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Abstract
In this paper, we investigate an effect that the covariance of an initial distribution for annealed importance sampling (AIS) exerts
on the estimation accuracy for the partition functions of Gaussian restricted Boltzmann machines (RBMs). A common choice
for an AIS initial distribution is a Gaussian RBM (GRBM) with zero weight connections. Such an initial distribution does not
show any covariance between variables. However, target distributions generally allow a finite covariance between variables. We
propose a method to design the covariance matrix of an initial distribution for GRBMs. We empirically analyze the effect of
the initial distribution covariance on the estimation accuracy of AIS. The proposed method for designing initial distributions
outperforms conventional methods under various conditions.
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1 Introduction

Many stochastic latent feature models are defined by un-
normalized probability or density function, and the exact
computation of the normalizing constant, or partition func-
tion, is usually intractable. This causes a problem when
we compare different models or monitor training of mod-
els by checking the probabilities that models assign to val-
idation data. Therefore, approximate inference for parti-
tion functions has attracted substantial research interest.[1–3]

Annealed importance sampling (AIS) is commonly applied
to model validation because unbiased estimates can be ob-
tained with adequate computational resources.[2, 4, 5] If we
do not choose the annealing parameters carefully, however,
AIS can give inaccurate estimates.

AIS uses a tractable initial distribution to estimate the statis-
tics of the intractable target distribution. For restricted

Boltzmann machines (RBMs), a common choice for the
initial distribution is an RBM with zero weight connec-
tions.[4, 5] Particularly for Gaussian RBMs (GRBMs), the
initial distribution is a Gaussian distribution that does not
model any covariance between variables. However, tar-
get distributions generally can model a non-zero covariance
between variables. Although the mathematical framework
for running AIS with RBMs leaves enough flexibility for
choosing a tractable RBM with non-zero weight connec-
tions, there is no established method for designing proper
weights for an initial distribution.

In this paper, we propose an AIS algorithm for GRBMs in
which an initial distribution is a multivariate normal distri-
bution with a nondiagonal covariance matrix. We experi-
mentally compare the proposed method with standard meth-
ods for AIS estimation. The proposed method for designing
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the covariance matrix of an initial distribution outperforms
the standard methods in almost all conditions we examined.

2 Gaussian restricted Boltzmann machines
RBMs are Markov random fields of a bipartite graph that
consists of two layers of variables: a visible layer represent-
ing data, and a hidden layer representing latent variables.[6]

GRBMs are one of the variants of RBMs with real-valued
visible variables v ∈ {0, 1}M . The energy of the state
{h,v} is

E(h,v; θ) = −
M∑
i=1

D∑
j=1

vj
σj
wijhi−

M∑
i=1

aihi+
D∑
j=1

(vj − bj)2

2σ2
j

(1)

where θ = {W,a,b, σ} are the model parameters: W =
(wij) is the connection matrix between hidden units and vis-
ible units; ai and bj are hidden and visible biases and σ2

j are
variances of visible variables within a single mode.

The probability density function of a GRBM over v is

p(v; θ) = p ∗ (v; θ)
Z(θ) = 1

Z(θ)
∑

h

exp(−E(h,v; θ)) (2)

Z(θ) =
∑

h

∫
v

exp(−E(h,V; θ))
D∏
j

dvjc (3)

where p∗ represents the unnormalized probability density,
and Z(θ) is the partition function.

3 Annealed importance sampling
Suppose that we have a distribution defined on some space ν
with a probability density function pB(v) = p∗

B(v)/Z(θB),
where we can efficiently evaluate p∗

B(v), for v ∈ ν, and
we compute the partition function Z(θB). One method
to estimate the partition function is importance sampling
(IS). Assume that we have a tractable distribution defined
by pA s.t. pA(v) 6= 0 ⇐ pB(v) 6= 0, then we
have the following Monte Carlo approximation: Z(θB) =∫ P∗

B(v)
PA(v)PA(v)dv ≈ 1

N

∑N
i
P∗
B(vi)
PA(vi) , where vi ∼ pA. If vi

are i.i.d., this Monte Carlo approximation gives us an unbi-
ased estimate for the partition function as N → ∞. How-
ever, unless pA and pB are sufficiently close, as is not often
the case, the estimate by IS can have a large variance and
cannot be reliable.

The AIS algorithm alleviates this problem by considering a
sequence of annealed intermediate distributions that bridges
the gap between pA and pB .[7] When using AIS, we need
to define this sequence, which we call a path, {pk(v)}
for k ∈ {0, . . . ,K}, where the starting point of the path
p0(v) = pA(v) is the tractable initial distribution, and the

end point pK(v) = pB(v) is the intractable target distribu-
tion. For each pk(v), we also need to define a Markov Chain
Monte Carlo (MCMC) transition operator Tk that renders
pk invariant. Algorithm 1 summarizes the procedure of AIS
in which MCMC transitions and importance weight updates
are alternatively performed.

Algorithm 1 The AIS algorithm

In this paper, we propose an AIS algorithm for GRBMs in which an initial distribution is a multi-
variate normal distribution with a nondiagonal covariance matrix. We experimentally compare the
proposed method with standard methods for AIS estimation. The proposed method for designing
the covariance matrix of an initial distribution outperforms some standard methods in almost all
conditions we examined.

2 Gaussian Restricted Boltzmann Machines

RBMs are Markov random fields of a bipartite graph that consists of two layers of variables: a
visible layer representing data, and a hidden layer representing latent variables [? ]. GRBMs are
one of the variants of RBMs with real-valued visible variables v ∈ RD and binary hidden variables
h ∈ {0, 1}M . The energy of the state {h,v} is

E(h,v; θ) = −
M∑

i=1

D∑

j=1

vj
σj
Wijhi −

M∑

i=1

aihi +
D∑

j=1

(vj − bj)2
2σ2

j

, (1)

where θ = {W,a,b,σ} are the model parameters: W = (Wij) is the connection matrix between
hidden units and visible units, ai and bj are hidden and visible biases, and σ2

j are variances of visible
variables within a single mode.

The probability density function of a GRBM over v is

p(v; θ) =
p∗(v; θ)

Z(θ)
=

1

Z(θ)

∑

h

exp(−E(h,v; θ)), (2)

Z(θ) =
∑

h

∫

v

exp(−E(h,v; θ))

D∏

j

dvj , (3)

where p∗ represents the unnormalized probability density, and Z(θ) is the partition function.

3 Annealed Importance Sampling

for i = 1 to N do
v0 ← sample from p0(v)
w(i) ← 1
for k = 1 to K do

w(i) ← w(i) p∗k(vk−1)
p∗k−1(vk−1)

vk ← sample from Tk(vk,vk−1)
end

end
return Ẑ(θB) = Z(θA)

∑N
i w

(i)/N
Algorithm 1: AIS

Suppose that we have a distribution defined
on some space V with a probability density
function pB(v) = p∗B(v)/Z(θB), where we
can efficiently evaluate p∗B(v) for v ∈ V ,
and we compute the partition function Z(θB).
One method to estimate the partition func-
tion is importance sampling (IS). Assume that
we have a tractable distribution defined by pA
s.t. pA(v) 6= 0 ⇐ pB(v) 6= 0, then we
have the following Monte Carlo approximation:
Z(θB) =

∫ p∗B(v)
pA(v)pA(v)dv ≈ 1

N

∑N
i
p∗B(vi)
pA(vi)

,
where vi ∼ pA. If vi are i.i.d., this Monte
Carlo approximation gives us an unbiased es-
timate for the partition function as N → ∞.

However, unless pA and pB are sufficiently close, as is not often the case, the estimate by IS can
have a large variance and cannot be reliable.

The AIS algorithm alleviates this problem by considering a sequence of annealed intermediate dis-
tributions that bridges the gap between pA and pB [? ]. When using AIS, we need to define this
sequence, which we call a path, {pk(v)} for k ∈ {0, . . . ,K}, where the starting point of the path
p0(v) = pA(v) is the tractable initial distribution, and the end point pK(v) = pB(v) is the in-
tractable target distribution. For each pk(v), we also need to define a Markov Chain Monte Carlo
(MCMC) transition operator Tk that renders pk invariant. Algorithm ?? summarizes the procedure
of AIS in which MCMC transitions and importance weight updates are alternatively performed.

2

AIS actually belongs to a family of algorithms for partition
function estimation based on the following equality:[1, 8, 9]

logZ(θB)− logZ(θA) =
∫ 1

0
Eβ [ ∂

∂β
log p∗

β(v)]dβ (4)

where pβ(·) is a continuously parameterized probability
mass or density function with β ∈ [0, 1] s.t. pβ=0(·) =
pA(·) and pβ=1(·) = pB(·). AIS is a finite difference ap-
proximation of the integral on the r.h.s. of Eq.?? where
the interval [0, 1] is partitioned by a monotonic sequence
{βk} (k = 0, . . . ,K) and pβk(·) is substituted by pk(·).
Although the equality of Eq.?? originates from statistical
physics, one should note that β can be any parameterization
and is not necessarily the inverse temperature.

As with IS, AIS also produces an unbiased estimate as
N → ∞. Especially, the unbiasedness is achieved even
if Tk not return independent samples. However, in practice,
the variance of AIS estimates can be quite large depending
on several factors. First, as suggests, poor mixing of Tk
can damage the estimation accuracy. Recently, introduced
Hamiltonian dynamics for sampling visible units to ease this
problem. Second, the choice of the annealing path can have
a great impact on the estimation accuracy. A typical choice
for the annealing path is the following geometric path:

pk(v) = pβ=βk(v) ∝ pA(v)1−βkpB(v)βk (5)

where {βk} is a sequence of real numbers s.t. 0 = β0 <
β1 < · · · < βK = 1.[4, 7] Note that we introduced a notation
pβ=βk(·) equivalent to pk(·) for convenience. Although the
geometric path is suboptimal in estimation accuracy,[1] this
path is useful and widely implemented.[4, 10] Grosse et al.[5]

recently developed an alternative method for constructing a
path to improve performance.

To determine the reliability of an AIS estimate, we can use
a statistic called the effective sample size (ESS),[5, 7] which
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can be computed as

ESS = N

1 + s2(w(i)
∗ )

(6)

where s2(w(i)
∗ ) is the sample variance of the normalized AIS

weights w(i)
∗ = Nw(i)/

∑N
i=1 w

(i). The ESS roughly mea-
sures the number of effective AIS samples with large AIS
weights. Because the variance of estimates is effectively
dominated by such samples, the variance is approximately
proportional to ESS−1. Note that caution should be ex-
ercised when using the ESS because it can be misleading
when AIS samples fail to find important modes of the target
distribution.

AIS for GRBMs

Suppose that we estimate the partition function of a GRBM
with parameters θB = {WB ,aB ,bB , σB} via AIS by using
another GRBM with parameters θA = {WA,aA,bA, σA}
as an initial distribution. Because the MCMC operators

for intermediate distributions of RBMs along the geometric
path are not efficient, Salakhutdinov and Murray[4] instead
proposed the use of the geometric path between the joint
distributions of RBMs. The energy of intermediate distribu-
tions becomes

Eβ(h,v) = βE(h,v; θB)+(1−β)
D∑
j=1

(vj − bAj )2

2σA2
j

(7)

where we assumed a convention that an initial distribution
has zero weight, i.e., WA

ij = 0. This quite prevalent as-
sumption allows us to easily compose a tractable initial dis-
tribution. Although there is an alternative way to compose
a tractable RBM with non-zero weight connections (e.g.,
by limiting the number of hidden units), no extensive re-
search has been made on this point. Therefore, almost all
application studies rely on the zero weight convention. Be-
cause the intermediate distributions defined as Eq ??, are
also GRBMs, we can easily evaluate the logarithm of the
unnormalized density as follows:

log p∗
β(v) = −β

D∑
j=1

(vj − bBj )2

2σB2
j

+
M∑
i=1

log

1 + e
β

(∑D

j=1
wBij

vj

σB
j

+ai
)− (1− β)

D∑
j=1

(vj − bAj )2

2σA2
j

(8)

The MCMC transition operators that render pβ(v) invariant are also easily obtained as

pβ(hi = 1|v) = sigm

β(
D∑
j=1

WB
ij

vj
σBj

+ aBi )

 , pβ(vj |h) = N
(
vj |mj(β,h), σ2

j (β)
)

(9)

where σ2
j (β) =

{
β

σA
2

j

+ 1−β
σA

2
j

}−1
, mj(β,h) =

σ2
j (β)

{
β

σB
2

j

(σBj
∑M
i=1 W

B
ij hi + bBj ) + (1−β)

σA
2

j

bAj

}
,

sigm(x) = 1/(1 + exp(−x))), and N (·|µ, σ2) denotes
a normal distribution with mean µ and variance σ2.

Model parameters that enable fast mixing, i.e., hot distri-
butions, are suitable for initial distributions.[5] Therefore,
the weight matrix of an initial distribution is usually set to
zero so that it has only a single mode. Another commonly
adopted technique is to choose an initial distribution that
approximates the target distribution in terms of its first and
second moments. Assuming the weight matrix is zero, this
can be performed by setting bAj and σA

2

j to the estimated
means and variances of the target distribution. The estima-
tion can be carried out by using data that are used to train

the target distribution[4] or by using MCMC approximation
with the target distribution.

4 Initial distributions with nondiagonal co-
variance matrices

Initial distributions given in the previous section do not
model any dependency between variables; the covariance
matrix of an initial distribution is restricted to be diagonal.
However, target distributions can generally have a non-zero
covariance between variables. This observation motivates
us to develop a method that manages initial distributions
with any covariance matrix.

We propose the following energy function for intermediate
distributions instead of Eq.7:

Eβ(h,x,v) = βE(h, v; θβ) + (1− β)


D∑
j=1

(vj − xj)2

2σB2
j

+ 1
2(x− bA)TΛ(mathbfx− bA)

 (10)
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where x ∈ RD are newly introduced hidden variables that
obey a multivariate normal distribution with a covariance
matrix Λ−1/(1 − β) and means bA. At the point β = 0
(i.e., the initial distribution), the variables control the means
of visible variables that are also normally distributed, given

x. It is easy to obtain the marginal for v, which is also nor-
mally distributed. Based on these observations, we can gain
the logarithm of the unnormalized density of intermediate
distributions as follows:

log p∗
β(v) = −

D∑
j=1

β
(vj − bBj )2

2σB2
j

+
M∑
i=1

log
{

1 + e
β(
∑D

j=1
WB
ij )

vj

σB
j

+ai
}
−(1−β)1

2(v−bA)T (Λ−1 +ΛB
−1

)−1(v−bA)

(11)

where we define ΛB = diag(σB−2

1 , · · · , sigmaB−2

D ). This
joint distribution is illustrated as an undirected graph in Fig-
ure 1. Note that we can obtain i.i.d. samples from the initial
distribution because it is an unimodal normal distribution.

Equation ?? shows that the covariance matrix and means
of the initial distribution are

∑A = Λ−1 + ΛB−1
and bA.

Conversely, we can design the initial distribution to have a

covariance matrix
∑A by setting Λ = (

∑A−ΛB−1)−1.

Because of the conditional independence p(h,x|v) =
p(h|v)p(x|v), the MCMC transition operators can be de-
fined as follows:

pβ(hi = 1|v) = Sigm

β(
D∑
j=1

WB
ij

vj
σBj

+ aBi )

 (12)

pβ(x|v) = N(x|(Λ + ΛB)−1(ΛbA + ΛBv), (Λ + ΛB)−1/(1− β)) (13)

and

pβ(vj |x,h) = N

(
vj |β(σBj

M∑
i=1

WB
ij hi + bBj ) + (1− β)xj , σB

2

j

)
(14)

Figure 1: Proposed model

The conditional distributions over x given v are multi-
variate normal distributions with covariance matrices (Λ +
ΛB)−1/(1 − β). Sampling from these distributions can be
efficiently performed because the covariance matrices are
merely scaled on the annealing path; few matrix operations
are required for each MCMC transition once the eigenvec-
tors and eigenvalues of Λ + ΛB are computed.

Figures 2 and 3 show the evolution of pk(v) along the
annealing path with the conventional and the proposed
method. A target distribution is a GRBM with M = 2
and D = 2 that has four modes: two large and two small.
Initial distributions have the same moments (up to the sec-
ond order) as the target distribution. We can observe that
the conventional method assigns more sampling points to
small modes at the end of the annealing path (β = 1.0)

than the proposed method. Therefore, the proposed method
should produce more accurate estimates than the conven-
tional method.

Figure 2: Heatmaps (white denotes large) of annealed
distributions pβ by the conventional method (labeled as
AIS). Corresponding values of beta are shown below.
Points (best viewed in color) are the sample points of AIS.

Figure 3: Heatmaps as Fig.2 by the proposed method
(AIS_COV).
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4.1 Remarks

Gelman and Meng[1] showed that the variance of estimates
based on Eq.[4] can be decomposed into two factors: one
comes from the difference of the partition functions Z(θB)
and Z(θA), and one comes from the difference of the shapes
of the distributions pB(v) and pA(v). By selecting the mo-
ments of an initial distribution, we can minimize the second
factor. Gelman and Meng[1] derived a lower bound for this
factor and showed that the optimal initial distribution min-
imizes the Hellinger distance between pB(v) and pA(v).
However, our current strategy of matching the moments be-
tween pA(v) and pB(v) corresponds to minimization of the
KL divergence DKL(pB ||pA). Therefore, this strategy is
suboptimal.

It is convenient to consider theα-divergence[11] to see the re-
lationship between our strategy and the optimal one. The α-
divergence forms a family of divergences parameterized by
a scalar parameter α, and includes both the KL divergence
and the Hellinger distance as its instances. The Hellinger

distance corresponds to α = 0.5 and the KL divergence cor-
responds to α = 1. This suggests that our strategy approxi-
mates the optimal strategy by minimizing the α-divergence
of α = 1 instead of the optimal value α = 0.5.

4.2 Related methods

Jascha Sohl-Dickstein et al.[16] recently proposed to use
Hamiltonian dynamics for AIS to accelerate the mixing
of Markov chains and demonstrated the efficacy on mean-
covariance RBMs. Because MCMC transition operators
and an initial distribution can be defined independently, our
method would be extended to use Hamiltonian dynamics
with little effort.

Roger Grosse[11] recently reported that annealing along the
moment averaging path empirically achieves better estima-
tion accuracy than along the geometric path. Because the
choice of the annealing path is independent of the choice of
an initial distribution, our method can readily be used with
the moment averaging path.

Figure 4: Estimated logZ(θB) for tractable GRBMs. Error bars show ±3θ intervals where σ2 is the sample variance of
the AIS estimate.

Figure 5: ESS (the larger the better) for tractable GRBMs

5 Experiments
In our experiments, we compared the following methods
for designing initial distributions: (AIS) the conventional
method with Eq.7 where bA and σA are identically chosen
as the target distribution; (AISM) another baseline method
based on Eq. 7 where bA is determined from the target dis-
tribution but σA is simply determined as σA = σB ; and
(AISC) the proposed method with Eq. 10 where bA and
Λ are chosen according to the target distribution statistics.

Note that we examine AISMMean as well as AIS and AISC
to better illustrate the impacts that the covariance matrix of
initial distributions can have on the estimation accuracy. For
all three methods, we approximated the first and second or-
der moments of target distributions by using samples drawn
from 100 independent Markov chains of length 5000 where
the initial 100 samples were discarded as burn-in samples.
Estimation was made with a various number of intermedi-
ate distributions K. The annealing schedule {βk} was di-
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vided into four periods: βk uniformly spaced from 0 to 0.1,
βk uniformly spaced from 0.1 to 0.25, βk uniformly spaced
from 0.25 to 0.5, and βk uniformly spaced from 0.5 to 1;
K/4 intermediate distributions were assigned to all of these
periods. The numbers of AIS runs were identically set to
5000.

For each combination of a method and a target distribution,
we report two kinds of results. First, we report estimated
logZ(θB) as a function of K to see a trade-off between
computational burden and estimation accuracy. Second, we
show the ESS as a function of K to compare the reliability
of estimates. As mentioned earlier, the ESS can be mis-
leading when AIS fails to allocate samples to large modes
of a target distribution. Nevertheless, we believe that this
statistic is reliable in almost all cases because the estimated
partition functions are near to the true value (for tractable
GRBMs) or roughly coincide with each other in many cases.
Even when estimates seem to be unreliable (e.g., results of
AISMean for CD1(200) for small K), the corresponding
ESSs are small and thus consistent to the estimation relia-
bility.

We used GRBMs trained on 100,000 of 6 × 6 color (i.e.,
3 channels) image patches extracted from the CIFAR-10
dataset.[12] Thus the number of visible variables was 108 for
all GRBMs. The image patches were contrast-normalized
and whitened before training. GRBMs were trained through
80,000 parameter updates with three methods: (CD1) con-
trastive divergence (CD)[6] with one transition; (CD25) CD
with 25 steps of transitions; and (PCD) persistent con-
trastive divergence.[13]

We first evaluated the three methods for designing initial

distributions on GRBMs with only 20 hidden units. The par-
tition functions of such GRBMs can be exactly computed by
exhaustive summation over all 220 hidden configurations.

The results are shown in Figures 4 and 5. While none
of the three methods severely underestimated/overestimated
the log partition functions, the choice of method critically
affected the variances of estimates. AISM showed greater
variances than the other two methods in almost all condi-
tions. AIS showed the same or slightly smaller variances
than AISM. AISC clearly showed smaller variances than
these two conventional methods and returned more accurate
estimates. The plots of ESS were consistent to these obser-
vations: AISC achieved greater ESS than AIS and AISM.

Full-size, intractable GRBMs: We next evaluated the
methods on intractable GRBMs with 200 hidden units. The
results are shown in Figures 6 and 7. The largest error was
given by AISM for CD1(200) for K = 100, which under-
estimated the best estimate (given by AISC for large K)
by nearly 1 nat. This estimate and the one by AISM for
CD1(200) for K = 300 exhibited especially great variances
in AIS weights, which caused the lower bounds of the esti-
mates to be negative. Under almost all the conditions, AISM
showed greater variances than AIS and AISC. Like the re-
sults for the tractable GRBMs, AISC produced smaller es-
timation variances than AIS in most conditions. The plots
of ESS were consistent to the variances as well. We there-
fore conclude that (1) the variances or covariances of initial
distributions critically dominate the estimation accuracy of
AIS, and (2) AIS starting from initial distributions that ap-
proximate the covariances of target distributions gives more
accurate estimates than conventional approaches.

Figure 6: Estimated logZ(θB) for tractable GRBMs. Error bars show ±3θ intervals as in Figure 4.

Figure 7: ESS for tractable GRBMs
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6 Conclusion

We have proposed an algorithm for designing the covariance
matrix of an initial distribution for estimating a GRBM par-
tition function via AIS. We have empirically evaluated the
estimation accuracy for tractable and intractable GRBMs
and compared the proposed method with conventional ones.
We have observed that the covariances of initial distributions

have a significant impact on the estimation accuracy, and
our proposed method outperformed the conventional meth-
ods under almost all the conditions in our experiments.
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