —prl 0 000
0 1: 0 /] _%’I 0 0 0
E,K, 0.0 00 KL 00
GK, 0 0 0 0 0 -y41 0
L E,(;K, 0 0 ¢ 0 0 0 4%1 N
LjeQnlL (3.38)
where
2 .
9, :_Pl +-3—Et{1Em +4(H1TH1 +E1;1Em)+EIT"V1El ’
t
o 2

i

=P+ E—ELE,A +4H[H, +ELE,)+E/Q,E, .
1
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Then the following simplified algorithm can be implemented.

Algorithm 2:
V-Step. Given a fixed controller gain K,,/e L, solve the
following optimization problem

min 4,4,

RWL0y

5.4.(3.35), (3.37) ¥,-41<0,and ¥, —A,1<0.

with P, defined in (3.15) for a set of positive definite matrices
P,iel .

K-Step. Using the matrices P, obtained in V-Step, solve the
following optimization problem

min 4, 4,

KiH 0y

st ¥,-Al<0,and ¥,-2,1<0,

for a set of matrices K, /eL.
The above iteration stops when 4 <0,/¢ L,A;<0,1,jeQ.

4. An example

Consider the modified Henon mapping model with external
disturbance

X (t+1)==x7 (£)+03x,(£) +1.4+u(r)+0.01sin (0.0271)

% (r+1)=x (1) @D

If we choose u(r)=0, the system dynamic appears in
chaotic manner as shown in Fig. 1 with the initial condition
x(0)=[0.1 o .

One of the most frequent objectives is to stabilize the chaotic
system at one of its fixed points embedded in the attractor
region. Obviously, we can get the two fixed points
x,=[-1.5839 -15839] and x,=[0.8839 08839] of the
autonomous system of (4.1) by

xp(1+1)=x, =—x} +03x,, +1.4
Xp (t+1)=xf2 =X

We choose the point x, =[x, x,J =[0.8839 0.8839] as
the control goal. Thus the problem can be transformed into
the H_ control problem at zero of the following error system:

e (t+1)==¢] (1)~ 2x,e +03e,(t)+u(t)+0.01sin(0.027¢)
e, t+l)=e‘ (t) 4.2)
z(1)=0.1¢, (1) +0.1u(r)

where ¢ (t)=x()-x, and ¢ (t)=x,(¢)-x,, are the errors
to the fixed point.

The error system can be represented exactly by the following
T-S fuzzy model when e (r)e{-d~2x,,d~2x,] where d>0
is a constant:

R':IF q(t) is A

134

THEN e(t+1)= Ae(t)+ Bu(t)+ D)
2(1)=Hpe, (1)+Gu(r)
R*: IF eft) is A
THEN e(t+1)= Ae(t)+ Bu(t)+ D,y(r)

z2(t)=Hye (1)+G,u(t)

where the fuzzy sets are chosen as

L e AT (R

d=2

and the other parameters are as follows:

-d 0.3 d 03 1
A= ,A, = , B=B,=
i 0 ° i 0 S0

0.01

D;IDF[ o

} » v(0)=sin(0.02m1) .

It is noted that the regions are

§1 :{e‘ (t)'—a'—2x/.l <e £—2xﬂ} s §z :{el(t)\‘fol <e, Sd—2x,l} .

Then, based on the technique developed in [18], the
characterizing matrices E’s can be obtained as follows,

0 0 0 0
E = » E,= .
-0.5 —-0.8839 0.5 0.8839

Now we set the parameters of controlled output as

H =H,=[01 0], G =G,=01,

and we consider the following uncertainty bounds:

-04 0 0
E, =E, :!: 0 Oj,’ EIB:EZB:E(D:EZDZ[O:,I

E,=E,=[0 0] E;=E,;=0.

We choose the initial controller gains by assigning closed
loop poles of each subsystem at (0.1, 0.2), that is,

K =[23 -032] forS, and K,=[-17 -032] forS,.

With the disturbance attenuation »=0.8 and g =¢, =1, the
following solutions have been obtained via the Algorithm 2
after two iterations.

_{ 0.8628 ~0.0882}

2

1

~-0.0741 0.1508

[ 0.8526
—-0.0882 0.1538 -

—0.0741}

K, =[21821 -0.2988], K,=[-1.8009 -0.2985], 4, =-0.0084

Simulation resuits of stabilization to the desired fix point
with initial conditions x(0) =[0.1, 0]" are shown in Fig.2 where
the control input is added after ¢>100 seconds.
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5. Conclusions

In this paper, a new method is developed to design robust
H, controller for discrete time fuzzy dynamic systems based

on a piecewise Lyapunov function. A constructive controller
design algorithm is also given based on BMI techniques.

Appendix:
Lemma A.1: Let 4 and F be matrices of appropriate dimensions,
and P be a symmetric matrix satisfying

iI—P>O, >0,
£

then
A"PE+ E"PA+E"PE < ATP(lI - P)'PA +lE’E .
& &

Lemma A.2 (Schur Complements): Given constant matrices
2.2, , where 0<Q =0 and 0<2,=9] , then
2+2/9'Q <0 ifandonly if
7 -2, Q2
L 2 0 or 27 <0.
93 _'Qz ‘QB gl

Lemma A3 (Matrix Inversion Lemma). For any real
nonsingular matrices Z,, X, and real matrices X,, X, with
appropriate dimensions, it follows that,

(S + 5L =5 -5 5[ 5+ 5, 5S, T .z
Lemma A.4: Let X, Y be real constant matrices of compatible
dimensions. Then
XY+Y'X<eX"X +&7'YTY

holds forany £>0.

2 T T r
ﬂq‘ﬁ‘r-.;_‘-_:‘::‘::‘k
e
1t Tl T T 4
Hone,
~ :
=
o Jk i
=
1
-1 " e . T
- o
.c-"'_’".d-#‘
2 ) L .
-2 -1 0 1 2
State x1

Fig. 1 The chaotic behavior of the unforced Henon Map
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15t 4
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2 . . T . :
15 4
1 -
0s I -
o} .
05 4
RS p
A5} :
2 Il L L 1 |
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25 . . . . .
2t J
151 4
1 J
05t -
0 (\/’\J
05+ i
R 1 1 t L 1
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(c) The control input u(t)
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a3 T . T T T

02F B

01r 4

control output
o
—
L

01
0.2 B
0.3} E
0.4 L L L I )
0 50 100 150 200 250 300
time in second

(d) The controlled output z(t)
Fig. 2. The control results of the Henon system.
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