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ABSTRACT

This paper focuses on an important and very common problem and presents a theoretical framework for solving it: “determining
the risk of unsatisfied request from users placing random demands on a time interval”. For the common case of a single source
servicing a number of consumers, a closed-form solution has been derived for the risk of collision of random demands. Based on
the closed-form solution, an efficient optimisation method has been developed for determining the optimal number of consumers
that can be serviced by a single source, such that the probability of unsatisfied demand remains below a maximal tolerable
level. A central part of the proposed theoretical framework is a general equation evaluating the risk of unsatisfied demand by the
expected fraction of time of unsatisfied demand. The derived equation covers multiple sources servicing multiple consumers.
Finally, the conducted parametric studies revealed an unexpected finding: the risk of collision of random demands on a time
interval is practically insensitive to the standard deviations of the durations of demands. This surprising result provides the
valuable opportunity to work with random demand times characterised by their means only, without supplying their probability
distributions or variances.
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1. INTRODUCTION
Risk is often linked with the collision of demands from con-
sumers on a finite time interval for a particular resource, at
random times and for specified durations. Suppose that the
source of the supplied resource can only service a single
consumer at a time. Unsatisfied demand occurs if one or
more demands arrive at a time during which the source is
engaged in servicing another demand.

The need for assessing this risk is often present in many
manufacturing processes where a number of machine centres
demand expensive measuring equipment, control equipment,
production equipment or an operator, at a random time dur-
ing the production process. Because the control equipment

is expensive and unique, it is usually not feasible to equip
each machine centre with a separate piece of equipment.

The demands for a resource may occur at random times dur-
ing a shift. If the start of demand for consumer i is denoted
by “si” and the end of demand for consumer i is denoted by
“ei”, Figure 1 illustrates this problem by three machine cen-
tres demanding X-ray portable measurement equipment[1]

for measuring the residual stresses at the surface of quenched
components, at random times s1, s2 and s3 for duration in-
tervals (s1, e1), (s2, e2) and (s3, e3).

If a single piece of measuring equipment is available, a simul-
taneous demand from more than a single centre cannot be
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satisfied. The overlapping region (s3, e2) in Figure 1 marks
unsatisfied demand on the supplied resource.

Figure 1. Constraint on the supplied resource for three
machines

Here are other examples of the risk associated with collision
of random demands.

• Injured or critically ill patients demanding randomly
a piece of life-saving medical equipment. The equip-
ment can be used by a single patient at a time.

• Emergency calls for a nurse from critically ill patients
in a hospital ward. The nurse can service a single pa-
tient at a time (There will be no unsatisfied demands
if the times between the emergency calls are greater
than the maximum time needed for attending a call).

• A number of machines, each of which places a random
demand during a given time interval, for the mainte-
nance services of a single available operator.

• Spare equipment in a warehouse servicing random de-
mands during a specified time interval. After a demand
from a customer, the warehouse needs a minimum time
to replenish the dispatched equipment before the next
demand can be satisfied. In this case, the risk of unsat-
isfied demand materialises if one or more customers
arrive within the critical time interval needed for re-
plenishing the equipment and making it available for
the next customer.

In queuing theory, the Poisson process has been traditionally
used as a statistical model for random events occurring in a
time interval.[2–6] Neither of these classical comprehensive
texts nor more recent comprehensive texts devoted to various
problems in probability and queuing theory[7–12] treats the
question related to risk of unsatisfied demand from random
requests on a time interval.

From Figure 1, it appears that the problem of unsatisfied de-
mand can be reduced to a problem of geometrical probability
where a segment of specified length L is covered by ran-
domly located smaller segments with different lengths. The
probability of unsatisfied demand can then be estimated by
the probability of an overlap by two or more segments. The
expected time of unsatisfied demand is numerically equal to
the expected fraction of overlapped area from two or more
than two segments.

There are already a number of publications related to cover-
ing the circumference of a circle with segments or a linear

segment with segments.[13–19]

Stevens[14] derived closed-form expressions for the proba-
bility of covering a circle by a specified number of arcs of
the same length with random locations and for the proba-
bility of existence of a specified number of uncovered gaps.
Randomly positioned arcs with different lengths have been
considered in Ref.15, where a condition has been derived for
covering the circle with probability equal to one.

A segment covered by randomly located smaller segments
has been considered in Ref.18, where the probability of exis-
tence of a segment which intersects every other segment has
been estimated. An asymptotic estimate of the largest num-
ber of pairwise non-intersecting intervals among n random
intervals has also been provided.

Despite the progress made in problems related to coverage of
a large segment with smaller segments with random location,
no study seems to exist related to estimating the expected
lineal fraction covered by m or more random segments and
to the probability of an overlap of segments with different
size. The answer to these questions however, is the key to
evaluating the risk of unsatisfied demand.

An important aspect of the problem related to risk associated
with unsatisfied demand on a time interval is the maximum
tolerable level of the probability of unsatisfied demand. The
required level of the probability of unsatisfied demand de-
pends on the magnitude of the consequences resulting from
unsatisfied demand and must be set individually by the risk
experts in the respective application area. Thus, for injured
or critically ill patients demanding life-saving medical equip-
ment, the consequences of unsatisfied demand are grave. In
this case, unsatisfied demand means human fatalities and
the maximum tolerable level of the probability of unsatisfied
demand is very low.

In the case where the monitoring services of a single avail-
able operator are needed for the successful operation of a
number of machines, each of which places random demands
during a given time interval, the consequences of unsatisfied
demand are significant and the maximum tolerable level of
the probability of unsatisfied demand is also low.

For machine centres demanding for example measuring
equipment to control the surface roughness of machined
work-pieces, the consequences of unsatisfied demand are
moderate and the corresponding tolerable level of the proba-
bility of unsatisfied demand is moderate.

For machine centres demanding a piece of control equipment
measuring the wear-out of the bearings of rotating shafts, the
consequences of unsatisfied demand are low because failure
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is not imminent. Accordingly, the tolerable probability of
unsatisfied demand is high. Questions of significant practical
importance, directly related to the problem of unsatisfied
random demand, are:

(1) What is the probability that there will be time during
the specified operation interval when the available re-
source will be simultaneously demanded by more than
one consumer?

(2) What is the maximum number of consumers that can
be serviced by a single source so that the probability
of unsatisfied demand remains below the maximum
acceptable level?

(3) What is the expected fraction of time during which
the m > 1 sources will fail to satisfy simultaneous
overlapping demands from m+ 1 or more consumers?

The purpose of this study is to provide answers to these
questions.

2. RISK OF COLLISION OF RANDOM DE-
MANDS ON A TIME INTERVAL

Suppose that n consumers start their demands at random
times s1, s2, · · · , sn, for durations d1, · · · , dn, during a time
interval 0, L(d1 + d2 + · · ·+ dn < L) (see Figure 2a).

Figure 2. Random demands in a finite time interval (0, L)

Suppose that the times of random demands are uniformly
distributed along the length of the time interval (0, L). Let
A1, A2, · · · , An denote the events “the last demand has a
duration d1, d2, · · · , dn”, correspondingly. The probability
of the event B that there will be no unsatisfied demand can
be determined by the following probabilistic argument.

Initially, the conditional probability P (B|An) will be de-
termined the probability that there will be no unsatisfied
demand, given that the last demand has a duration dn. Be-
cause every consumer has an equal chance to be the last
consumer, the probabilities P (Ai) of the events Ai are all
equal to 1/n (p(A1) = 1/n).

The probability that there will be no overlapping random
demands from n users will be derived by using a transform
technique. Configurations X where no overlapping demands

are present will be transformed to simpler configurations Y
whose probability is easier to determine. Because of the bijec-
tion (one-to-one correspondence) between X-configurations
and Y -configurations, determining the probability of exis-
tence of a configuration Y will measure the probability of a
configuration X .

Suppose that an X configuration is present. In this case,
there are no overlapping demand times (unsatisfied demand)
Figure 2a. The demand intervals can then be “cut out” of
the time interval 0, L and the remaining parts can be brought
together to form a shorter length L− (d1 + d2 + · · ·+ dn−1)
(see Figure 2b).

As a result of this this operation, the points s1, s2, · · · , sn

marking the start of the random demands for configurations
X in Figure 2a will transform into a configuration Y for
which the points s′1, s

′
2, · · · , s′n are uniformly distributed

along the length L − (d1 + d2 + · · · + dn−1). In other
words, for each X-configuration, there is a corresponding Y -
configuration characterised by n uniformly distributed points
s′1, s

′
2, · · · , s′n along the length L− (d1 + d2 + · · ·+ dn−1).

Now suppose that a set of n random points s′1, s
′
2, · · · , s′n

are randomly generated along the length L. If all n random
points fall within the length L − (d1 + d2 + · · · + dn−1)
(if configuration Y is present), by inserting the correspond-
ing demand intervals di(i = 1, · · · , n − 1) after each start
of demand si, an X-configuration will be obtained with n
random non-overlapping demands along the interval 0, L.
In words, for each Y -configuration there is a corresponding
X-configuration.

Because of the one-to-one correspondence between a con-
figuration X and configuration Y , the probability of X-
configuration can be measured by the probability of the
Y -configuration. The probability of Y -configuration is
the probability that n uniformly distributed random points
s′1, s

′
2, · · · , s′n on the interval (0, L) will fall in the in-

terval L − (d1 + d2 + · · · + dn−1) and is given by(
L−(d1+d2+···+dn−1)

L

)n

. This is also the conditional proba-
bility that there will be no unsatisfied demand given that the
last demand has a duration dn.

(1)

The absence of unsatisfied demand (event B) however, can
occur in n different ways. The absence of unsatisfied de-
mand can occur given that the demand of length dn is the
last demand, given that the demand of length dn−1 is the last
demand and so on.
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According to the total probability theorem,

(2)

The probabilities P (B|Ai)(i = 1, · · · , n−1) are determined
in a similar fashion. As a result, the expression

(3)

is obtained for the probability that there will be no unsatis-
fied random demand on the interval (0, L). If D =

∑n
1 di

denotes the sum of durations of all demands, the probability
of unsatisfied demand P (B̄) = 1 − P (B) can be obtained
as a probability of a complementary event:

(4)

This equation has been confirmed by the results from a sim-
ulation algorithm. Thus, for four consumers demanding a
particular resource for d1 = 5 min, d2 = 10 min, d3 = 20 min,
and d4 = 35 min respectively, during a time interval of 10
hours, the probability of unsatisfied demand calculated from
equation (4) is 0.3. This probability has been confirmed by
the probability of 0.3 calculated from the simulation.

An important special case is obtained if the durations of all
random demands are equal. Substituting D − 1 = d2 =
· · · = dn = d in equation (4) then yields

(5)

The analysis of equation (5) reveals a useful result. Suppose
that the total length of demand D = n× d is kept constant
and only the number of customers n and the durations d of
their demands are varied in such a way that D = n× d does
not change. In other words, d = D/n. Equation (5) then
becomes

(6)

With increasing n, P (B̄) tends to unity.

Indeed,

Therefore, limn→∞[P (B̄)] = 1.

For D = 50 min total demand and time interval L=600 min,
the dependence presented by equation (6) has been given in
Figure 3.

As can be seen from the graph in Figure 3, if the supplied
resource is finite and sufficient for a total duration of sup-
ply of D hours (e.g. compressed gas in bottles, chemicals,
etc.), a strategy involving splitting the total resource among a
fewer number of consumers is better than a strategy based on
splitting the resource among a larger number of consumers.
The first strategy is characterised by a significantly smaller
probability of unsatisfied demand.

Figure 3. Probability of unsatisfied demand as a function of
the number of consumers. The total duration of the demand
from all consumers is the same - 50 min.

3. INSENSITIVITY OF THE RISK OF COLLI-
SION OF RANDOM DEMANDS ON THE VARI-
ANCE OF THE DEMAND TIME

Simulation experiments have been conducted involving a
constant (fixed) number of random demands on a specified
time interval. Each consumer places exactly one demand,
randomly located in the specified time interval (see Figure
2a):

Increasing the standard deviation of the duration of random
demands reveals a rather unexpected trend (see Figure 4).
The simulation results clearly show that the probability of un-
satisfied demand practically does not vary with varying the
standard deviation of the demand time. In the experiments
presented in Figure 4, the durations of the random demands
follow a normal distribution with a specified mean (80 min,
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60 min, 50 min and 40 min) and a standard deviation varying
in the interval 0-9 minutes. The results in Figure 4 feature a
single source and 4 consumers.

Figure 4. Dependence of the risk of collision of random
demands on the standard deviation of the durations of the
demand times for a single available source capable of
servicing a single consumer at a time. The durations of the
demands follow a normal distribution with a specified mean,
which is kept constant.

To check whether these results are caused by the symme-
try of the Gaussian distribution, the simulation experiments
were repeated with an asymmetrical log-normal distribution
with mean µ = 180 min and standard deviation varying in
the range (0, 36 minutes) and duration of the operation time
interval of 300 hours. All 15 consumers were characterised
by the same mean demand time of 180 minutes (which was
kept constant) and the same standard deviation. The com-
mon standard deviation characterising the demand time of
each consumer was varied in the interval 0, 36 minutes. The
trend was the same; the probability of unsatisfied demand
practically did not vary with varying the standard deviation
of the consumers’ demand time (see Figure 5).

Figure 5. Dependence of the risk of collision of random
demands on the standard deviation of the durations of
demands. The durations of random demands follow a
log-normal distribution.

These results can be rationalised by using the analytical ex-
pression (equation 1) regarding the probability that there will
be no unsatisfied demand from n random consumers on a
time interval (0, L), given by:

where xi (i = 1, · · · , n− 1) are the durations of the random
demands from the consumers. The duration of the demand
xn from the last consumer has been discarded, because it
cannot possibly contribute to the probability of unsatisfied
demand.

If the durations x1, x2, · · · , xn−1 of the random demands
are now realisations of a random variable X following a
statistical distribution with mean and standard deviation σ,
even for a relatively small number of consumers, the sum of
the durations

∑n−1
i=1 xi in the above equation can be approx-

imated reasonably well with
∑n−1

i=1 xi ≈ (n − 1)µ and, as
a result, the probability p0

n that there will be no unsatisfied
demand will be practically insensitive to the variance of the
random variable X standing for the durations of the demand
times. The probability p0

n will depend only on the expected
value µ = E(X) of the demand times. Because the proba-
bility of unsatisfied demand pn is given by pn = 1− p0

n, the
probability of unsatisfied demand will be practically insen-
sitive to the variance (standard deviation σ) of the random
demand times X .

These results clearly show that reducing the variances of the
demand times practically has no impact on the probability
of unsatisfied demand. This rather unexpected result pro-
vides the valuable opportunity to work with random demand
times characterised by their means only without requiring
information related to the variance of the demand times.

4. DETERMINING THE OPTIMAL NUMBER OF
USERS SERVED BY A SINGLE SOURCE

Consider a finite time interval during which a number of
consumers demand a particular service independently and
randomly. Suppose that the source needs a minimum time
interval to recover and stabilise after a demand from a con-
sumer. Collision among user demands occurs if a random
demand arrives while the source is servicing another user.

Decreasing the expected number density of the users arriv-
ing randomly during a time interval is an efficient way of
decreasing the probability of a collision between the random
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demands. Such a decrease however may come at a cost. The
number of serviced users may be decreased unnecessarily.

Consider now random demands with density λ (number of
requests per unit time) following a homogeneous Poisson
process on the time interval (0, L). Assume for the sake
of simplicity that a time s is needed for servicing each ran-
dom demand. The random demands could be requests for
using unique equipment; requests for a particular resource
(e.g. water vapour, electrical power, compressed air, etc.),
requests for a nurse from critically ill patients in a hospi-
tal ward, requests for repair because of failed equipment,
etc. A basic property of the homogeneous Poisson process,
well documented in books on probabilistic modelling[5, 20, 21]

states: Given that n random requests following a homoge-
neous Poisson process are present in the finite interval 0, L,
the times of the random requests are distributed uniformly
over the time interval 0, L.

On the time interval (0, L) there can be zero random demands
(event A0), exactly one random demand (event A1),· · · , ex-
actly k random demands (event Ak), and so on. Events
A0, A1, · · · , Ak, · · · , are mutually exclusive events. The
probability of exactly k random demands is given by the
Poisson distribution:

(7)

The probability p(B) that there will be no collision of ran-
dom demands on the time interval 0, L is given by

(8)

where p(B|Ak) is the conditional probability that there will
be no collision of random demands given that exactly k ran-
dom demands occur during the time interval (0, L). p(B|Ak)
can be determined considering that if the homogeneous Pois-
son process is conditioned on the number of random de-
mands, the random demands will be uniformly distributed
along the time interval (0, L).

The maximum possible number of demands for which time
gaps of size at least equal to d between each adjacent pair
of demands can still be present is given by r = (L/d) + 1,
where (L/d) is the greatest integer part of the ratio L/d

which does not exceed it. Denote with B the event “there
is no unsatisfied demand”, which is equivalent to the event
“there are gaps of size at least d between each adjacent pair
of random demands”.

According to Equation (1), the conditional probability

p(B|Ak) that there will be no unsatisfied demand given that
k random demands are present on the time interval (0, L) is
given by

(9)

for k ≤ r, and by p(B|Ak) = 0, for k ≥ r + 1.

The probability of exactly k random demands k ≤ r on the
time interval (0, L) and no unsatisfied demand is given by

(10)

According to the total probability theorem, the probability
that there will be no unsatisfied demand is given by

(11)

which results in

(12)

where r = [L/d] + 1.

Expanding the sum in Equation (12) results in

(13)

The probability pc that two or more random demands will
occur within the critical time d is

(14)

This is also the probability that there will be unsatisfied ran-
dom demand (that two or more random requests will occur
within the critical time interval d).

Figure 6 gives the dependence of the probability of unsatis-
fied demand for a single source and critical time interval d
= 1 h for servicing a single random demand. The operating
time interval is L = 100 h. The probability of unsatisfied
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demand has been plotted for different values of the number
density of the demands.

Figure 6. Probability of unsatisfied demand on a finite
operational time interval of 100 h. The random demands
follow a homogeneous Poisson process and each random
demand requires 1 h service time.

For a mean number of 14 demands per 100 h, there is already
about 80% probability of unsatisfied demand. Clearly, the
probability of unsatisfied demand is substantial and should
always be taken into consideration in risk assessments.

The dependence in Figure 6 can be used as a basis of a
method for determining the optimal number of users that can
be serviced by a single source such that the risk unsatisfied
demand remains below a maximal tolerable level.

For a specified maximum acceptable probability of unsatis-
fied demand pmax

c , for example pmax
c = 0.14, the maximum

possible number density of demands λmax is determined by
solving:

with respect to λ. This can be done by using the standard
repeated bisection method.

Alternatively, for the specified maximum acceptable prob-
ability of unsatisfied demand pmax

c = 0.14, the maximum
possible number density of demands λ∗ = 0.04h−1 can be
determined directly from the plotted dependence given by
equation (14) (see the arrows in Figure 6). The number den-
sity envelope guarantees that whenever the number density
of the random demands does not exceed λ∗ = 0.04(λ ≤ λ∗),
the probability of unsatisfied demand will not exceed the

critical level of 14%.

Reducing the probability of collision of random demands
below the pre-set level of 14% can be achieved by reducing
the number density of the demands, but this will reduce un-
necessarily the size of the serviced system and the costs. The
optimal level of number density of demands corresponds to
the maximum acceptable level (14%) of the risk of unsatis-
fied demand.

If the average number density of the random demands char-
acterising a single consumer is λ0, the total number density
of the random demands characterising all n consumers is
λ = n× λ0. Determining the maximum acceptable demand
rate λ∗ which guarantees a specified tolerable probability of
collision of random demands can be determined from solving
equation 14 with respect to λ.

Dividing the maximum acceptable demand rate λ∗ to λ0
yields the maximum acceptable number n∗ of consumers
that can be serviced by a single source:

(15)

The purpose of optimising the number density of random de-
mands is not only to minimise the risk of unsatisfied demand
below a maximum acceptable level but also to strike an opti-
mal balance between risk and cost. The risk of unsatisfied
demand should not be reduced too far below its maximal
tolerable level because this incurs extra costs for providing
extra sources supplying the particular service in demand.

The described method has wide potential applications in a
number of critical situations. For example, if the demands
are emergency calls for a nurse arriving from critically ill pa-
tients in a hospital, the obtained hazard rate envelope can be
used to determine the maximum number of such patients that
could be looked after by a single nurse so that the probability
of unattended call remains below a maximum acceptable
level. The consequences of an unattended patient’s call are
grave (an unattended call could result in a human fatality)
and to keep the risk low, the specified tolerable probability
of unsatisfied demand should be low.

If the average number density of the calls characterising a sin-
gle critically ill patient is λ0, the total number density of the
calls characterising all n critically ill patients is λ = n× λ0.
Determining the maximum acceptable call rate λ∗ which
guarantees with the specified tolerable probability that there
will be no patients’ calls while the nurse is servicing another
patient can be determined using the presented method. Di-
viding the maximum acceptable call rate λ∗ to λ0 yields
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the maximum acceptable number n∗ of patients that can be
looked after by a single nurse (equation 15).

5. ESTIMATING THE RISK OF UNSATISFIED
DEMAND BY THE EXPECTED FRACTION OF
THE TIME OF UNSATISFIED DEMAND

Suppose that m pieces of a particular resource are available
and m simultaneous demands can be satisfied, but not m+ 1
or more simultaneous demands. If the different demands are
represented as overlapping segments with different lengths
di, the risk of unsatisfied demand can also be estimated with
the expected fraction of length covered simultaneously by
more than m random segments randomly located along a
segment with length L.

If the duration of the demand for the ith consumer is equal
to di, during the operation period with length L, the ratio of
the duration of the demand and the time interval “L” will be
denoted by ψi = di/L.

Before determining the expected time fraction of unsatis-
fied demand, the following theorem related to a coverage of
space with volume V by n 3-D interpenetrating objects with
volumes vi(i = 1, · · · , n), randomly placed in the volume
V , will be stated and proved. The volume fractions of the
separate objects will be denoted by ψi = vi/V . The cover-
age of a point from the volume V is a “coverage of order k”
if exactly k objects cover the point. The following theorem
then holds.

Theorem 1. The expected covered fraction of order k(k =
0, 1, · · · , n) from the volume V , by n interpenetrating ob-
jects with volume fractions ψi, is given by the k+1st term of
the expansion

∏n
i=1[(1− ψi) + ψi].

Proof. The volume fraction covered by exactly m objects
can be determined from the probability that a randomly se-
lected point in the volume V will sample simultaneously m
overlapping (interpenetrating) random objects. The proba-
bility that a randomly selected point in the volume V will
sample simultaneously m overlapping objects is equal to
the probability that a fixed point from the volume V will be
covered exactly m times by randomly placed objects in the
volume V .

Let p0 denote the probability that the fixed point will not be
covered, p1 denote the probability that the fixed point will
be covered by exactly one random object,..., and pn denote
the probability that the fixed point will be covered by all n
random objects.

Because the locations of the random objects are statistically
independent events, the probability of the event A0 that a
fixed point in the volume will not be covered by any of the

random objects is given by

(16)

which is the probability that the fixed point will not be cov-
ered by the first, the second,...,the nth object.

The probability of the event A1 that exactly one random ob-
ject will cover the fixed point, is a sum of the probabilities
of the following mutually exclusive events: the first object
covers the fixed point and the rest of the random objects do
not, the second object covers the fixed point and the rest of
the random objects do not and so on. As a result, the proba-
bility P (A1) that the fixed point will be covered by exactly
one random object is given by

(17)

The probability that exactly two random objects will cover
the fixed point is a sum of the probabilities of the following
mutually exclusive events: the first and the second random
object cover the fixed point and the rest of the objects do not,
the first and the third random object cover the fixed point and
the rest of the random objects do not and so on, until all pos-
sible combination of two objects out of n are exhausted. As
a result, the probability that the fixed point will be covered
by exactly two random objects is given by

(18)

where
∑

i1,i2 denotes the sum over all possible combina-
tions of two indices i1 and i2 out of n. The number of these

combinations is
(
n

2

)
= n!

2!(n−2)! = n(n−1)
2 .

Continuing this reasoning through the cases 3, 4, · · · , n, the
probability P (Am) that the fixed point will be covered by
exactly m random objects is given by

(19)

where
∑

i1,··· ,im denotes the sum over all distinct combina-
tions of m indices i1, i2, · · · , im out of n. The number of

these combinations is
(
n

m

)
= n!

m!(n−m)! .
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The fixed point can either remain uncovered, covered by
exactly one, two,...,n objects, and there are no other alterna-
tives. Therefore, the events A0, A1, · · · , An constitute a set
of mutually exclusive and exhaustive events. According to
the third axiom of the probability theory, their probabilities
add up to one:

(20)

(21)

Equation (21) can also be presented as an expansion of the
expression

∏n
i=1[(1 − ψi) + ψi]. The theorem has been

proved.

Because the proof does not make any reference to the shape
of the random objects, the theorem is valid for interpene-
trating random objects of any shape. The theorem is also
valid in the two-dimensional (2-D) and one-dimensional (1-
D) case of area or a segment covered by two-dimensional or
one-dimensional objects, correspondingly.

An immediate corollary of the theorem is related to objects
with the same volume fraction ψ = v/V . In this case, the
expected fractions from the volume V covered by the sepa-
rate random objects with volumes v are given by the separate
terms of the binomial expansion of [(1− ψ) + ψ]n:

(22)

The expected fraction of the volume covered by exactly m
random objects is given by

(23)

Now consider a case where n consumers demand a particular
resource, during an operating period with length L. The dura-
tions of the demands from consumers are di(i = 1, · · · , n).
The ratios of the durations of the demands from the separate
consumers are given by ψi = di/L. The maximum number
of consumers whose demand can be satisfied simultaneously
by the sources is m.

Theorem 2. If one source can satisfy only a demand from a

single consumer at a time, the expected fraction of time of
unsatisfied demand related to m sources and n consumers is
given by the expression

(24)

Proof. Unsatisfied demand related to m sources and n con-
sumers (n > m) is present in the case where more than m
consumers require a source simultaneously. Let p0 denote
the probability that a fixed point in the interval (0, L) will
not sample any demand, p1 denote the probability that the
fixed point will sample exactly one random demand,...,and
pm denote the probability that the fixed point will sample
exactly m random demands.

The probability p≥m+1 that the fixed point will sample more
than m random demands, randomly placed in the time inter-
val (0, L), is then given by

(25)

According to Theorem 1, the sum of the probabilities
p0 + p1 + · · ·+ pm is given by

Hence, the theorem has been proved.

If all random demands are characterised by the same duration
d, ψ = d/L, the time fraction of unsatisfied demand is given
by

(26)

Note that the sum in the right hand side of equation (26) is
part of the binomial expansion of the expression [(1− ψ) +
ψ]n, which is identically equal to unity:

(27)

In equation (27), (1− ψ)n is the expected fraction of time
during which no demand is present, n(1− ψ)n−1ψ1 is the
expected fraction of time during which exactly one random
demand is present, n(n−1)

1×2 (1−ψ)n−2ψ2 is the expected frac-
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tion of time during which exactly two random demands are
present; n(n−1)···(n−m+1)

1×2×···×m (1 − ψ)n−mψm is the expected
fraction of time during which exactly m random demands
are present; and finally ψn is the expected fraction of time
during which exactly n random demands are present.

Here a typical illustrating example related to a particular
manufacturing process, during an 8-hour shift, where 12 ma-
chines stop once randomly (at any time during the shift) for
exactly 50 minutes, to use a particular measurement device.
There is only one measurement device available. The time
fraction of demand is ψ = 50/60

8 = 0.1; 1− ψ = 0.9.

The expected time fraction of no random demand is 0.912;
the expected time fraction of exactly one random demand is
12× 0.911 × 0.1; the expected time fraction of exactly two
random demands is 12×11

1×2 0.910 × 0.12.

The expected fraction of unsatisfied demand is p = 1 −
(0.912 + 12 × 0.911 × 0.11) = 0.34. If a second measur-
ing device is introduced, the expected fraction of unsatisfied
demand becomes p = 1 − (0.912 + 12 × 0.911 × 0.11 +
12×11

1×2 0.910 × 0.12) = 0.11. By introducing a second mea-
surement device, the expected time of unsatisfied demand
has been decreased significantly.

All equations in this section have been verified by a Monte
Carlo simulation involving measuring and accumulating di-
rectly the multiple intersections. This was achieved by a
discrete-event simulator where the variable “cover” increases
its value by one, if the current event is a start-consumption
event and decreases its value by one if the event is an end-
consumption event. The pseudo-code measuring the ex-
pected length of demand overlaps of order m+ 1 is given by
Algorithm 1.

The start of resource consumption is a random event simu-
lated by the product Lui where L is the length of the opera-
tion interval (0, L) and ui is a uniformly distributed random
number in the interval (0,1).

The duration of the demand is also random and was sim-
ulated by sampling a normal distribution with a specified
mean µ and standard deviation σ. Algorithms for sampling a
normal distribution can for example be found in Refs.21 and
22.

For each user placing a random demand, two types of events
are simulated: a “start-consumption” event – marking the
start of consumption of the user and “end-consumption”
event – marking the end of consumption of the user.

In case of a start-consumption event (see Algorithm 1), if the
current content of the variable cover is equal to m, there are
already m overlaps and the overlap with the current event

will create m + 1 overlaps which means that there will be
unsatisfied demand. The s_overlap variable is initialised with
the time where the overlap section of order m+ 1 actually
starts (for this section an overlap of more than m random
demands is present). The section of more than m overlap-
ping demands will continue until the content of the variable
“cover” is reduced back to m (the number of overlapping
demands drops back to m). This occurs just after an end-of-
consumption event. At this point in time, with the statement
sum = sum + (current_time - s_overlap), the size of the sec-
tion with more than m overlapping demands is calculated
and accumulated into the variable “sum”. Thus, for the cur-
rent simulation history of demands and release of the sources,
the lengths of all zones of overlap of orderm+1 are accumu-
lated in the variable sum. At the end of the current simulation
history, the content of the variable sum is accumulated in
the variable global_sum with the statement global_sum =
global_sum + sum.

Algorithm 1 Determining the expected fraction of time dur-
ing which unsatisfied demand (more than m demands) exists

 

 

total_sum=0; 
for i=1 to num_simul_trials do  
   {  
     queue_size=0; cover = 0; 
     Generate all start-consumption and end-consumption events  
     and insert them in the priority queue; 
 
     Insert in the priority queue a notional end-consumption event  
     corresponding to the end of the operation interval 0,L; 
 
     sum = 0; 
     while (queue_size>0) 
          { 
            Take event from the priority queue; 
             current_time = event.time; 
             if (event.type = 'start consumption') 
                      {  
                        if (cover = m) {s_overlap = current_time;} 
                        cover = cover + 1; 
                        remove the current event from the priority queue; 
                       } 
            else  // a case of end-consumption event  
             { 
               if (cover = m+1) sum = sum + (current_time - s_overlap); 
               cover=cover - 1; 
               remove the current event from the queue; 
             } 
          } 
    global_sum = global_sum + sum; 
    } 
 
  expec_glob_sum = global_sum/num_simul_trials; 
  expec_frac_uns_demand = expec_glob_sum/L; 

 

As a result, at the end of all simulation histories, the variable
global_sum contains the sum of the lengths of all sections
characterised by more than m overlapping demands. The
ratio of the global_sum and the number of simulation tri-
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als gives the expected value expec_glob_sum of the total
length of the time intervals containing more than m over-
lapping random demands. The ratio of the expected value
expec_glob_sum and the length of the operation interval L
gives the expected fraction of unsatisfied demand.

As a result, the risk of unsatisfied demand can be estimated
by the expected fraction of unsatisfied demand.

6. CONCLUSIONS
(1) A theoretical framework based on geometric probabil-

ity has been created for evaluating the risk of unsatis-
fied demand arising from random requests on a time
interval.

(2) For the common case of a single source servicing a
number of consumers, a closed-form solution has also
been derived for the risk of unsatisfied demand.

(3) Based on the closed-form solution, an efficient opti-
misation method has been developed for determining
the optimal number of consumers that can be serviced
by a single source, such that the risk of unsatisfied

demand remains below a maximal tolerable level.
(4) A central part of the proposed theoretical framework

is a general equation evaluating the risk of unsatisfied
demand by the expected fraction of time of unsatis-
fied demand. The equation covers multiple sources
servicing multiple consumers.

(5) The conducted parametric studies revealed an unex-
pected finding: the risk of collision of random de-
mands is insensitive to the standard deviations of the
durations of demands. This surprising result provides
the valuable opportunity to work with random demand
times characterised by their means only without requir-
ing their distributions or variances.

(6) Given that the available source can satisfy demand
for a limited total duration D, a strategy involving
splitting the total duration D among fewer number of
consumers is preferable to a strategy involving split-
ting the total duration D among a larger number of
consumers. The first strategy is characterised by a
significantly smaller risk of unsatisfied demand.
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