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Abstract: The paper proposes a fundamentally new approach to the 

formulation of the problem of optimizing the discretization interval 

(frequency). The well-known traditional methods of restoring an analog 
signal from its discrete implementations consist in sequentially solving 

two problems: restoring the output signal from a discrete signal at the 
output of a digital block and restoring the input signal of an analog 

block from its output signal. However, this approach leads to a 
methodical fallibility caused by interpolation when solving the first 

problem and by regularizing the equation when solving the second 
problem. The aim of the work is to develop a method for signal 

discretization to minimize the fallibility of information recovery to 

determine the optimal discretization frequency. 
The proposed method for determining the optimal discretization rate 

makes it possible to exclude both components of the methodological 
fallibility in recovering information about the input signal. This was 

achieved due to the fact that to solve the reconstruction problem, 
instead of the known equation, a relation is used that connects the input 

signal of the analog block with the output discrete signal of the digital 
block. 

The proposed relation is devoid of instabilities inherent in the well-
known equation. Therefore, when solving it, neither interpolation nor 

regularization is required, which means that there are no components 
of the methodological fallibility caused by the indicated operations. In 

addition, the proposed ratio provides a joint consideration of the 
properties of the interference in the output signal of the digital block 

and the frequency properties of the transforming operator, which allows 
minimizing the fallibility in restoring the input signal of the analog 

block and determining the optimal discretization frequency. 
A widespread contradiction in the field of signal information recovery 

from its discrete values has been investigated. A decrease in the 
discretization frequency below the optimal one leads to an increase in 

the approximation fallibility and the loss of some information about the 

input signal of the analog-to-digital signal processing device. At the 
same time, unjustified overestimation of the discretization rate, 

complicating the technical implementation of the device, is not useful, 
since not only does it not increase the information about the input 

signal, but, if necessary, its restoration leads to its decrease due to the 
increase in the effect of noise in the output signal on the recovery 

accuracy. input signal. The proposed method for signal discretization 
based on the minimum information recovery fallibility to determine the 

optimal discretization rate allows us to solve this contradiction.  

Keywords: discretization rate, signal, information recovery, measuring 

channel, fallibility, analog-digital signal processing.  
  

1. Introduction 
 

The problem of the optimal choice of the discretization interval 

or frequency when carrying out analog-to-digital signal 

processing (ADSP) does not lose its relevance in measuring 

technology, including when recovering signals in information-

measuring systems [1, 2]. 

In the classical setting, the problem of choosing the 

discretization frequency of an analog signal is well known and 

is solved by the Shannon-Kotelnikov theorem [3, 4]. However, 

in measuring practice, there is one fundamental feature that 

makes the direct application of the Shannon-Kotelnikov 

theorem and modern methods for optimizing the discretization 

rate of analog signals to minimize the recovery fallibility not 

quite adequate [5, 6]. Since this feature determines a 

fundamentally new approach to the formulation of the problem 

of optimizing the discretization interval (frequency), considered 

in this work, we will explain it in more detail. For this, we 

represent the generalized block diagram of the measuring 

channel as follows (Figure. 1). 

 
In this scheme, in the part of the measuring channel (or in the 

automatic digital signal processing device- device - ADSP), 

analog-to-digital processing of the input signal, including 

analog-to-digital conversion, is carried out. The ADSP device  

contains a series-connected equivalent analog unit (EAU) and 

an equivalent digital unit (EDU). The term “equivalent” 

emphasizes that these blocks are distinguished not by their 

structural or functional features, but by the type of operations 

(analog or digital) that are performed on the input signal in the 

ADSP. Therefore, the EAU includes not only separate analog 

functional blocks, but also the analog part of the analog-to-

digital converter (ADC). The term “equivalent” emphasizes that 

these blocks are distinguished not by their structural or 

functional features, but by the type of operations (analog or 

digital) that are performed on the input signal )t(g  in the 

ADSP. Therefore, the EAU includes not only separate analog 

functional blocks, but also the analog part of the analog-to-

digital converter (ADC). Therefore, the EAU includes not only 
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сигнала 
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Figure 1. Block diagram of the measuring channel 
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separate analog functional blocks, but also the analog part of the 

analog-to-digital converter (ADC). In the EDU, the operations 

of discretization and quantization of the output signal of the 

EAU )t(f  are necessarily performed, usually with a constant 

strictly specified discretization interval t , but digital signal 

processing can also be performed. The codes of discrete values 

qf  of the signal from the EDU output are sent to the signal 

recovery device, where they are converted into an analog signal 

)t(ĝ , which is an image of the input signal with a certain 

recovery fallibility. 
 

2. Literature Analysis and Problem Statement 
 

The articles provide many examples of the use of methods for 

recovering an analog signal from a discrete one. 

Thus, in articles [1-6] the realization of frequency 

characteristics, in particular, EAU is given, at the frequency 

tending to infinity, they decrease, approaching zero. However, 

the frequency response, which is strictly zero at frequencies 

above the cutoff frequency, cannot be realized by the Paley-

Wiener test. Therefore, according to the Shannon-Kotelnikov 

theorem, at any finite sampling rate, accurate reconstruction of 

the signal is impossible, because the high-frequency 

components of the output signal cannot be restored. 

In articles [7, 8] the known traditional methods of recovery of 

an analog signal from discrete have resulted. These methods 

consist of the sequential solution of two problems: recovery of 

the output signal of the )t(f EAU from the discrete signal qf  

at the output of the EDU and recovery of the input signal of the 

)t(g EAU from its output signal )t(f . However, this approach 

leads to a methodological error caused, firstly, by interpolation 

in solving the first problem, and secondly, by regularization of 

the equation in solving the second problem. This is due to the 

fact that in solving the second problem the initial equation is 

equal to 


−

=−

t

)t(fd)(g )t(h                                                          (1) 

where )t(h − the impulse transient response of the EAU. 

The limits of integration in (1) are determined by the area of 

existence of the input signal and time. The equation has an 

unstable solution and is used to identify stable approximate 

solutions. 

Articles [9 -15] use methods for solving incorrect problems, in 

particular the Fredholm equation of the first kind, most of which 

are based on the replacement of the operator, the exact 

approximate )(g   (adjustable) operator. 

But all methods of recovery of an analog signal from discrete do 

not exclude a methodological error of recovery. Therefore, the 

development of a method that deprives the obtained results of 

the recovery of the signal of methodological error is relevant.  

The proposed method for determining the optimal discretization 

rate makes it possible to exclude both components of the 

methodological recovery fallibility. This was achieved due to 

the fact that to solve the recovery problem instead of equation 

(1), an equation is used that connects the input signal of the  

)(g  EAU with the output discrete signal of the EDU: 

( )
−

=−

qt

qq fd )(g th                           (2) 

where )t(ff qq   are the discrete values of the EAU output 

signal )t(f  obtained using the ADS; qt  - moments of signal 

discretization )t(f . 

Equation (2) is devoid of instabilities inherent in equation (1). 

Therefore, when solving it, neither interpolation nor 

regularization is required, which means that there are no 

components of the methodological fallibility caused by the 

indicated operations. In addition, Eq. (2) provides a joint 

consideration of the properties of the interference in the output 

signal qf  of the EDU and the frequency properties of the 

converting operator, which makes it possible to minimize the 

fallibility in reconstructing the input signal )(g   of the EAU 

and to determine the optimal discretization frequency. 

As will be shown below, equation (2), in contrast to (1), has a 

stable solution even if ĥ  is specified exactly, and not an 

approximate (regularized) operator. Moreover, the fallibility in 

restoring the original signal turns out to be uniquely related to 

the discretization frequency of the input signal of the EAU )t(f

, since with its increase (or with a decrease in the discretization 

interval t ), equation (2) approaches (1). In this case, the 

stability with respect to interference in the signal )t(f  

decreases, and, consequently, the fallibility in signal 

reconstruction )(g   increases. In other words, the signal 

discretization frequency (or interval) plays the role of a 

regularization parameter, and its value directly determines the 

component of the reconstruction fallibility caused by noise in 

the sampled signal qf . Let's call it the interference component 

of the recovery fallibility. 

There is one more component of the input signal reconstruction 

fallibility, which is also related to its discretization frequency 

)(g  . It does not depend on interference and is caused by the 

fact that with an increase in the discretization interval t  of a 

signal )t(f , the number of degrees of freedom in a discrete 

signal qf  decreases, and this, when the signal is restored )(g 

, leads to the loss of information about its small details. This 

component of the fallibility depends on the signal discretization 

fallibility. In the known methods of approximation (stepwise, 

linear, etc.) of an analog signal by its discrete readings, the form 

of the approximating function can be different and is set a priori 

[16, 17]. In the proposed method, the approximating function, 

as will be shown below, is related to the impulse response of the 

EAU so that the considered component of the fallibility cannot 

be reduced without additional, a priori information about the 

signal )(g  . Thus, the second component of the reconstruction 

fallibility is completely determined by the type of the input 

signal )(g  , the discretization frequency and the impulse 

response of the EAU. Let's call it the approximation fallibility. 

To develop a method for signal discretization to minimize the 

fallibility of information recovery to determine the optimal 

discretization frequency. The proposed method makes it 
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possible to exclude the components of the methodological 

fallibility of information recovery. 
 

3. The Proposed Mechanism 
 

When synthesizing the ADSP, it should be taken into account 

that the signal discretization frequency )t(f  affects both the 

approximation fallibility and the interference component of the 

signal )(g   reconstruction fallibility, and with an increase in 

the discretization frequency, the approximation fallibility 

decreases, and the interference component of the fallibility 

increases. Therefore, for each class of input signals, with the 

known transfer function of the EAU and the statistical 

characteristics of the noise in the output signal qf  of the ADC, 

the optimal discretization frequency can be determined. To do 

this, one can use, for example, either the criterion for the 

minimum of the total recovery fallibility, which includes both 

specified fallibility components, or the criterion for the 

minimum of one component of the recovery fallibility at a given 

level of the other component of the fallibility, or the information 

criterion (maximum information in the signal )(g   that can be 

obtained from a discrete signal qf ). The existence and 

determination of the optimal discretization rate, the 

overestimation of which, as well as the underestimation, 

increases the fallibility in recovering the input signal )(g  , is 

the essence of the proposed method. Regardless of the criterion 

used to determine the optimal discretization rate, it is necessary 

to find estimates of both components of the reconstruction 

fallibility as a function of the discretization rate. For this, it is 

necessary to obtain a solution to equation (2), i.e. find the input 

signal qf  using a known discrete signal )(g  . Equation (2) has 

many solutions, which will be shown below. The solution that 

has the smallest norm and does not contain a priori information 

about the input signal )(g   will be called an approximating 

(skeletal) signal. 

We emphasize that even in the case when the restoration of the 

input signal )(g   from a discrete signal qf  is not carried out, 

the approximating signal )(g   determines the information 

about the signal potentially contained in the signal depending on 

the discretization frequency and, therefore, makes it possible to 

reasonably determine it. Let us find a regularized solution to 

equation (2), representing the approximating signal. 

In equation (2), we denote ( ) )(hth qq =−  and consider the 

system of functions }{ )(hq   as a basis (in the general case, 

nonorthogonal) in the space of functions. Then the quantities 

qf , which can be seen from (2), can be considered as 

projections of the input signal )(g   onto the subspace L, 

“spanned” by the system of functions 

}{ )(hq  : ( ) qq fh,g = ,          (3) 

where ( ) 
−

=

qt

qq d )(g)(hh,g  — is the value representing the 

dot product of the signal )(g   and the function )(hq  . 

The system of functions }{ )(hq   is not complete in the general 

case and forms a subspace in the space of input signals )(g  , 

which can be divided into a subspace L and its orthogonal 

complement L , so that the signal )(g   can be represented in 

the form )(g)(g)(g LL += , 

where )(gL   the functions belong to the subspace L, and the 

functions )(gL   - belong to the subspace L  and are orthogonal 

to the functions )(gL  , i.e. all functions )(hq  : 

( ) 0=LL g,g ; ( ) 0=qL h,g . 

Equations (2) and (3) do not allow the functions )(g   to be 

determined unambiguously. Adding any function )(gL   from 

the orthogonal complement L  to the function )(gL   does not 

change the equations, since 

( ) ( ) qLqLLq fg,hgg,h ==+  

This is similar to when in ordinary three-dimensional space, for 

example, two projections of a vector on the axis in the XY plane 

are known, and the component of the vector along the Z axis 

remains arbitrary. 

Thus, equation (2) only defines the input signal component 

)(gL  , and the signal component )(gL   cannot be found from 

(2) or (3). To determine it (if required), it is necessary to attract 

additional (a priori) information that is not contained in the main 

equation (2), which can to some extent reconstruct the signal 

component Lg  lost in the process of analog-to-digital 

conversion. But this will lead to an increase in the signal rate (its 

energy or power). Indeed, of all possible solutions to equations 

(2) or (3), the solution )(gL   has the smallest norm. This 

follows from the fact that for the square of the norm )(g  , 

taking into account the orthogonality of the functions )(gL   

and )(gL  , the equality is true: 

2222
LLLL gggg)(g +=+=  

This shows that the signal has the smallest norm )(g)(g L =  

at 0= )(gL . In the case when the signal energy )(gL   is 

unlimited, for example, for a periodic signal, the norm is 

understood as the average signal power )(gL  . So, the signal 

)(gL   does not contain a priori information about the input 

signal )(g   and has a minimum norm, and therefore, according 

to the definition introduced above, )(gL   it is an approximating 

(skeletal) signal. Assuming the functions )(hq   to be linearly 

independent, we write 




−=

=
n

nnL )(hg)(g           (4) 

where ng  are coefficients that are not equal to zero at the same 

time. The function )(gL   approximates the input signal )(g   

and, as can be seen from (4), impulse functions are the basis 

functions ( )−= nn th)(h . Consequently, when constructing 

an approximating signal )(gL  , the basis functions, in contrast 

to the known approximation methods, are not set a priori, but are 
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directly related to the properties of the ADC, expressed by its 

impulse response. Substituting (4) into (3), we obtain a system 

of equations for determining the coefficients ng  




−=

=
n

qnqn fgk .             (5) 

where the matrix qnk  is 

( )nqnqqn h,hd)(h)(hk == 


−

           (6) 

The determinant of a matrix qnkDet  is the Gram determinant 

of a system of functions )(hq   and, if they are independent, 

does not have zero eigenvalues. Therefore, the solution of the 

system of equations (5) for the quantities is unique [18, 19]. We 

get it for an unlimited time interval and uniform discretization 

with an interval t . The matrix qnk  described by expression 

(6) is infinite-dimensional, depending on the difference between 

the indices: 

( ) ( ) −−= 


−

dtnhtqhkqn , or 

( )  ( ) ( )


−

−=+−= nqkdxxhxtnqhkqn .              (7) 

Therefore, the solution of the system of equations (5), i.e. the 

coefficients qg  and, therefore, the approximating signal )(gL 

, according to (4), can be found explicitly using the Fourier 

transform. Let us introduce the Fourier transforms of a discrete 

signal qf  and a system of coefficients qg : 













=

=







−=

−



−=

−

q

tjq
q

q

tjq
q

.eg)(G

;ef)(F

           (8) 

Since the functions )(F   and )(G   are periodic with a period 

t2 , the values of the frequency   are limited by the interval 

tt − . 

The inverse Fourier transforms for the functions )(F   and 

)(G   in (8) have the form 


















=





=







−





−



. de)(G
t

g

; de)(F
t

f

t/

t/

tjq
q

t/

t/

tjq
q

2

2
           (9) 

Performing the Fourier transform of equations (5), we obtain 

)()(F)(G = . 

where 

( ) 


=



−=

− +==
1

20
qq

tjq tqcos)q(k)(ke)q(k        (10) 

- eigenvalues (spectrum) of the operator with matrix elements 

)nq(kkqn −= . 

Substituting the equality for qg  from (9) into (4), we find the 

solution to equations (5): 









= 



−

d
)(

),(  )(Ft
)(g

t/

t/

L
2

,        (11) 

where 




−=

−=
q

tjqe )tq(h),( .        (12) 

The system of functions ),(   forms an orthogonal (but not 

normalized) basis in the space L. Indeed, using expressions (7), 

(10) and the equality 

( ) ( )−



=



−=

−

t
e

q

tjq 2
 at 

t
 

t 







− ; ,        (13) 

get 

( ) ( )


−

−



=  )(

t
d , ),( 

2
 at 

;



−

t
 

t


 ,           (14) 

where ( )− - delta function. 

Let us associate the functions ),(   and eigenvalues )(  

with the Fourier transform of the transfer function of the EAU. 

We denote through ]t[q =  the integer part, and through the 

 t=  fractional part of the value t , then t)q( +=

. Shifting the origin in (12), we find 

),(He),( tjq = 
         (15) 

where  

 

 


=

−−=
1i

tjiet)i(h),(H         (16) 

- Fourier transform of the transfer function or the frequency 

response of the EAU;   - complex conjugation sign. 

Since the function  t=  is periodic in   terms of a period 

t , the function ( ),H  is also periodic in   terms of a period 

t . Its inverse Fourier transform 

  


−

 



=−

t/

t/

tji de),(H
t

t)i(h
2

        (17) 

Let us express the eigenvalues )(  in terms of the frequency 

response ),(H  . To do this, we use relation (7), replacing it 

x  with )x(−  and dividing the integration interval into sections 

t : 

.dx)x(h)xtq(hdx)x(h)xtq(h)q(k
i

t)i(

ti

  


−



−=

+



−−=−−=

1

 

In each integral, we make the change of variables t)i(x +=

, than 
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    


−=

+−−−=
i

d t)i(ht)iq(ht)q(k

1

0

. 

Let us substitute expression (17) into this equality, replacing for 

convenience of calculation ]t)i([h +−  by the complex 

conjugate (equal to it due to reality) term. Using (13), we obtain 

 




−





=

1

0

2
2

2

tjq
t/

t/

e),(H dd
)t(

)q(k . 

Taking this expression into account, we transform (10) to the 

form 

 =

1

0

2
d ),(Ht)( .          (18) 

The physical meaning of formula (18) is quite obvious: the 

eigenvalues or spectrum of the operator k̂  (matrix qnk ) is 

obtained by averaging the square of the modulus of the 

frequency response of the ),(H   EAU over the initial 

moment (initial phase) of the discrete signal qf . One of the 

consequences of such averaging is that even if ),(H   it has 

isolated zeros (for example, for the frequency response of the 

current average), then these zeros are eliminated in the spectrum 

(), i.e. skeletal solution )(gL   remains regular in this case. 

After substituting relations (15) and (18) into (11), we obtain the 

final formula for the regularized solution of equation (2):  

.d ),(H

d ),(He)( F)(g

2

t/

t/

tjq
L

1
1

0

2

1

−



−





















=





        (19) 

It is interesting to compare the resulting skeletal solution )(gL   

with the known regularized ones. Thus, in the method proposed 

in [20], the regularized solution is obtained in the form 

 d
)(H

 )(He)( F
)(g

j

L 


−




+




=

222

1
, 

where )(H  - Fourier transform of the transfer function;  Is a 

regularization parameter that dampens small values of the 

frequency response in the high frequency region. 

The regularizing parameter in (19) is the discretization interval 

t . Damping of small values of the frequency response ( ),H  

of the EAU in the high-frequency region is achieved by folding 

the spectrum in the periodicity interval tt − , and 

the elimination of isolated function zeros )(H   is achieved by 

averaging the frequency ),(H   response over the 

discretization interval t . 

Let us compare the skeletal solution )(gL  , defined by formula 

(19) with the one obtained by replacing the integral in (2) by the 

sum, i.e. provided that not only the output signal of the EAU is 

sampled, but also its input signal )(g   and transfer function. In 

this case, equality (2) is replaced by the system of linear 

equations 

( ) 


−=

=−
n

qn fg tnqh  , 

where )tn(ggn =  - sampled input signal )(g   EAU. 

The solution to this system of equations has the form 







== 



−



d
)(H

e)(F
g)tq(g

t/

t/

tjq

q
2

1
        (20) 

where ),(H)(H 0= . 

At the same discrete points tq= , skeletal solution (19) gives 

1
1

0

2

2

1

−



−





















=





d ),(H

d)(He)(F)tq(g

t/

t/

tjq
L

        (21) 

Comparison of expressions (20) and (21) shows that the isolated 

zeros of the frequency response of the EAU are eliminated in the 

solution )tq(gL   compared to the solution )tq(g  . Therefore, 

if, for example, the noise contains components whose 

frequencies fall on isolated zeros of the function )(H  , then 

solution (20) will be unstable, while solution (21) remains 

stable, i.e. a sharp increase in noise in the skeletal signal 

)tq(gL   does not occur. In addition, averaging over the initial 

discretization phase also leads to a decrease in the skeletal 

solution fallibility. 

Formula (19) makes it possible to establish the form of the 

solution not only at discrete points tq= , but also at 

intermediate points, depending on the input signal )(g  . To do 

this, substitute equality (8) for )(F   and, using expressions (2) 

and (15), we obtain 

( )


−

=

t/

t/

L d )(g ,L)(g          (22) 

where  

( ) ( ) ( )

;

1
1

0

2

2

1

−



−

−



















=





d),(H

de,H),(H,L

t/

t/

tqq

       (23) 













=

t
q ;    












=

t
q ;    












=

t
;    












=

t
.  

An operator L̂  with matrix elements ( ),L  is a projection 

operator from a space LL+  onto a subspace L. 

Let us obtain the dependence of the approximating (skeletal) 

signal )(gL   on the input signal )(g   of the EAU. Let us first 

consider a special case when the impulse response )(h   of the 

EAU changes little within the discretization interval t . Under 

this condition, the frequency response of the ),(H   EAU is 

practically independent of    and from (23) we have 
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( ) ( )







=


=


=

=


=





−

−


.qq     

;qq      

tt

de,L

qq

t/

t/

t qq

at0

at111

2

1

         (24) 

Then for the skeletal solution )(gL   from (22) taking into 

account (24) on the interval t)q(tq + 1  we find 

( )
+






=

t)q(

tq

L dg
t

)(g

1
1

; t)q(tq + 1 .       (25) 

Thus, for the particular case under consideration, the skeletal 

signal )(gL   represents a stepwise approximation of the input 

signal )(g  , and the value of the function )(gL   at each 

discretization interval t  is the average value of the signal 

)(g   in this interval. 

In the general case, when the impulse response h(  )  of the EAU 

can change noticeably within the discretization interval t , the 

value of the skeletal signal )(gL   is a weighted average of the 

signal )(g   not only over this one, but also over neighboring 

discretization intervals. The type of the weighting function is 

determined by the impulse response )(h  . 

The obtained solutions for the approximating (skeletal) signal 

)(gL   make it possible to find an expression for estimating the 

relative approximation fallibility 1  using the formula for the 

relative variance of this fallibility 

2

2
2
1

g

gg L−
=                          (26) 

If the discretization rate is large enough so that the impulse 

response )(h   of the EAU changes little over the discretization 

interval t , then the signal )(gL   is determined by formula 

(25), and the approximation fallibility represents the fallibility 

of the step approximation. If, moreover, within each 

discretization interval t  the signal )(g    changes smoothly, 

without sharp bursts and jumps, then it can be expanded in 

intervals t  in a Taylor series and limited to the linear term 

)tq)(tq(g)tq(g)(g −+= ; t)q(tq + 1 . (27) 

This decomposition is valid provided 

)(g)(gt   

Substituting (27) into (15) and performing calculations, we 

obtain 

2t)tq(g)tq(g)(gL +=                       (28) 

Relations (27) and (28) allow expressing the relative fallibility 

of approximation 1  as a function of the discretization interval 

t . For this we calculate 

 

   

 



−



−=



−=

+






=

=−=−

.d)(g
)t(

t)tq(g)t(

d)(g)(ggg

q

q

t)q(

tq

LL

2
2

22

1
22

1212

1

 

After substituting this equality in (26), we find 

 /t1 .                                                                                      (29) 

where 

 

21

22
12

/

d)(gd)(g

−


−



− 


























=                                  (30) 

Since formula (29) is obtained by expanding into a Taylor series 

up to the first term, the smaller the fallibility, the more accurate 

it is 1 . 

The value   determined by equality (30), in the considered 

approximation, does not depend on the discretization interval 

t  and is a parameter characterizing the temporal properties of 

the input signal )(g  . Let's call it the characteristic time, and 

the shorter it is, the faster and sharper the signal changes )(g  . 

The presence of interference in the output discrete signal qf  of 

an ECB (or ADC) caused by noise and fallibilitys, in particular, 

quantization noise, makes it impossible to accurately reconstruct 

even an approximating signal )(gL  . Since the frequency 

characteristics of real measuring transducers in the EAU 

decrease at sufficiently high frequencies, then when passing 

from a discrete signal qf  to the original signal )(g  , the 

signal-to-noise ratio decreases and for an unregulated solution it 

can reach zero, even with a zero signal-to-noise ratio in the 

analog signal )t(f . Its discretization regularizes the solution so 

that the signal-to-noise ratio in the reconstructed signal )(gL   

remains finite, not equal to zero. It depends on the discretization 

frequency and the more, the lower this frequency. Let's prove it. 

Let us find the dependence of the signal-to-noise ratio in the 

signal )(gL  on the discretization frequency (interval) for a 

given signal-to-noise ratio in a discrete signal qf . Let us denote 

l  by the random fallibility (noise) in this signal, then for the 

random fallibility of the signal spectrum qf  in accordance with 

equality (8) for )(F   we have 




−=

−=
l

l
l

tje)(F . 

The fallibility )(gL   in the approximating signal )(gL  , as 

follows from formula (11): 









= 



−

d
)(

), ( )(Ft
)(g

t/

t/

L
2

. 

We obtain an expression for the relative variance of the random 

fallibility 
2
2 , i.e. for the ratio of the interference power 

2
Lg  

to the signal power 
2

)(gL  . Taking into account the 

orthogonality of the functions ),(   according to (14), we 

find 
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−

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
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
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2    (31) 
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where )(S   is the spectral power density of the interference l  

in the discrete signal qf ; )(S 0 - spectral power density of the 

signal qf . 

In the most unfavorable case, when the interference spectrum in 

the signal qf  is concentrated near the smallest value )(  

equal to min , and the signal spectrum qf  is near the largest 

value )(S   equal to max , from (31) we have 

02 PPminmax = ,         (32) 

where 


−

=

t/

t/

d)(SP  - the power of the interference l  in the 

signal qf ; 


−

=

t/

t/

d)(SP 00 - signal strength qf . 

If the interference l  is uniformly distributed over the spectrum 

of the discrete signal qf  within the limits )t,t( − , then 

a smaller value of the fallibility is obtained 

0

21

2
1

P/P
m

max





















=                        (33) 

where 

( )


−







=










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t/m

dt

2

1
 

The quantity P/P0  is the signal-to-noise ratio at the output of 

the ECB (or ADC), and the quantity ( )22  , ( )22  is the signal-

to-noise ratio in the reconstructed skeletal signal )(gL  . 

Therefore, the noise generation factor nk , which is equal to the 

signal-to-noise ratio of the skeletal signal )(gL   divided by the 

signal-to-noise ratio of the discrete signal qf , in the most 

unfavorable case is determined, as follows from (32), by the 

expression 

minmaxnk =                                                                      (34) 

and with a uniform distribution of interference over the signal 

qf  spectrum according to (33): 

  ( )mmaxnk = 1                                                                    (35) 

From formulas (32) and (33), taking into account equalities (34) 

and (35), it can be seen that the fallibilitys 2  and 2   are related 

to the noise generation coefficients nk   and nk   the relations 

= nk2  =  nk2                                                       (36) 

where 0
2 P/P=  is the relative power of the interference in the 

discrete signal qf , i.e. interference / signal ratio at the output of 

the ECB (or ADC). 

For a fixed input signal )(g  , the relative approximation 

fallibility 1  is systematic, and the value 
2
2 , i.e. ( )22  or ( )22 

, - the relative variance of the random fallibility. 

Relationships (34), (35), (36) determine the relative fallibility in 

the reconstructed input signal )(ĝ   caused by a random 

fallibility (interference) in the output discrete signal qf  of the 

ECB, depending on the value of the discretization interval and 

the type of impulse response of the EAU. Together with 

formulas (26), (29) for the relative approximation fallibility, 

they make it possible to reasonably approach the determination 

of the optimal discretization interval (frequency). Since the 

relative fallibility increases with an increase in the discretization 

interval t , such an optimum exists. In the simplest case, the 

optimal value of the discretization interval t  can be found 

from the condition 21 =  or from the condition of the 

minimum total fallibility. 
 

4. Discussion of Experimental Results 
 

To illustrate the proposed method for determining the optimal 

discretization interval (frequency), let us consider the simplest 

example in which calculations can be carried out analytically. 

Example. Let the EAU be a simple aperiodic link with an 

impulse response 










=

−

0,            ,0

0;   ,e
)(h                                                          (37) 

where 1−  - link time constant. 

Let's calculate the frequency response ),(H   of the EAU. 

Substituting (37) into (16), we obtain 

  )(Hee),(H t

i

tjit)i( == 


=
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

1

                       (38) 

where 

  1

1

1
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

=

+− −== 
t)j(

i

ti)j( e e)(H . 

The function )(H   does not depend on the fractional part 

}t{ = , therefore 

 =

1

0

22
 )(H )(bd ),(H ,           (39) 

where 

( ) −

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1

0

22 1
2

1 tt e
t

de)(b   

Is a numerical coefficient. 

Substituting (38), (39) into (19), we find the approximating 

(skeletal) signal 

  −

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

−




 d ee)(F
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2

. 

After substituting expressions (8) for )(F   this formula, we 

finally obtain 

( )qq
t

t

t

L ffe
e

e
)(g −

−
= +







1
1

2
    

The signal )(gL   is a multiplier modulated step curve 

]t}t{exp[  . If 1 t , then the modulation disappears 

and the signal approaches the stepped curve 

( )qqL ff
t

)(g −


= +1
2

1
. 
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From (18) we find 

( ) . tcosee )(tb

)(Ht)(b)(

tt 122

2

21 − −+=

==
 

From this we get: 

( ) 22 1
− −= t

max e)(tb  

( ) 22 1
− += t

min e)(tb  

( ) ( )1
1

1 2

2
+


=  t

m e
)(tb

 

From (34), (35), we calculate the noise generation coefficients: 

( ) ( ) 22
11 − −+=  eek tt

n  ( )( ) 22 11
− −+=
 tt

т e ek . 

Determination of the optimal discretization interval оt  for the 

simplest condition 21 =  and the most unfavorable, 

concentrated, interference leads to the equation 


−

+
=








1

1

о

о

t

t
о

e

et
, 

where   is the relative mean value of the interference. 

We introduce dimensionless variables in this equation оt=  

and = , after which we transform to the form 

1

1

−

+
=





e

e
.                                                                              (40) 

Similarly, with a uniform distribution of interference in the 

output signal qf  of the EDU over its spectrum for the optimal 

discretization interval оt , we obtain the equation 


−

+
=




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

1

1
2

о

о

t

t
о

e

et
 . 

In the same dimensionless variables, this equation takes the form 

1

12

−

+
=





e

e
.                                                                              (41) 

In figure 2 shows the graphs of the dependence of solutions 

оt=  on the parameter =  provided 21 = . 

 
Curve 1 for equation (40) is frequency-concentrated interference 
and curve 2 for equation (41) is uniformly distributed 

interference over the spectrum of the EDU output signal qf . 

The same figure shows the dependences of solutions оt=  

on the parameter = , determined by the minimum of the 

total relative recovery fallibility 21 += , for concentrated 

interference (curve 3) and uniformly distributed interference 

over the spectrum of the EDU output signal qf  (curve 4). 

In figure 3 shows the dependences of the normalized fallibility 

  on the value  , and the numbering of the curves 

corresponds to the same four options for which the curves in Fig. 
2. 
In the limiting cases, the solution to equations (40) and (41) is 

easily found analytically. So, for 1 ot , using the 

expansion in a power series up to the first term, we have 

21 +
 ote ; o

t
te o −


1 ; 21

2
+

 ote , 

therefore, the solution to equation (40) 

 2оt , 1 , 

and the solution to equation (41) 

= 4112 ,tо  

For relative fallibilitys, we get: 
- for interference concentrated in frequency in the spectrum of 

the EDU output signal qf : 

( )оt== 221 ; 

for interference uniformly distributed over the spectrum of the 

EDU output signal qf : 

( )оt= = 221 . 

Since 1 оt , when the input signal )(g   is restored, the 

interference is amplified and restoration is possible only with a 

sufficiently low level of interference   in the output signal qf  

of the EDU. In this case, the signal )(g   details are restored at 

discretization intervals ot  that are much smaller than the 

averaging interval   of the EAU impulse response, i.e. "super 

resolution" occurs 
. 

 
For 1 оt  both from equation (40) and from equation (41) 

we have  оt ; 1  

 

ζ 
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1 

Figure 2. Graphs of the dependence of the dimensionless 

variable ζ on the parameter  for various types of noise 
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Figure 3. Graphs of the dependence of the random 

discretization error σ on ζ for various types of noise 
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In this case === 221 , no amplification of the 

interference occurs during signal )(g   recovery. 

For interference, concentrated and evenly distributed over the 

spectrum of the EDU output signal qf , from equations (40) and 

(41) we obtain the relationship between the interference 
component of the fallibility and the approximation fallibility: 

1

1

1

1

2
−

+
=





e

e
                                                                        (42) 

1

1

1

12

2
−

+
= 





e

e
                                                                  (43) 

It can be seen from formulas (42), (43) that the desire to reduce 
one of the components of the reconstruction fallibility leads to 
an increase in its other component. So, in the region of 

“superresolution” (at 11  ) we have: 

( )12 2  / ; ( )12 2   / . 
 

5. Conclusions 
 

The analysis revealed that the optimal sampling rate (or interval) 
for analog-to-digital signal processing is directly related, first, 
to the time characteristic of the input signal. Secondly, with 
pulse or frequency response. And, thirdly, with the level of 
interference in the output signal, ie with all the parameters and 
characteristics of the actual measuring channel. 
It is proved that to determine the optimal sampling interval there 
is no need to carry out the actual reconstruction of the input 
signal, although it is possible to do so by the obtained 
expressions. If there is a priori information about the input 
signal, the approximating signal may be supplemented by a 
signal orthogonal to it, to take into account such information. 
Just keep in mind that this increases the power of the input 
signal. In practice, it is sufficient to know the characteristic time 
of the input signal, the relative dispersion of the interference in 
the output signal, and the frequency spectrum determined, 
respectively, in the most unfavorable case, knowledge of the 
ratio of frequency-focused interference. This makes it possible 
to determine both components of the error that affect the choice 
of sampling frequency - the approximation error and the noise 
component of the error as a function of the sampling interval. 
Using one of the criteria of optimality finds the optimal 
sampling interval (or frequency). In this example, the criterion 
of equality of the components of infallibility and the criterion of 
a minimum total error lead to close values of the optimal 
sampling interval, this also occurs in the General case. 
Thus, reducing the sampling rate below the optimum leads to an 
increase in the approximation error and the loss of some 
information about the input signal. At the same time, unjustified 
oversampling, which complicates the technical implementation 
of the device, is not useful because it not only does not increase 
the information about the input signal but if necessary restores 
it leads to its reduction by increasing the noise effect of the 
output signal on recovery accuracy. input signal. The proposed 
method of signal sampling, based on the minimum error of 
information recovery to determine the optimal sampling rate, 
allows us to resolve this contradiction. 
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