international Journal of Fuzzy Logic and intelligent Systems, vol. 7, no. 2, June 2007 pp. 132-137

Hybrid Fuzzy Neural Networks by Means of Information Granulation
and Genetic Optimization and Its Application to Software Process

Byoung-Jun Park*, Sung-Kwun Ch**, and Young-ll Lee**

* Department of Electrical Electronic and Information Engineering, Wonkwang University, 344-2,
Shinyong-Dong, Iksan, Chon-Buk, 570-749, South Korea
** Department of Electrical Engineering, The University of Suwon, San 2-2, Wau-ri, Bongdam-eup,
Hwaseong-si, Gyeonggi-do, 445-743, South Kore

Abstract

Experimental software daa capturing the essence of software projects (expressed e.g., in terms of their complexity and
development time) have teen a subject of intensive modeling. In this study, we introduce a new category of Hybrid Fuzzy
Neural Networks (gHFNN) and discuss their comprehensive design methodology. The gHFNN architecture results from highly
synergistic lirkages betwecn Fuzzy Neural Networks (FNN) and Polynomial Neural Networks (PNN). We develop a rule-based
model consisting of a number of "if-then" statements whose antecedents are formed in the input space and linked with the
consequents (conclusion perts) formed in the output space. In this framework, FNNs contribute to the formation of the premise
part of the overall network structure of the gHFNN. The consequences of the rules are designed with the aid of genetically
endowed PNNs. The experiments reported in this study deal with well-known software data such as the NASA dataset. In
comparison with the previously discussed approaches, the proposed self-organizing networks are more accurate and yield

significant generalization abilities.

Kev Words
Evolutionary design, NASA software dataset

1. lintroduction

Empirical studies in software engineering employ ex-
perimental data to gain insight into the software development
processes anc assess their quality. Data concerning software
products and software processes are crucial to their better un-
derstanding and, in the s:quel, the development of effective
ways of procucing high juality software. Efficient modeling
techniques should allow far a selection of pertinent variables
and a formation of highly representative datasets. The models
should be able to take advantage of the existing domain
knowledge and augment i: by available numeric data to form
a coherent data-knowledge modeling entity. One of the omni-
present modeling tendencies exploits techniques of
Computational Intelligence (CI) cfi[1,2].

In this study, we develop a hybrid modeling architecture,
called genetically optimized Hybrid Fuzzy Neural Networks
(gHFNN). In a nutshell, gHFNN is composed of two main
substructures driven by genetic optimization, namely a fuzzy
set-based fuzzy neural network (FNN [3]) and a genetic poly-
nomial neural network (gFNN). The role of the FNN is to in-
teract with input data and granulate the corresponding input

Manuscript received Sep. 11, 2006; revised May. 22, 2007.
This work has been sipported by the Korea Research
Foundation Grant funded by the Korean Government
(MOEHRD)(KRF-2006-311-D00194)

132

: Hybrid Furzy Neural Networks(HFNN), Fuzzy neural networks(FNN), Polynomial neural networks(PNN), GAs,

spaces. In the first case (referred to as Scheme 1) we concen-
trate on the use of a simplified fuzzy inference. In the second
case (Scheme II), we take advantage of the linear form of
fuzzy inference. The role of the gPNN is to carry out a non-
linear transformation completed at the level of the fuzzy sets
being formed at the level of FNNs. The gPNN exhibiting a
flexible and versatile topology is constructed on a basis of
Group Method of Data Handling (GMDH [4,5]) and in this
development uses the mechanisms of genetic algorithms (GAs
[6]). The design procedure applied to the construction of each
laver of the PNN deals with its structural optimization involv-
ing the selection of optimal nodes (that is polynomial neurons;
PNs) being equipped with some specific local characteristics
(such as the number of input variables, the order of the poly-
nomial, and a collection of the subsets of input variables). It
also helps address specific parametric
optimization. To assess the performance of the proposed mod-
el, we experiment with NASA dataset [7] widely used in
quantitative software engineering.

aspects of the

2. Conventional Hybrid Fuzzy Neural
Networks (HFNN)

The architectures of conventional HFNNs [8,9] resulted
through a synergy between two general constructs such as
FNN and PNN. Based on the different topologies of PNN, the

Hybrid Fuzzy Neural Networks by Means of Information Granulation and Genetic Optimization and Its Application to Software Process

HFNN distinguishes between two kinds of topologies of the
models, namely basic and modified architectures. For each of
these architectures we introduce their comprehensive taxonomy
distinguishing between several detailed cases. The design of
the HFNN is completed in a stepwise manner through a gen-
eration of a series of successive layers. Each layer consists of
a certain number of nodes (PNs) for which the number of in-
put variables could the same as in the previous layers or may
differ across the network. The structure of the HFNN is se-
lected on a basis of the number of input variables and the or-
der of the polynomial allocated to each layer. We have

Basic: The number of input variables of PDs of PNN is
kept the same in every layer.

Modified: The number of input variables of PDs of
PNN is made variable in each layer.

- Case 1. The polynomial order of PDs of PNN is same in
every layer.

- Case 2. The polynomial order of PDs in the 2nd layer or
higher of PNN has a different or modified type in comparison
with the one of PDs present in the Ist layer.

According to the alternative of two connection points, a
certain combination of fuzzy set based FNN and PNN was
considered for the formation of the HFNN architecture.
Giventhe connection point, if input variables to PNN used on
the consequence part of HFNN are less than three (or four),
the generic type of the HFNN does not generate a highly ver-
satile structure. Bearing this in mind, we identify the follow-
ing types of structures

Generic type of HFNN; Combination of FNN and the
generic PNN

Advanced type of HFNN; Combination of FNN and the
advanced PNN

3. The architecture and design procedure of
the gHFN

In a nutshell, a gHFNN emerges from the genetically opti-
mized multi-layer perceptron architecture based on fuzzy
set-based FNN, GAs and GMDH. In what follows, we start
with a discussion of their functional components and then
move on to the architectural considerations and finally elabo-
rate on the overall design process.

3.1 Fuzzy neural networks and genetic optimizatio

We develop a FNN based on the two types of mechanisms
of fuzzy inference, that is, a simplified one (referred to as
Scheme 1) and a linear fuzzy inference-based FNN (called
Scheme 1I). The output of the FNN is governed by the fol-
lowing expression.

[C T e VUL gl o 9 W
i=l

We can regard each fi(xi) given by (1) as the following
mappings (rules).

Scheme I -Rj If xi is Aij then Cyij=wij (2)

Scheme II -Rj : If xi is Alj then Cyij=wsij + wij xi (3)

Rj is the j-th fuzzy rule while Aij denotes a fuzzy variable
of the premise of the fuzzy rule and is represented by a mem-
bership function pij. wsij and wij stand for the connections
between the corresponding neurons as visualized in Fig. 1.
The mapping from xi to fi(xi) in (2) is determined by fuzzy
inferencing that is followed by a standard defuzzification step
that is

f;(xf):Zj:lﬂij(‘xi)'w]/zj':]#ij(xi) (4)

The learning of FNN is realized by adjusting connections
of the neurons and as such it follows a standard algorithm of
Back-Propagation (BP). For the simplified fuzzy in-
ference-based FNN, the update formula of the corresponding
connection occurring in Scheme 1 reads in the form

B8, =273, =5, 44)+ (O~ (=1))

In the above expression, yp is the p-th target output data,

J» stands for the p-th actual output of the model for this spe-
cific data point, n, is a positive learning rate and a is a mo-
mentum coefficient constrained to the unit interval. The in-
ference result and the learning algorithm in linear fuzzy in-
ference-based FNN use the mechanisms in the same manner
as discussed above. In order to enhance the learning of the
FNN and augment its performance of a FNN, we use GAs to
adjust learning rate, momentum coefficient and the parameters
of the membership functions of the antecedents of the rules.
The FNN structure exhibits two possible connection points.
Its location implies the character of the network (viz. its flexi-
bility and learning capabilities). Note that the first connection
point allows perceiving each linguistic manifestation of the
original variables (viz. these variables are transformed by fuz-
zy sets and normalized). The location of the other connection
point implies that the PNN part of the network does not "see"
the individual fuzzy sets being located in the input space.

3.2 Genetically optimized PNN (gPNN)

Being cognizant of possible drawbacks of gradient-based
optimization techniques, we augment the design process by the
mechanisms of genetic optimization and genetic algorithms, in
particular.

When we construct PNs located at each layer of the con-
ventional PNN [4], their parameters such as the number of in-
put variables, the order of polynomial, and the number of in-
put variables available within a PN are fixed in advance by
the designer. This could have frequently contributed to the dif-
ficulties in the design of the optimal network. To overcome
this apparent drawback, we introduce a new genetic design
approach. As a consequence we will be referring to these net-
works as genetic PNN (gPNN" for brief). The essence of the
genetically supported optimization process of PNN is shown in
Fig. 1. The determination of the optimal values of the parame-
ters available within an individual PN
and parametrically optimized network. As a result, this net-

leads to a structurally

133

International Journal of Fuzzy Logic and Intelligent Systems,

work is more flexible anc exhibits simpler topology in com-
parison to the conventioral PNN discussed in the previous
research.

Configuration of inpui variables for consequence part
& initial informatio t concerning GAs and gPNN
T

Initializa ion of population
Generaion of a PN by a
chromos me in population
I Evaluatic n of PNs(Fitness) |

Elit st strategy &
Select on of PNs(W)

Reproducticn
Roulette-wheel sclection
One-point cros over
Invert mutation

X:ZVX2=qu Xy T Iy
The outputs of the preserved PNs
serve as new inputs to the next
layer

Generatr a layer of gPNN
A layer consists of optimal PNs
selected by GAs

Stop

gPNN
gPNN is org.nized by GMDH and
GAs

CEO

Fig. 1.0verall genetically-driven optimization process of gPNN

3.3 The algorithms and design procedure of gHFNN

Taking into account thz underlying mechanisms of evolu-
tionary and gradient-based optimization, we organize the entire
design in a systematic fashion. In what follows, we summarize
the overall architecture ani the ensuing design steps.

The premise of gHFNN: FNN (Refer to Fig. 1)

[Layer 1] Input layer. The role of this layer is to distribute
the signals to the nodes located at the next layer.

[Layer 2] Computing activation degrees of linguistic labels.
Each node in this layer corresponds to one linguistic label
(small, large, etc.) of the input variables in layer I.

[Layer 3] Normalization of a degree activation (firing) of
the rule.

[Layer 4] Multiplication of a normalized activation degree
of the rule by its corresponding connection. The calculated ac-
tivation degree at the thirc layer is now calibrated through the
values of the connections, namely

Simplified : Cy, = w;,

—7 Iy =
aij _/4] Xl‘-’yzj _/4] chy, { Linear

6)

(Cyy = ws; +w, X,

If we choose Connection point 1 for combining FNN with
gPNN as shown in Fig. 1, aij is regarded as the input variable
of the gPNN.

[Layer 5] Fuzzy inference for the fuzzy rules. If we choose
Connection point 2, fi is the input variable of gPNN.

{Layer 6; Output layer of FNN] Computing output of a
FNN. The output becomes a sum of the individual con-
tributions froin the previous layer as shown in eq. (1).

The consequence of gEFNN: gPNN (Refer to Fig. 2)

134

vol. 7, no. 2, June 2007

[Step 1] Configuration of input variables. If we choose the
first option (Connection point 1), x1=all, x2=al2,---, xn=aij
(n==1xj). For the second option (Connection point 2), we have
xI=fl, x2=f2,---, xn=fm (n=m).

[Step 2]Setting up initial configuration required for the con-
struction of the gPNN. We decide upon the design parameters
of the gPNN structure; ultimately they shape up the opti-
mization environment and required computational effort.

[Step 3] Initialization of population.

[Step 4] Development of PNs structure through genetic
optimization. Refer to PN related polynomial type of Table 1.

Table 1. Different forms of regression polynomial used in the
PN

umber of inputs

Otder o 2 3 4

the polyn@\
1 (Type 1) Bilinear Trilinear Tetralinear
2 (Type 2) Biquadratic-1 | Triquadratic-1 | Tetraquadratic-1
3 (Type 3) Biquadratic-2 | Triquadratic-2 | Tetraquadratic-2

[Step 5] Evaluation of PNs. To evaluate the performance of
PNs (nodes) constructed in each population, we use a certain
objective function (Performance Index; PI) which in turmn is
used to form the corresponding fitness function. Typically the
fitness is taken as an inverse of the objective function so the
decrease in the performance index leads to the increase of the
values of the fitness function. The typical fitness function
comes in the form (note that the absolute differences standing
in this sum contribute to the increased robustness of the re-
sulting model)

E(P[orEP[):lsz_y”‘
n

)
=l Y

(7"

[Step 6] Elitist strategy and selection of PNs with the best
predictive capability. We select the values of W of PNs char-
acterized by the best fitness values.

{Step 7] Reproduction. To move on to the next generation,
we carry out selection, crossover, and mutation operations us-
ing genetic information and the fitness values obtained via
Step 5.

[Step 8] Repetition of Steps 4 through 7. The iterative
process generates the optimal nodes of the given layer of the
¢PNN.

[Step 9] Construction of the corresponding layer.

[Step 10] Verification of the satisfaction of the termination
criterion.

[Step 11] Specification of new input variables to be used in
the next layer of the network. The outputs of the retained no-
des (zli, z2i, ---, zWi) serve as new inputs to the next layer
of the network (x1j, x2j, ---, xWj) (j=i+1, i and j note ith and
jth layer, respectively).

The overall design of the gPNN is completed by repeating
a sequence of steps 4-11 presented above

Hybrid Fuzzy Neural Networks by Means of Information Granulation and Genetic Optimization and Its Application to Software Process

3.4 Model selection

Typically,any model selection procedure is based on seek-
ing a sound compromise between approximation and general-
ization errors. The main performance measure that we use
here is the MMRE (the mean magnitude of relative error) as
expressed by (7). For evaluation of the generalization abilities
of the model, many estimates have been proposed in the
literature. The most popular ones are the holdout estimate and
the k-fold cross-validation estimate [10]. The holdout estimate
is obtained by partitioning the dataset into two mutually ex-
clusive subsets called training and test sets. The error estimate
used on the test set is considered to assess the generalization
abilities of the constructed model. On the other hand, the
k-fold cross-validation estimate is obtained by a sample reuse
technique. The dataset is divided into "k" mutually exclusive
subsets of (almost) equal size, k-1 subsets are used for train-
ing, and the kth is used for prediction. This process is re-
peated "k"times, each time employing a different subset for
assessing the prediction of the model.

When the value of "k"is equal to the size of the overall da-
ta, the resulting technique is referred to as aleave-one-out
cross-validation (LOOCV) estimate. In this study, we employ
the LOOCV estimate of generalization error. There are two es-
sential reasons behind this selection. First, this estimate comes
with useful statistical properties and helps avoid a potential
bias [11]. Second, it seems to be particularly suited for small
size datasets [12].

4. Experimental studies

The experimental studies are concerned with a software ef-
fort dataset coming from NASA [7]. The dataset involves two
independent variables, viz. Developed Lines of Code (DL) and
used Methodology (ME). The output variable, Effort (Y), is
expessed in man-months. For pertinent details refer to [7]. The
comprehensive series of experiments involved wvarious top-
ologies of gHFNNs when considering only a single input
namely the number of the developed lines of code (which
seems to be a sound input variable).

Table 2. Performance index of gHFNN of a
system (with the DL being the input variable)

single-input

two fuzzy inference methods. Here, the FNN uses two mem-
bership functions for input variable and has two fuzzy rules.
In this case, as mentioned previously, the parameters of the
FNN are optimized with the aid of GAs and BP learning.
When considering the simplified fuzzy inference-based FNN,
the minimal value of the performance index, that is PI= 0.164
and EPI=0.180 are obtained. In the case of the linear fuzzy
inference-based FNN, the best results give ise to the values of
the performance index equal to P[=0.145 and EPI=0.166. The
values of the performance index ofthe gHFNN depend on the
connection point based on the individual fuzzy inference
methods. The values of the performance index vis-a-vis the
considered number of layers of the gHFNN and related to the
optimized architectures occurring at each layer of the network
are shown in Table 2. For example, let us investigate the 3rd
layer of the network in the case of the linear fuzzy inference
and connection point 1. The fitness value in layer 3 is max-
imal when nodes 6, 13, and 30 (such as z6, z13, and z30) are
selected as those preferred in the previous layer (viz. the 2nd
layer). Referring to Table 2, the blank entries denoted by (.)
indicate that the node has not been selected by the genetic
optimization. Finally, the optimal network-related input-output
characteristics are illustrated in Fig. 2.

140 T T T T T T —

——6— Original output
Training output

120 -

Generalization
100 +

Effort

40t

Data No.

(a)

140

120 |

100 +

Prentise part Consequence part
Fuzzy No. of S - cy Layer ‘Na of lInput PI EPL
Inference |rules(MFs} inputs {No.
9 1 1 1 1 |0.210 |0.232
Simplified @ 0.164/0.180§01 2 3 3 (4 (7 (3(0.118 [0.202
- 3 2 7114 2 110.105 |0.141
5 i 2 112 3 [0.135 |0.167
Linear 0.145)0.166]01 §2 3 1 153|7 |3 ||0.106 10.153
2 3 3 6 [13[30]2 fleozar 10m
Table 2 summarizes the results of the optimized archi-

Effort

O Original output

tectures according to connection points based on each fuzzy
inference method. We distinguish between two architectures
such as the premise FNN and the overall gHFNN. First, in the
case of the premise FNN, the network comes in the form of

* Traning output
Fitted function

50 60 70 80 90 100

(b)

Fig. 2. Input-output characteristics of the optimal networks; (a)
Original output and model output for training and
generalization (b) Plot of the fit of the gHFNN model to the
data treated as a function of DL.

135

International Journal of Fuzzy Logic and Intelligent Systems, vol. 7, no. 2, June 2007

Now we develop the software effort estimation model based
on two independent variables that is DL and ME. Following
the same design process ¢nd considering both the simplified
and linear fuzzy inference based FNN, the values of the per-
formance index are summerized in Table 3.

Table 3. Perfcrmance index of gHFNN for two input network
(DL, ME); shown are various topologies investigated in the
design process

Premise part Consequence part
F o-of cp No. of Pl | EPI
uz 0. 0O
= rules | P | EPL Layer| Input No. T
Inference inputs
{MPFs})
H 2 1 (4 3 1|0.0908 |0.118
01 2 2 12129 1]/0.0829 [0.0984
4 3 4 15]22125(30|3 (0.0407 |0.0896
Simplified 0.102 [0.114
(2v2) 1 2 12 3 0.0908 |0.118
02 2 2 516 1 0.0829 |0.0985
3 1 25 1 [16.0706 (0.0799
H 3 12 (4 I |0.117 {0.154
01 2 4 13/16]21)30(2 [0.0117 |0.0723
4 3 4 2 |4 |13]17{2 [0.00014]0.00307
Lirear 0.095910.119
2+2) 1 2 1|2 2 |0.0916 [0.133
02 2 2 125 2 ||0.0687 |0.0950
3 3 317 (14 3 ||0.0454 |0.0719

Fig. 3. Optimal topology of gHFNN for 2 system inputs
(Simplified, connection 02)

When considering the simplified fuzzy inference-based FNN
with four fuzzy rules, the best performance (PI= 0.0706 and
EPI=0.0799) is reported when using the connection point 02.
In the case of the linear fuzzy inference-based FNN with four
fuzzy rules, the best resuts (PI=0.00014 and EPI=0.00307)
when the connection point is set up as 01.

The optimal topologies of gHFNN for 3 layers of gPNN
are shown in Fig. 3. In eaca node of Fig. 3, 'PNn' denotes the
nth PN (nodej of the corresponding layer, the number shown
at the lower left side denotes the number of nodes (inputs or
PNs) entering the corresponding node. The number at the low-
er right side indicates the polynomial order used at the corre-
sponding node. The best results come with the performance
index where P1=0.0706 and EP1=0.0799. The characteristics of
the network arz illustrated in Fig. 4 and Fig. 5.

Table 4 contrasts the performance of the genetically devel-
oped network with other fuzzy-neural networks and conven-
tional HFNN already available in the literature. '

136

[Fitied function
(o]

Original output,

/v

A/ gy Y oy

et —

........I..
i

4 Training oyt

150

100

Effort

bt 117

ey 77 100
A,
e

30

Fig. 4. 3-D plot of the output characteristics of the two-input

gHFNN (simplified inference, connection 02)

50
DL

Fig. 5. Contour plot of the output characteristics of the
gHFNN (simplified, connection 02)

Table 4. Performance analysis of selected models used for the
NASA software data

Syst
Model ISEML B | BRI

. No. of rules
inputs

0.1579
0.1450
0.1470
0.0870
DL,ME | 0.0336
DL [0175 | 0185
DL.ME [00493 [0.0565
DL [00877 | 0131
DL,ME | 0.0630 | 0.0736
DL | 0.184 | 0.180
DLME | 0102 | 0.114
DL | 0145] 0166
Proposed DLME | 00959 | 0.119
nodel e DL 0.103 | 014
Simplfed [T 00467 | 00896 | draies/a® Tayer
DL | 00747 | 031 |2rales/3™ layer
DLME {0.0001410.00307 | drules/3™ layer

0.1870
0.1881
0.2474
0.1907
0.0907

3 rules
6 rules
4 rules

DL

Shin and Goel's RBF model(7]
DL ME

7 rules

FS based[8] | Simplified 4rutes/3" laver

2rules/2™ layer
drules/2™ layer
2rules/3" layer
Arules/3™ layer

2 rules

4 rules

2 rules

4 rules
Srales/3" laver

Conventional
HFNN

Simplified
FR based([9]

Linear

Simplified
FNN

Linear

gHFNN

Lirnear

5. Conclusion

The comprehensive design methodology supports both struc-
tural and networks.
Considering the premise structure of the gHFNN, the opti-
mization of the rule-based FNN hinges on the use of genetic

parametric optimization of the

Hybrid Fuzzy Neural Networks by Means of Information Granulation and Genetic Optimization and Its Application to Software Process

optimization and the back-propagation (BP) learning algorithm:
The GAs leads to the auto-tuning of vertexes of membership
function, while the BP algorithm helps produce the optimal
values of the parameters of the consequent polynomial of fuz-
zy rules. The gPNN that is the consequent structure of the
gHFNN is based on the mechanisms of the extended GMDH
and GAs. The extended GMDH starts with a phase of struc-
tural optimization (such as a self-organizing and evolutionary
algorithm) that is followed by the parametric optimization
(least square estimation). The gPNN architecture is driven by
the genetic optimization, which resuits in the selection of opti-
mal nodes. We also discussed a variety of architectures of the
gHFNN. Modeling software data realized in this framework
has led to useful results and demonstrated the usefulness of
the discussed models. In particular the experimental studies
concerning NASA data demonstrate that the gHFNNs produce
better results than some other models of quantitative software
engineering.

References

11 W. Pedrycz:
Press, FL.

[2] W. Pedrycz, J.F.Peters: Computational Intelligence in
Software Engineering. (1998) Singapore: World Scientific
Publishing Co. Pte. Ltd.

[3] S.-K. Oh, W. Pedrycz, H.-S. Park: Hybrid Identification
in Fuzzy-Neural Networks. Fuzzy Sets and Systems,
138(2) (2003) 399-426

[4] S-K. Oh, W. Pedrycz, B.-J. Park: Polynomial Neural
Networks Architecture: Analysis and Design. Computers
and Electrical Engineering, 29(6) (2003) 653-725

[5]1 A. G. lvahnenko: The group method of data handling: a
rival of method of stochastic approximation. Soviet
Automatic Control, 13(3) (1968) 43-55

[6] Z. Michalewicz: Genetic Algorithms + Data Structures =

Computational Intelligence. (1998) CRC

Evolution Programs. (1996) Springer-Verlag, Berlin
Heidelberg

[71 M. Shin, A.L. Goel: Empirical Data Modeling in
Software Engineering Using Radial Basis Functions.
IEEE Trans on Software Engineering, 26(6) (2000)
567-576

[8] S.-K. Oh, W. Pedrycz , B.-J. Park: Self-organizing neu-
rofuzzy networks in modeling software data. Fuzzy set
and systems, 145(1) (2004) 165-181

[9] S.-K. Oh, W. Pedrycz , B.-J. Park: Relation-based

Networks with Data
Granulation. Mathematical and Computer Modelling,
40(7-8) (2004) 891-921

[10] C.M. Bishop: Neural Networks for Pattern Recognition.

(1995) Oxford Univ. Press

M. Kearns, D. Ron: Algorithmic Stability and

Sanity-Check Bounds for Leave-One-Out

Cross-Validation. Proc. 10th Ann. Conf. Computational

Learning Theory, (1997) 152-162

[12] C.F. Kemerer: An Empirical Validation of Software

Neurofuzzy Evolutionary

[11]

Cost Estimation Models. Comm. ACM, 30(5) (1987)
416-429

Byoung-Jun Park received the B.S., M.S,
and PhD. degrees in control and in-
strumentation engineering from Wonkwang
University, Korea in 1998, 2000 and 2003,
respectively. He currently holds a position
of a Postdoctoral Fellow in the Department
of Electrical and Computer Engineering,
University of Alberta, Edmonton, Canada.
His research interests include fuzzy, neurofuzzy systems, ge-
netic algorithms, Computational Intelligence, hybrid systems,
and intelligent control.

Sung-Kwun Oh received the BSc, MSc, and
PhD. degrees in Electrical Engineering from
Yonsei University, Seoul, Korea, in 1981,
1983, and 1993, respectively. During
1983-1989, he was a Senior Researcher of
R&D Lab. of Lucky-Goldstar Industrial
Systems Co., Ltd. From 1996 to 1997, he
held a position of a Postdoctoral fellow in
the Department of Electrical and Computer Engineering,
University of Manitoba, Canada. He is currently a Professor in
the Department of Electrical Engineering, University of
Suwon, South Korea. His research interests include fuzzy sys-
tem, fuzzy-neural networks, automation systems, advanced
Computational Intelligence, and intelligent control. He is a
member of IEEE. He currently serves as an Associate Editor
of KIEE Transactions on Systems & Control, International
Journal of Fuzzy Logic and Intelligent Systems of the KFIS,
and International Journal of Control, Automation, and Systems
Engineering of the ICASE, South Korea. E-mail:
ohsk@suwon.ac.kr

-

Young-Il Lee He received the B.S. degree
in Electronic Engineering from Yonsei
University, Seoul, Korea in 1980. From
1979 to 1987 he worked, in sequence, as a
computer H/W engineer at Oricom Inc., a
computer S/W engineer at Daehan Tele.
Co., a test engineer at Ericfon Co., and a
chief engineer of the AV center at Oricom
Inc.. He resumed his studies in 1989 and received the M.S.
and Ph.D. degrees in Electrical Engineering from Purdue
University, West Lafayette, U,S.A. in 1990 and 1996,
respectively. He is currently an Assistant Professor in
Electrical Engineering, Suwon University, Korea. He is a
member of KIEE and IEEE. His research interests include the
fields of power system, electronic devices, and fuzzy system.

137

