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Abstract

This paper presents an adaptive controller using chaotic dynamic neural networks(CDNN) for nonlinear dynamic system. A new dynamic
backpropagation learning method of the proposed chaotic dynamic neural networks is developed for efficient learning, and this learning
method includes the convergence for improving the stability of chaotic neural networks. The proposed CDNN is applied to the system
identification of chaotic system and the adaptive controller. The simulation results show good performances in the identification of Lorenz
equation and the adaptive control of nonlinear system, since the CDNN has the fast learning characteristics and the robust adaptability to

nonlinear dynamic system.
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1. Introduction

Recently, the chaotic neural networks(CNNs) have been
studied in application to nonlinear dynamic systems because of
it’s highly nonlinear dynamic characteristics. Biological neurons

generally have chaotic characteristics permanently or transiently.

The chaotic responses of biological neurons have been modeled
quantitatively by many researchers. The primitive model was the
Hodgkin-Huxley equation. Caianiello and Nagumo-Sato
modified this model to make chaotic neural networks.[1} Aihara
et al. proposed a discrete time model with continuous output,
and applied this model to chaotic neural networks.[2] They

showed that the neural networks could be applied to solve

optimization problems such as traveling salesman problem(TSP).

The effects of chaotic response have not verified yet by
analytical methods. The chaotic characteristics of neuron model
generally gives adverse effects on optimization problems, but
the transient chaos of neuron model could be beneficial to
overcome the local minimum problem. Aihara proposed that the
transient chaotic characteristics of neuron could be helpful for
global
performed on chaotic neuron model, those previously proposed

optimization.[3] Even though some modifications

chaotic neuron models are still complicate, and need more

dynamic characteristics in neuron itself and learning

algorithm[4].
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Since conventional CNNs’ structure and learning rule does
not proper to system identification and control application, a
modified chaotic dynamic neuron model is presented to simplify
the model and to enforce dynamic characteristics. The chaotic
dynamic neural networks consist of the modified chaotic
dynamic neurons. A dynamic backpropagation the learning
algorithm is developed for the proposed CDNN. This structure
is very compatible with highly nonlinear dynamic system in the
neural network structure and learning rule. Chaotic dynamic
neural networks could be substituted with feed-forward neural
networks and recurrent neural networks because of it’s complex
nonlinearity in chaotic neurons.

L. Jin et al proposed absolute stability conditions for discrete-
networks stable
backpropagation learning in recurrent neural networks[6,7]. The

time recurrent neural and dynamic
stability of CDNN is more important factor than recurrent neural
networks. Even though the CDNN has the fast adaptabilities and
highly nonlinear dynamic characteristic, this network has a
problem in stability. To improve the stability of CDNN, the
previously induced convergence conditions are applied to the
dynamic backpropagation learning method.

In this paper, a dynamic backpropagation learning rule for
CDNN with stability conditions are proposed and applied to the
system identification of a chaos system and an indirect adaptive
controller. The simulation results show good performances,
since the CDNN has the robust adaptability to nonlinear

dynamic system.
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2. Dynamic Backpropagation Learning of CDNN

2.1 Modified Chaotic Dynamic Neural Networks

Although the chaotic neuron model inherently has robust
dynamic characteristics, the traditional chaotic neural
networks(CNN), proposed by Aihara et al, decrease the dynamic
characteristics in the structure and the learning rules. They used
the backpropagation learning rule for the forward inputs
between layer and used the time progressing learning rule(the
continuous Hopfield learning algorithm) for the recurrent inputs
in inter layer. These learning rules may be appropriate to the
static patterns but not to the dynamic system applications such
as forecasting, identifications, signal processing and dynamic
system control. In this paper, the structure of CNN is modified,
and the new learning rule is proposed for enhancing the dynamic
characteristics.

Modified chaotic dynamic neural network is a globally
coupled neural networks. Each chaotic neuron unit is globally
coupled with present and past outputs of chaotic neuron units.
Modified chaotic dynamic neural networks in Fig. 1 have two
different coupling coefficients (weights) for both directions
among the neurons of interlayer, and forward direction between
layers.
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Fig. 1. Chaotic Dynamic Neural Networks

This connection weights in interlayer is defined as
nonsymmetric form, w R w], , w0 and
wizwl, wi =0 . This structure is similar with fully

recurrent neural networks.
The modified chaotic neural network is as follows,
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where ¢ is slope of sigmoid function.

To increase dynamic characteristics,
applied to such  as
wf #0. The chaotic neuron sums three inputs; the

the nonsymmetric

weights are recurrent  inputs
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refractoriness, K - x,(k) , the activation, ZW; d,(k) , and the

J=1

recurrent input, The summation passes

Sl S () -

through the nonlinear sigmoid function.

2.2 Dynamic backpropagation learning
Consider fig. 1, u,(k) is the ith input for each discrete time
k, S jH (k) is the weighted sum of inputs and refractory input
to 7 th neuron in hidden layer, x,(k)is the output of jth
neuron in hidden layer, K is refractory parameter of chaotic
neuron, and f,,() is nonlinear sigmoid function. W' and
W™ represent the weight vector between input and hidden layer
and inter-connecting weight vector in the hidden layer. The
weighted sum of j th neurons in hidden layer is as follows:

S (k)= Z W, ,(k)+Zw"‘x (k-1D)+K-ST(k-1) 4.

L/

The j th neuron’s output of hidden layer is as follow:
x, (k)= fy18] (0] ().

Consider Fig. 1, y,(k)is p th output of output neuron for
each discrete time k, S;)(k) is the weighted sum of inputs
and refractory input to 7 th output neuron in output layer,
Kis
refractory parameter of chaotic neuron, and f,(-) is nonlinear

x,(k) is the output of j th neuron in hidden layer,

sigmoid function. W°and WY® represent the weight vector
between hidden and output and inter connecting weight vector in
the output layer. The weighted sum of p th neurons in hidden
layer is as follows:

So(k) Z w, ](k)+z “y, (k ~ 1)+KS0(k D ()

¥, (k)= fy[S; (k)] M

Using Eq. (4)(5), the weighted sum of neuron in output
layer(Eq. 6) can define as follows:
Sf(k) =X wz_ﬁv[z wUul(k)+ Z w ®x (k=)
~ ®)
+KST (k-] + 21 Wy, (k=1 +KS7(k—1)
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+kS7 (k- 2)]+ KS2 (k -1)

0,(k) = NF(u(D),x(),y(); 1<k) (10)

where O, (k) is the pth output of chaotic neural network,
NF() is a nonlinear function which represents a nonlinear
dynamic mapping chaotic neural networks.

This neural network model in Eq. (10) is a globally coupled
with present and past inputs and outputs of all neurons.
Therefore, this model could simulate any complex nonlinear
dynamic system.

The dynamic learning process may be formulated as:

Wk+1)=Wk)—n-V Ek) (11)

where W (k) is an estimated weight vector at time %k and 7 is

a step size parameter, which affects the rate of convergence of
the weights during learning.

The error index E(k) should be defined as

E(0) =320/ () - 7 (O)F (12)

=13 )

where e, (k)= y’(k)—y/"(k) is a learning error of ith neuron
between the desired and network output at time % .

The gradient of error index with respect to an arbitrary weight
vector W is represented by

(13)

O(k) is output vector of neural network, and
»"(k)=0(k) in case simple identification task. The output
vV, 0(k) with output
interconnecting of output, interconnecting of hidden, and input
weight in Eq. (13) are given by

80(k)

V E(k)=—e(k)V y"(k)=—e(k)V 0()

where

gradient respect to weights,

o~ IS MR (14)
B0() _ 1t coun 1
awl;)R _fN[SJ (k)]Ay (k) (15)
D13 126D WS R)- TR (16)
PO (S A W) WIS ) 4B ()
where
A0 =00+ W fa(SY k- 1) + KL GK-1)
47(0)=0, (18)
AR = Ok =D+ [W fy (57 k= D)+ KIAT (h=1)
47 (0)=0, (19)
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AR = x,(k =)+ [WE £ (S (k—1) + K] AR(k-1)

AR(0)=0, (20)
Al (k) =u, (k) + [wy [y (S} (k=) + K]- A (k=1)
4,(0)=0, (21).

2.3 Convergence of dynamic backpropagation learning

The globally asymptotical stability condition of CDNN is
applied for dynamic backpropagation learning. The convergence
condition is derived in the previous paper of “A study on the
Convergence Condition of Chaotic Neural Networks”. The
convergence is guaranteed to only one fixed point y®) i
W' has the conditions as

1-X

~(1=K)-S,. <w* < 22)
S,
Where S,.= max & &) ) 23)
oy (k)

The w® is the recurrent weight for the internal state of
CDNN y(k) and S, be defined as where f,(y(k)) is
sigmoid function. During the backpropagation learning process
of CDNN, the absolute stable condition in eq. (22) are
maintained in every step of learning.

3. Simulation results with CDNN

3.1 System identification of chaotic system

An approach for system identification using chaotic dynamic
neural networks is presented for verifying the performance of
CDNN. This example is identify chaotic system (Lorenz
equation) that is described by the equation

x=0(y—x)
y=rx-y-—xz 24)

z=xy—bz

Where o, r, b > 0 are parameters.

The results in Fig 2 show the identification results using the
proposed dynamic backpropagation learning method in Eq (14)-
(21). In this example, one CDNN is used to identify the chaotic
MIMO dynamics. The structure of CDNN identifier consists of
three inputs, 30 neurons in hidden layer, and 3 identified outputs.
Just one CDNN is used for chaotic identifier for simulating the
interconnection between neurons. The learning rate is selected
ad 0.35, and refractory rate is 0.7. The figure 2 shows the result
after 878 iterations of learning, and the final error was 0.002.
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Fig. 2 Identification results of Lorenz Eq
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3.2 Adaptive control with CDNN

An approach for indirect adaptive control using modified
chaotic neural networks is presented. The indirect adaptive
control system consists of system identifier and controller. The
system identifier with a chaotic neural network, called chaotic
neural network identifier(CNNI), identifies an unknown plant
for providing unknown plant information to the controller with a
chaotic neural network. Both neural networks identifier and

controller use dynamic backpropagation algorithm. In identifier,
the generalized dynamic backpropagation algorithm could be
adopted for adjusting weights of CNNI In controller, the
relationship between the activation value of plant and the plant
output should be constructed for adjusting the weights of a
chaotic neural network controller(CNNC) in figure 4.
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Fig 4. Structure of Adaptive Controller

The gradient of error index with respect to an arbitrary weight
vector W of controller should be redefined. The dynamic
learning process for CNNC may be formulated as:

Wk+)=W(k)-n,-V, E.(k) 25

where W (k) is an estimated weight vector for controller at time
k ,and 7, is a step size parameter for CNNC which affects the
rate of convergence of the weights during learning. The error
index E_(k) should be defined as:

E (k) =32y (k) -, 01 (26)
:%Hei(k)
where # is number of output in plant, and

e,(ky=y/(k)—y,(k) is a learning error between the reference
model and the plant output at time % . The gradient of error
index with rtespect to an arbitrary weight vector W is
represented by

VyE (k) =—e (k)V, y(k) = —e (k)V , y(k)V , u(k) (27)
=€, (k)V, 4, y(k)V,0° (k)

where e, (k) is learning error vector at time %, and the plant

input vector w(k) is defined as
CNNC O°(k).

Since the plant is normally unknown, the sensitivity

the output vector of

term V (k) could not be defined. After sufficient learning
procedure, the learning error of CNNI could approximate to zero.
Progressing the learning procedure of CNNI, the outputs of
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CNNI is close to the plant output, ie., y(k)~y™(k). The
sensitivity term could be redefined as

Vu(k)y(k) ~ vf/(k)ym (k)= vu{k)o(k) (28)
where y"(k)=0(k) and V,,0(k)= au((k)) .

The jacobian matrix could be defined as

_20(®) _ 000 $-35/) 25,®) 35()

J (k) =
P Gu (k) 08P (k) S o, (k) 87 (k) du (k)

where J, (k) is an element of jacobian matrix which represents
the sensitivity of plant output for input.
Consider Eq. (6)-(9), the partial derivatives can be defined as

stk o 8S (k)

=w_, =W, .
ox,(ky " eu k) ”
_ 60‘ (k) _ o e o o H I
J, (k)= 2 ) TS (k)); wo Fu(SE (epwh,  (30).

Eq. (27) could be redefined as

V,.E. (k) =~e,(k)J(K)V . 0°(k) 31

Using negative gradient in (31), the weights for CNNC can be
adjusted in eq. (25). The equations (16)-(23) define the dynamic
backpropagation learning algorithms for CNNC.

Example 2: The plant is described by the difference
equation[4]

y' (k)

l+y"(k)z +u’ (k)

Yk +1)= (32).

The reference model is described by difference equation
Yy (k+1)=0.6y"(k) + r(k) (33)

where r(k) =sin(27k/25)+sin(27k/10) .
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The results in Fig. 5 and 6 show the indirect adaptive neuro-
control results using the proposed dynamic backpropagation
learning method in Eq. (14)-(21) for CNNI and Eq.(30) and (31)
for CNNC. The structure of CNNI consists of two inputs, 7
neurons in hidden layer, and 2 outputs, and CNNC has also
same structure. The learning rates are selected as 0.3, and
refractory rate is 0.15 for the CNNI and CNNC. Since CDNN
has fast adapting characteristics, the CNNI identifies the plant
model as on-line learning method.

4. Conclusion

This paper presented a dynamic backpropagation learning rule
for CDNN with stability, and the proposed CDNN applied to the
system identification of a chaos system and an indirect adaptive
controller. The indirect adaptive controller consists of two
CDNNs: a CNNI and a CNNC. Traditional CNN was modified
to simplify the model and to enforce the dynamic characteristics.
The performance of CDNN was tested for two examples: one of
them was a nonlinear MIMO system identification for chaotic
system, the second was an indirect neuro-adaptive controller.
The simulation results show good performances, since the
CDNN has the robust adaptability to nonlinear dynamic system.
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