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ABSTRACT
Detection of anomalies (i.e., outliers) in multi-dimensional data
is a well-studied subject in machine learning. Unfortunately, un-
supervised detectors provide no explanation about why a data
point was considered as abnormal or which of its features (i.e.
subspaces) exhibit at best its outlyingness. Such outlier explana-
tions are crucial to diagnose the root cause of data anomalies
and enable corrective actions to prevent or remedy their effect in
downstream data processing. In this work, we present a compre-
hensive framework for comparing different unsupervised outlier
explanation algorithms that are domain and detector-agnostic.

Using real and synthetic datasets, we assess the effectiveness
and efficiency of two point explanation algorithms (Beam [28] and
RefOut [18]) ranking subspaces that best explain the outlyingness
of individual data points and two explanation summarization
algorithms (LookOut [15] and HiCS [17]) ranking subspaces that
best exhibit as many outlier points from inliers as possible. To
the best of our knowledge, this is the first detailed evaluation
of existing explanation algorithms aiming to uncover several
missing insights from the literature such as: (a) Is it effective to
combine any explanation algorithm with any off-the-shelf outlier
detector? (b) How is the behavior of an outlier detection and
explanation pipeline affected by the number or the correlation of
features in a dataset? and (c) What is the quality of summaries
in the presence of outliers explained by subspaces of different
dimensionality?

1 INTRODUCTION
Detecting and diagnosing data anomalies are important tasks
in data processing pipelines used to build industrial-strength
Machine Learning (ML) systems [32]. Clearly, data points that
significantly deviate from other points in a dataset may be sys-
tematic errors, i.e., outliers, or may manifest changes in the data
generation process per se, i.e., novelties, that decrease the accu-
racy of the predictive models constructed downstream [29, 48].
In scientific and industrial monitoring applications, anomaly de-
tection is often the ultimate goal of the data analysis as it enables
the identification of unusual measurements (e.g., related to faults,
bio-indices, etc.) and/or of suspicious activities (e.g. intrusions,
fraud, etc.). Several unsupervised algorithms for anomaly detec-
tion have been proposed [2, 51] using different methods (e.g.,
proximity or isolation based) to distinguish outliers from inliers
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Figure 1: A 3𝑑 dataset with three 1𝑑 and 2𝑑 feature sub-
spaces

when labels of data points are impossible or difficult to obtain.
Unfortunately, these algorithms do not explain why a data point
was considered as abnormal, leaving analysts with no guidance
about where to begin their investigation.

In this paper, we focus on algorithms explaining the outly-
ingness aspects of multi-dimensional data points in the form of
subspaces of data features that best explain why a given outlier
deviates the most from the inliers. Such explanations are crucial
to diagnose the root cause of data anomalies [3] and enable cor-
rective actions to prevent or remedy their effect in downstream
data processing (e.g. by repairing data errors or retraining the
predictive models for concept drifts).

To illustrate, assume that we have a three dimensional dataset
with features 𝐹1, 𝐹2 and 𝐹3 and that we would like to explain the
outlyingness of points 𝑜1 and 𝑜2 depicted by a black circle and a
black square in Figure 1-a). In the full dimensional space of the
dataset,𝑜1 exhibits a small deviation frommost of the other points
in the dataset while 𝑜2 looks like an inlier although it exhibits a
significant outlyingness when considering the subset of features
{𝐹2, 𝐹3} (see Figure 1-d). We refer to the former case as full space
outliers and to the latter as subspace outliers. In both cases, we are
interested in explaining under which feature sets (aka subspaces)
points exhibit a high outlyingness. None of the 1𝑑 subspaces
{𝐹1}, {𝐹2} and {𝐹3} explain the outlyingness of the two points
(see Figure 1-b). The same is true for the 2𝑑 subspace {𝐹1, 𝐹3}
(see Figure 1-e). Subspace {𝐹1, 𝐹2} explains the outlyingness of
𝑜1 only (see Figure 1-c), while {𝐹2, 𝐹3} explains the outlyingness
of both points (see Figure 1-d). We can observe that outlyingness
of 𝑜1 is higher in {𝐹1, 𝐹2} than in {𝐹2, 𝐹3}. Features contained
into the explanation of an outlier are called relevant. For instance,
𝐹1 and 𝐹2 are relevant to the explanation of 𝑜2.
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We are primarily interested in unsupervised algorithms that
are both domain-agnostic (i.e., suitable for datasets from vari-
ous domains) and detector-agnostic (i.e., they can be employed
to explain outliers produced by any off-the-self detector). Our
choice of explanation algorithms is motivated by the fact that no
detector is good in all possible settings w.r.t data characteristics
(see the conclusions of several experimental studies [6, 8, 14]).
Hence we are interested in decoupling the outlier explanation
from detection, in contrast to several techniques proposed in Ex-
plainable Artificial Intelligence (XAI) such as output contribution
of attribute values [24, 33] or partial dependence plots [11].

We evaluate two point explanation algorithms, RefOut [18] and
Beam [28], that rank subspaces best explaining the outlyingness
of individual data points, and two explanation summarization
algorithms, LookOut [15] and HICS [17], that rank subspaces best
explaining the outlyingness of as many outlier points as possible.
These algorithms rely on outlyingness criteria of existing detec-
tors such as Local Outlier Factor (LOF) [5], Angle Based Outlier
Detection (ABOD) [21] or Isolation Forest (iForest) [23].

Although there exist several efforts for benchmarking outlier
detectors in batch [6, 8, 12, 42] and stream [22, 43] processing
settings, outlier explanation and summarization algorithms have
not yet been thoroughly evaluated under realistic assumptions.
To the best of our knowledge, this is the first comprehensive
and detailed evaluation of existing algorithms aiming to uncover
several insights missing from the existing literature. More pre-
cisely, our evaluation aims to answer the following questions:
1. Is it effective to combine any explanation algorithm with any
off-the-shelf outlier detector? 2. How is the behavior of an outlier
detection and explanation pipeline affected by the number of fea-
tures or their correlation in a dataset? 3. What is the quality of
summaries in the presence of outliers explained by subspaces of
different dimensionality?

The remaining of the paper is organized as follows. Section 2
introduces the outlier detectors and the point explanation and
summarization algorithms we integrated in our experimental
testbed. Section 3 details the pipelines of algorithms, the datasets
as well as the evaluation metric used in our testbed. Section 4
presents the conducted experiments and the conclusions drawn
regarding the missing insights. Section 5 surveys additional ex-
planation algorithms for data in rest or in motion and justify why
they have not been included in our study. Section 6 concludes
our work and presents plans for future research.

2 OUTLIER DETECTION AND
EXPLANATION ALGORITHMS

2.1 Unsupervised Outlier Detectors
Several methods have been proposed in the literature to measure
the abnormality of a data point in a dataset. In the following,
we survey three unsupervised methods that are widely used for
detecting outliers in datasets withmultiple numerical1 features [6,
8, 12, 13, 42]. As the objective of outlier explanation is to retrieve
subspaces where the outliers are clearly separable from inliers,
we did not include any subspace-based outlier detector [20, 36]
to assess the quality of a particular subspace examined by the
explainer. The outlyingness criteria underlying eachmethod have
respective strengths and weaknesses w.r.t. the characteristics
of the datasets (e.g., dimensionality) and outliers (e.g., highly
clustered or not).
1Anomaly detection methods for categorical data [41] are outside the scope of this
work.

Figure 2: Examples of outliers in different subspaces de-
tected by (a) LOF, (b) Fast ABOD and (c) iForest

Density-Based methods, such as Local Outlier Factor (LOF)
[5] take into account the local density of points when searching
for outliers. An example of outliers detected by LOF is illustrated
in Figure 2-a). The point 𝑜1 is considered to be an outlier as it lies
on a sparse area while its nearest neighbors lie on dense areas.
The distance of a point 𝑝 from 𝑜 is computed using the following
reachability distance (reach-dist):

reach-dist𝑘 (𝑝 ← 𝑜) =𝑚𝑎𝑥{𝑘-dist(𝑜), 𝑑 (𝑝, 𝑜)}
where 𝑘-dist(o) is the distance of 𝑜 to its 𝑘th nearest neighbor and
𝑑 (𝑝, 𝑜) is the direct distance (e.g., Euclidean) between the two
points. LOF computes the local reachability density of a point 𝑝
as the inverse of the average reachability distance of 𝑝 from its
𝑘-nearest neighbors (kNN):

lrd𝑘 (𝑝) = 1/(mean𝑜∈kNN (𝑝) reach-dist𝑘 (𝑝 ← 𝑜))
Finally, the density of a point is compared to the average local
reachability density of its neighbors to obtain a score:

LOF𝑘 (𝑝) = mean𝑜∈kNN (𝑝)
lrd𝑘 (𝑜)
lrd𝑘 (𝑝)

LOF’s time complexity is𝑂 (𝑁 2), where𝑁 is the number of points
in a dataset. Inliers obtain scores around 1 while outliers obtain
scores significantly larger than 1. LOF distinguishes effectively
outliers from inliers in regions of varying density where outliers
lie on highly sparse areas far from dense clusters.

Angle-Based methods compute for each given point, the an-
gles to other data points 𝑁 . The Angle Based Outlier Detector
(ABOD) [21] uses the variance of these angles as an outlyingness
score. For example, as we can see in Figure 2-b), 𝑜1 is an outlier
as its neighbors are located in similar directions (small angle
variance), but 𝑜2 is an inlier as it is surrounded by its neighbors
in various directions (high angle variance). The ABOD score for
a given point 𝑜1 and any pair of points 𝑥1, 𝑥2 is computed as:

𝐴𝐵𝑂𝐷 (𝑜1) = Var
𝑥1,𝑥2∈𝑁

(
⟨−−−→𝑥1𝑜1,−−−→𝑥2𝑜1⟩

∥−−−→𝑥1𝑜1∥2 · ∥−−−→𝑥2𝑜1∥2

)
As ABOD’s time complexity is𝑂 (𝑁 3), we are focusing on an effi-
cient ABOD variant (𝑂 (𝑘𝑁 2)), called Fast ABOD, which computes
the angles of a particular point only to its 𝑘-nearest neighbors.
Small angle variance results to high ABOD score indicating high
outlyingness. Intuitively, a point is more likely to be an outlier
when it lies on the borders of the data distribution. ABOD avoids
to compute the distance between points, hence it is a suitable
detector for high dimensional datasets.

Isolation-Based methods estimate the probability of a point
to be an outlier on the basis of the number of partitions needed
to isolate it from the other points in a dataset. The less partitions
needed to isolate, the more likely a data point is to be an outlier.
For instance, in Figure 2-c) the point𝑜1 is an outlier as it needs less
partitions to be isolated compared to the inlier 𝑜2. Isolation Forest
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(iForest) [23] exploits this property using a forest of random trees
built on samples of the dataset by uniformly selecting features
and their split values. The outlyingness score of a data point is
then computed by averaging over all trees the path length from
the root to the leaf node with the data point:

𝑠 (𝑥, 𝑛) = 2−
𝐸 (ℎ (𝑥 ) )
𝑐 (𝑛)

The score assigned to points is normalized within the range
[0,1], with outliers getting a score close to 1. iForest has a small
memory-footprint (𝑂 (𝑡𝑛)), where 𝑡 is the number of trees and
𝑛 is the subsample size. It achieves a sublinear time-complexity
(𝑂 (𝑡𝑛𝑙𝑜𝑔𝑛)) by exploiting subsampling and by eliminating the
heavy cost of distance computation. Being agnostic to the dis-
tances (or densities) of points, iForest is able to detect outliers
effectively even if they are lying on less dense areas than the
majority of the points.

2.2 Point Explanation Algorithms
The objective of a point explanation algorithm is to discover the
subspaces that best explain the outlyingness of amulti-dimensional
point, i.e. the feature sets where this point deviates most in the
dataset. Such subspaces are called relevant w.r.t. to the expla-
nation of an outlier. Point explanation algorithms essentially
rely on a search strategy for exploring feature subspaces in a
dataset and an outlyingness criterion. The main challenge is that
no interesting monotonic property holds for most outlyingness
criteria [28], which prevents us to effectively prune the expo-
nential space of feature sets (2𝑑 ) w.r.t. data dimensionality (𝑑).
Using the detectors presented previously, an outlier discovered
in low-dimensional subspaces may become invisible, i.e., masked
by inliers in high-dimensional subspaces and vice versa.

RefOut [18] is a sampling based algorithm which employs
a stage-wise technique exploiting random subspace projections
to find relevant subspaces of a fixed dimensionality. The main
algorithmic steps of RefOut are illustrated in Figure 3. Initially,
RefOut builds a random pool of size 𝑛 with random subspace
projections drawn from the full feature space of the dataset. In
the example of Figure 3, we depict a pool of size 4 that contains
3𝑑 random subspaces (i.e, 50% of the 6𝑑 dataset). Using an off-
the-self detector, the to-be-explained outlier 𝑝1 is scored in each
subspace of the pool. To avoid dimensionality bias when scoring
subspaces, the score of a point 𝑝 in a subspace 𝑠 , denoted as
𝑠𝑐𝑜𝑟𝑒 (𝑝𝑠 ) is standardized using Z-score as follows:

𝑠𝑐𝑜𝑟𝑒 (𝑝𝑠 )′ =
𝑠𝑐𝑜𝑟𝑒 (𝑝𝑠 ) − 𝑠𝑐𝑜𝑟𝑒𝑠√

𝑉𝑎𝑟 (𝑠𝑐𝑜𝑟𝑒𝑠 )
RefOut follows a stage-wise technique. In stage 1, RefOut as-

sesses every single feature in the pool. In other words, in this
stage it collects the best univariate subspaces. In our example, for
the feature 𝐹1 RefOut partitions the pool into two populations
of random subspaces w.r.t. whether they contain or not the fea-
ture 𝐹1. To assess the importance of a feature for explaining the
outlyingness of the point 𝑝1, RefOut quantifies the discrepancy
of score populations between the two partitions under the hy-
pothesis that they have equal means. To test this hypothesis, the
two-sample Welch’s t-test [46] is employed as the two samples
may have unequal variances and/or unequal sample sizes. The
partitioning is repeated for every feature in the pool and the
top-𝑘 ones with the highest discrepancy are kept; in our exam-
ple we kept only {𝐹1} for simplicity. In stage 2, RefOut applies
the same partitioning and scoring process for 2𝑑 subspaces by

Figure 3: RefOut steps to find 2𝑑 subspaces from a 6𝑑
dataset to explain the point p1

taking the Cartesian product of the top-𝑘 subspaces from the
previous stage with all the univariate subspaces drawn from the
pool. In our example, since we are interested in 2𝑑 explanations
the process stops at stage 2 and the best subspace ({𝐹1, 𝐹3}) is
returned as explanation of point 𝑝1. When multiple outliers have
to be explained, RefOut searches for relevant subspaces for every
point individually.

To sum up, the core idea of RefOut is to make subspace selec-
tion adaptive to the outlyingness score of each point and flexible
w.r.t. different detectors. It relies on a pool of random subspace
projections to assess the important features, that may contribute
to the detection of relevant subspaces for a specific point. As
feature importance is measured via the discrepancy of outlying-
ness score distributions, RefOut’s effectiveness depends strongly
on the ability of an off-the-self outlier detector to assign high
scores to outliers. In particular, RefOut makes the assumption
that outliers explained in low-dimensional subspaces exhibit a
significant outlyingness also in their high-dimensional supersets.

Beam [28] is a stage-wise greedy algorithm that takes as in-
put a particular point and returns the subspaces, up to a given
dimensionality, that best explain its outlyingness. Although the
maximum dimensionality of subspaces returned by Beam is pre-
defined, the algorithm may output subspaces of varying dimen-
sionality. Beam maintains two lists: (i) a global list of the best
subspaces considered as relevant across stages, (ii) a stage list
with the best subspaces in each stage. The main algorithmic steps
of Beam are illustrated in Figure 4 via an example requesting to
explain the outlyingness of a point 𝑝1 of a 6𝑑 dataset with up to
3𝑑 subspaces. Using an outlier detector, Beam scores exhaustively
in stage 1 all the 15 2𝑑 subspaces drawn from the 6 features space
of the dataset for the point 𝑝1. Then, the top-𝑘 scored 2𝑑 sub-
spaces will be inserted both into the stage list and global list. In
stage 2, the best 2𝑑 subspaces kept in stage list will be combined
with other features to form 3𝑑 subspaces as depicted in Figure 4.
The top-𝑘 3𝑑 subspaces are then kept in the stage list, while the
global list is updated with the 3𝑑 subspaces with higher scores for
𝑝1 than the 2𝑑 subspaces previously computed. As we required
3𝑑 explanations in our example, the process will stop at stage 2.
The global list is then returned as the result of the algorithm.

In a nutshell, Beam is a stage-wise greedy algorithm that ex-
ploits the top-𝑘 best relevant subspaces returned by early stages
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Figure 4: Beam steps to find subspaces up to 3 dimensions
from a 6𝑑 dataset to explain the point p1

to search for relevant subspaces in latter stages. Hence, its ef-
fectiveness depends strongly on whether a given point obtains
a high outlyingness score in lower projections of the relevant
subspace(s) that should be finally returned. In order to make a
fair comparison with RefOut, we report only the best subspaces
from the stage list in the final stage i.e., subspaces of predefined
maximum dimensionality. We call this variation BeamFX .

2.3 Explanation Summarization Algorithms
The objective of an explanation summarization algorithm is to
discover for a set of outlier points, the subspaces that distinguish
as many outliers from inliers as possible. Explanation summariza-
tion algorithms also rely on a search strategy to explore feature
subspaces in a dataset. The main difference is that the outlying-
ness criterion is applied collectively for all outliers rather than
individually. The additional challenge stems from the fact that
some outliers may be explained by subspaces of different dimen-
sionality or in an extreme case all outliers could be explained by
different subspaces. We should stress that explanation summa-
rization is different from group identification and explanation.
In the former case, we consider all the to-be-explained points
as one group, while on the latter, the objective is to identify
these anomalous groups and retrieve explaining subspaces that
segregate each group from the normal instances [25].

LookOut [15] searches exhaustively subspaces of fixed dimen-
sionality and returns those that exhibit a certain utility. LookOut
was genuinely used to obtain 2𝑑 subspaces that can be easily
visualized in order to explain a set of outliers. However, we used
the algorithm to explore subspaces of high dimensionality as
well. LookOut formalizes explanation summarization as max-
imization problem using an objective function equipped with
the following properties: (i) non-negative , (ii) non-decreasing
and iii) sub-modular. As submodular optimization is known to
be an NP-hard problem, greedy approximation techniques are
used (e.g., with a 63% approximation guarantee [27]). The main
algorithmic steps of LookOut are depicted via an example in
Figure 5. Given (i) a set of outlier points 𝑃 = {𝑝1, 𝑝2, 𝑝3} and
(ii) a number of top-𝑘 explanation summaries (i.e., the budget of
the computation), LookOut constructs a subspace list 𝑆𝑙𝑖𝑠𝑡 with
the top-𝑘 subspaces that maximize the scores of the three points
i.e., they provide a concise summary. Initially, LookOut employs
an off-the-self outlier detector to score all outliers in the three

Figure 5: LookOut steps to find 2𝑑 subspaces from a 3𝑑
dataset with budget b = 2 (bold values indicate the high-
est scores per table row)

possible 2𝑑 subspaces drawn from the 3𝑑 feature space of the
dataset. LookOut’s objective function for concise summarization
is defined as follows:

𝑓 (𝑆𝑙𝑖𝑠𝑡 ) =
∑
𝑝𝑖 ∈𝑃

max
𝑠 𝑗 ∈𝑆𝑙𝑖𝑠𝑡

𝑠𝑐𝑜𝑟𝑒𝑖, 𝑗

where 𝑠𝑐𝑜𝑟𝑒𝑖, 𝑗 represents the outlier score that point 𝑝𝑖 received
in subspace 𝑠 𝑗 . Then, to assess utility of a subspace 𝑠 to the 𝑆𝑙𝑖𝑠𝑡 ,
LookOut examines its marginal gain computed as:

Δ𝑓 (𝑠 |𝑆𝑙𝑖𝑠𝑡 ) = 𝑓 (𝑆𝑙𝑖𝑠𝑡 ∪ 𝑠) − 𝑓 (𝑆𝑙𝑖𝑠𝑡 )
In our example of Figure 5, 𝑆𝑙𝑖𝑠𝑡 is initially empty and subspace

{𝐹1, 𝐹2} is inserted during the first iteration as all three points
obtain their best outlyingness score in this subspace. During the
second iteration, LookOut examines which of the two remaining
subspaces {𝐹1, 𝐹3} and {𝐹2, 𝐹3} provide the greatest marginal
gain for 𝑆𝑙𝑖𝑠𝑡 . In our example, {𝐹1, 𝐹3} has a higher marginal
gain than {𝐹2, 𝐹3} as its maximizes 𝑝3’s score, while 𝑝1 and 𝑝2
scores are already maximized by {𝐹1, 𝐹2}. The two subspaces
are compared w.r.t. the maximum scores of every point currently
in 𝑆𝑙𝑖𝑠𝑡 . As the budget in our example is 2 i.e., the number of
subspaces that will be included in explanation, the process stops
and the 𝑆𝑙𝑖𝑠𝑡 is returned as a summary of the subspaces explaining
the points given as input.

In a nutshell, LookOut returns the top-𝑘 subspaces of fixed di-
mensionality that concisely explain multiple outliers. A subspace
is considered a good summary candidate at a certain iteration
step if it maximizes the overall score for at least one outlier.
Hence, LookOut’s effectiveness strongly depends on the ability
of an off-the-self outlier detector to highly score outliers in their
relevant subspaces.

High Contrast Subspaces (HiCS) [17] relies on a subspace search
strategy that exploits combinations of correlated features called
high contrast subspaces. The underlying intuition is that high
contrast subspaces have many empty regions and few very dense
regions, thus they are good candidates for separating outliers
from inliers. Figures 6-a) to -c) illustrate three subspaces with cor-
related features ({𝐹0, 𝐹1}, {𝐹0, 𝐹1, 𝐹8} and {𝐹11, 𝐹12, 𝐹13}) while
Figure 6-d) a subspace with non correlated features ({𝐹11, 𝐹12}).
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Figure 6: Data distribution in augmented/projected sub-
spaces of HiCS Datasets

Subspace contrast in HiCS is measured using two-sample sta-
tistical tests2 which are applied to the raw feature values under
the null hypothesis that both samples originate from the same
underlying probability density function. To enhance statistical
precision, HiCS performs the statistical test for several Monte
Carlo iterations and the average score is computed per subspace.

HiCS searches for high contrast subspaces via a stage-wise
technique. In the first stage, it scores exhaustively all the 2𝑑 sub-
spaces and selects the top-𝑘 based on their contrast. In next stage,
the best 2𝑑 subspaces, are used to construct 3𝑑 subspaces scored
again based on their contrast. The same procedure is repeated
for several stages until reaching the full feature space 𝑑 of a 𝑑-
dimensional dataset; hence, the algorithmmay retrieve subspaces
of varying dimensionality. HiCS has been originally evaluated
with LOF, but in principle any other off-the-self detector could
be employed. In order to make a fair comparison with LookOut,
we force HiCS to return subspaces of fixed dimensionality up to
a predefined stage. We call this variation HiCSFX .

To conclude, HiCS is a best effort algorithm that exploits sub-
spaces with correlated features to discover summaries of varying
dimensionality. Although the assumption that outliers are more
likely to appear in correlated features seems effective for highly
clustered anomalies, correlated subspaces may not always ex-
plain outliers, as depicted in Figure 1-e). The main novelty of
HiCS lies in the decoupling of the subspace search strategy from
the scores assigned by an off-the-self detector to a set of outliers.

3 BENCHMARKING ENVIRONMENT
The algorithms along with the datasets used in our testbed are
available in our GitHub repository3 to ensure repeatability of
our experiments. Regarding outlier detectors, we used the im-
plementation of LOF and iForest from Scikit-learn [30] and Fast
ABOD from PyOD [50]. We have implemented LookOut, RefOut
and Beam in java and modified HiCS implementation from ELKI
[37]. Our primary concern in this work is the correctness of the
implemented explanation algorithms. All experiments were per-
formed in a Windows personal computer with a 4 core Intel i7
processor and 16GB of main memory.

2The Welch’s t-test or the Kolmogorov-Smirnov test.
3https://git.io/JvuO6

Figure 7: Pipelines of outlier detectors & explainers

3.1 Pipelines of Executed Algorithms
As illustrated in Figure 7, given (i) a dataset, (ii) a set of outliers
(points of interest) and (iii) a target dimensionality to explain
them, we execute all the possible pairs of explanation and de-
tection algorithms. Each executed pipeline results to a list of
fixed-dimensionality subspaces considered as relevant to each
point of interest. The effectiveness of each pipeline is assessed
using the relevant subspace(s) per point available in the ground
truth of each dataset and the metric that we define in Section 3.3.

Regarding the choice of outlier detectors, we included in our
testbed only LOF, Isolation Forest and Fast ABOD as representa-
tive of three widely used families of batch detection algorithms
namely density, isolation and angle based outlier detection. As re-
ported by several experimental studies [6, 8, 13] these algorithms
frequently outperform distance or cluster-based algorithms in
real and synthetic datasets while they do not require a thorough
tuning of their hyper-parameters. Note also that experimentation
with supervised detectors was outside the scope of our work due
to the scarcity of labels regarding outlier/inlier data points.

To be able to retrieve the explaining subspaces for a number
of outliers given as input, LookOut, Beam and RefOut heavily
depend on the scores assigned by the detector in subspaces of
different dimensionality explaining the given outliers. To shed
some light regarding whether the explainers retrieve the rele-
vant subspaces per outlier in practical settings, we employed
unsupervised detectors that are not very sensitive to their hyper-
parameter tuning. For LOF we use 𝑘 = 15 and for Fast_ABOD 𝑘

= 10. We run iForest for 10 repetitions to reduce the variance of
outlyingness scores and the average score is computed for every
point, using 𝑡 = 100 trees and sub − sample size = 256. These
hyper-parameter values have been used in related experimental
studies as [6], and allow us to detect the outliers in all datasets
of our testbed. Hence, we can draw valuable conclusions for the
subspace search techniques of explainers rather than the quality
of the employed detector.

Regarding the hyper-parameters of the explainers, for HiCSwe
use candidateCutOff = 400, 𝑎 = 0.1, Monte Carlo Iterations = 100
and Welch’s t-test is performed. For LookOut we use budget =
100. For Beam we use beam − width = 100. For RefOut we use
poolsize = 100, beam − width = 100, the random subspace dimen-
sionality is set to 70% of dataset’s dimensionality and Welch’s
t-test is performed. For HiCS, Beam and RefOut we return the
top-100 subspaces as the final result.
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Characteristics Real Datasets (# 3) Synthetic Datasets (# 5)
Outlier Type Full Space Subspace
Explanation Dimensionality 2-4 𝑑 2-5 𝑑
% Contamination with Outliers 10% 2, 3.4, 5.9, 10, 14.3 %
# Relevant Subspaces 60 (A), 151 (B), 249 (C) 4, 7, 12, 22, 31
# Relevant Subspaces per Outlier 3 (1 per dimensionality) 1 (91% outliers), 2 (9% outliers)
# Outliers per Relevant Subspace 1 (A), 1.13 (B), 1.45 (C) 5
% Relevant Feature Ratio 100% 35, 21, 12, 7, 5 %
Outlier Visibility w.r.t. Relevant Subspaces Projections / Augmentations Augmentations

Table 1: Characteristics of real and synthetic datasets

3.2 Real and Synthetic Datasets
In this section we describe the real and synthetic datasets used in
our testbed. The main challenge in explaining outliers stems from
the exponential search space of feature subspaces rather than
the size of the dataset. The difference in the execution time of
explainers depends more on the pruning strategy they employ to
enumerate subspaces rather than on the time spent by detectors
to score the explored subspaces. The selected datasets are suitable
for assessing the quality of outlier explanation algorithms, as they
provide the gold standard regarding the subspace(s) explaining
each anomaly. To reduce confounding factors in the experimental
evaluation of the algorithms, the selected datasets are mainly
contaminated with density-based outliers. Outliers of this type
can be detected by LOF but under certain conditions also by
other detectors like ABOD and iForest (see Section 4). The main
characteristics of our datasets are summarized in Table 1.

Breast, Breast Diagnostic and Electricity Meter are real-world
datasets widely used to benchmark ML methods for anomaly
detection [9]. To facilitate comparison with already published
results, we used the version of these datasets4 made available
by the authors of RefOut algorithm [18]. Specifically, Breast (A)
contains 198 points, 31 features and 20 outliers, Breast Diag-
nostic (B) contains 569 points, 30 features and 57 outliers and
Electricity (C) contains 1205 samples, 23 features and 121 out-
liers. The ground truth provided per dataset contains the outliers
detected by LOF resulting 10% contamination with outliers. Note
that the experiments in [18] revealed that the reported outliers
are full space. To obtain the best subspaces explaining them5,
we followed the method as described in [18] by performing an
exhaustive search from 2 up to 4 dimensions for every dataset
using LOF and keeping the top scored subspace per outlier at the
corresponding dimension. We started from 2 dimensions as the
initial step of HiCS and Beam perform an exhaustive search in
2𝑑 subspaces. We should stress that outliers are identifiable by
LOF in both lower dimensional projections and augmentations (i.e.,
supersets) of the relevant subspaces. These datasets challenge
summarization algorithms (HiCS and LookOut) as subspaces can
best explain one outlier on average, e.g., for Electricity there are
1.43 outliers explained per relevant subspace (see Table 1).

HiCS synthetic datasets6 were created by the authors of the
HiCS [17] algorithm featuring subspace outliers. They initially
splitted the datasets into 2𝑑 up to 5𝑑 subspaces, and generated
high density clusters in each subspace. Then, they randomly
picked 5 points and modified them to deviate from all clusters in

4https://www.ipd.kit.edu/~muellere/RefOut/
5We discovered that the subspaces originally reported by the authors of RefOut
were not optimal for most outliers.
6https://www.ipd.kit.edu/~muellere/HiCS/

Figure 8: Dimensionality of subspaces relevant to outliers
and contamination ratio of HiCS datasets

each subspace. From these datasets we picked the dataset with
the maximum dimensionality (100𝑑) and splitted it into five sub-
datasets from 14 up to 100 dimensions. The ratio of relevant
features is depicted in Table 1 ordered from low (14𝑑) to high
(100𝑑) number of features. Note that every dataset contains 1000
points. As illustrated in Figure 8 and Table 1, this split produced
datasets of increasing (i) data dimensionality (i.e., number of
features), (ii) number of relevant subspaces of different dimen-
sionality and (iii) contamination with outliers. In HiCS datasets,
the relevant subspaces and the outliers were given but there was
no association between them. To identify the relevant subspace
per outlier, we run LOF and keep the top-5 outliers with the
highest scores per relevant subspace. The so obtained ground
truth is aligned with the original contamination of the dataset
with 5 points deviating in each relevant subspace that can be
easily detected by LOF. An example of a 2𝑑 and a 3𝑑 relevant
subspace is illustrated in Figures 6-a) and -c).

Note that the vast majority (∼ 91%) of outliers in HiCS datasets
is explained by one subspace and few outliers (∼ 9%) by two dif-
ferent subspaces. These subspaces follow the properties: (i) they
are disjoint in terms of features, (ii) each subspace can explain
exactly five outlier points, (iii) they have highly correlated fea-
tures, (iv) outliers are identifiable by the detectors in augmented
subspaces, i.e., supersets of the relevant features (see example
of Figures 6-a) and -b) and (v) outliers are mixed with inliers in
lower dimensional projections of relevant subspaces (see example
of Figures 6-c) and -d). Note that all outliers in HiCS datasets can
be discovered by the three detectors used in our testbed.

3.3 Evaluation Metric
In this section we present the metric used to evaluate the ef-
fectiveness of the 12 pairs of outlier detection and explanation
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algorithms (see Figure 7). Although outlier explanations target hu-
man analysts, we have not conducted user studies as our datasets
are equipped with ground truth regarding which subspaces are
relevant to the outliers they contain.

We denote the set of points of interest as 𝑃 , the set of the rele-
vant subspaces per point 𝑝 ∈ 𝑃 as 𝑅𝐸𝐿𝑝 , and the returned sub-
spaces from an explanation algorithm 𝑎 to a point 𝑝 as 𝐸𝑋𝑃𝑎 (𝑝).
The first metric we used is Mean Recall (see Eq. ??) of an explainer
𝑎 for a set of points 𝑃 , assessing how many relevant subspaces
were returned on average by 𝑎 for every point 𝑝 ∈ 𝑃 . Note that a
subspace in 𝐸𝑋𝑃𝑎 (𝑝) is considered relevant only if it is a member
of 𝑅𝐸𝐿𝑝 . I.e., a subspace in 𝐸𝑋𝑃𝑎 (𝑝) is considered relevant for a
point 𝑝 only if it is identical with a subspace in 𝑅𝐸𝐿𝑝 . We con-
sider only the Recall (see Eq. ??) of points that are explained at a
given dimensionality according to the ground truth. As described
in Section 3.2, every point has very few relevant subspaces in
our datasets. Thus high Mean Recall means that the explainer
was able to exploit the relevant subspaces for the majority of the
points explained at a given dimensionality. As each outlier in our
datasets has very few relevant subspaces (specifically 1-3), we
selected the MAPmetric penalizing detectors that do not rank the
relevant subspace(s) for an outlier within the top positions [40].
To compute MAP of an explainer 𝑎 for a set of points 𝑃 , we ini-
tially compute the precision (see Eq. 1) which is used to compute
the Average Precision (see Eq. 2). 𝑃@𝑘 (𝑝) denotes the precision
up to a 𝑘-th position of the returned subspaces in 𝐸𝑋𝑃𝑎 (𝑝). The
Boolean function 𝑟𝑒𝑙 (𝑘) indicates whether a subspace at the 𝑘-th
position of 𝐸𝑋𝑃𝑎 (𝑝) is relevant or not. Then, MAP is computed
using the Average Precision of all points explained at a given
dimensionality (see Eq. 3) according to the ground truth. A high
MAP value indicates that for several points, the explainer was
able to find and highly score their relevant subspaces using an
outlier detector. Compared to other metrics such as accuracy,
precision or recall, MAP better captures the scoring nature of
outlier explanation algorithms: the discovered relevant subspaces
should be ranked at the top positions of the list of candidates
an algorithm considers. On the contrary, binary metrics like ac-
curacy, precision and recall do not account for the ordering of
the results. Note that [6, 8] use average precision to assess the
quality of the outlier detector while [28] uses precision and recall
to assess the explanation quality. To the best of our knowledge,
it is the first work that relies on MAP to assess effectiveness of
the subspace search strategies of different explainers.

Precision𝑎 (𝑝) =
|𝑅𝐸𝐿𝑝 ∩ 𝐸𝑋𝑃𝑎 (𝑝) |
|𝐸𝑋𝑃𝑎 (𝑝) |

(1)

AveP𝑎 (𝑝) =
∑ |𝐸𝑋𝑃𝑎 (𝑝) |
𝑘=1 P@k(𝑝) ∗ 𝑟𝑒𝑙 (𝑘)

|𝑅𝐸𝐿𝑝 |
(2)

MAP𝑎 (𝑃) =
1
|𝑃 |

∑
𝑝∈𝑃

AveP(𝑝) (3)

4 EXPERIMENTS AND INSIGHTS
In this section we present our experiments for comparing point
explanation and summarization algorithms. Our testbed includes
the real datasets used in the evaluation of RefOut [18] as well as
the synthetic datasets used in the evaluation of HiCS [17]. Both
types of datasets were originally used to assess the effectiveness
of detecting outliers hidden in subspaces rather than the suitabil-
ity of the subspaces that led to the detection of those outliers. To

the best of our knowledge, the only study investigating recall and
precision of the subspaces of varying dimensionality retrieved
by Beam was presented in [28] running on HiCS [17] datasets. In
our study, we incorporate three more explainers, namely RefOut
[18], HiCS [17] and LookOut [15], using also real world datasets.
Moreover, in contrast to [28] we formulate different trade-offs
by evaluating the pruning strategies under different explanation
sizes as well as full and sub-space outliers.

4.1 Evaluation of Point Explanation
Algorithms

The experiments of this section aim to answer two questions:
(a) Is it effective to combine any explanation algorithm with
any off-the-shelf outlier detector? (b) How is the behavior of
outlier detection and explanation pipelines affected by the num-
ber of features in a dataset? To answer these questions, we run
Beam and RefOut with LOF, Fast ABOD and iForest using the
settings described in Section 3.1 for the synthetic and real-world
datasets presented in Section 3.2. Figure 9 depicts for each dataset,
the MAP (y-axis) of different outlier detection and explanation
pipelines for explanations of increasing dimensionality (x-axis).

Figures 9-a) to -e) illustrate the MAP obtained in the five syn-
thetic datasets of our testbed. Starting from the 14 dimensions in
Figure 9-a), we observe that RefOut with LOF achieves optimal
MAP as it retrieves and gives the highest score to the relevant
subspaces for all the outliers, regardless of the explanation di-
mensionality. This is because (i) HiCS datasets contain highly
clustered anomalies, thus LOF is the most suitable detector and
(ii) the pool of RefOut contains low dimensional subspaces in
which outliers can be more easily detected. Note that Beam with
LOF has lower MAP for high explanation dimensionality since
it does not retrieve all the relevant subspaces. Passing to 23 di-
mensions in Figure 9-b), the effectiveness of every pipeline drops
especially for high dimensional explanations. RefOut with LOF
seems to not be affected up to 3𝑑 explanations. An interesting
behavior observed in this plot is that Beam is more effective with
Fast ABOD and iForest than with LOF. This is due to the fact
that the stage-wise strategy of Beam requires to collect lower
dimensional projections of the relevant subspaces, so they could
be formed in the final stage. Recall that in HiCS datasets, outliers
are not separated from inliers in lower projections of the relevant
subspaces (see Figure 6). According to complementary experi-
ments not presented here due to space restrictions, in the early
stages of Beam, the score distributions of outliers and inliers
overlap less when Fast ABOD and iForest is used instead of LOF.

While the dimensionality of datasets increases, the same trends
are observed in Figures 9-c) to -e). In general, Beam is able to
retrieve all relevant 2𝑑 subspaces with the three detectors due to
the exhaustive scoring of all feature pairs. However, its effective-
ness starts dropping when the dimensionality of explanations
increases. As the number of Beam stages increase, more sub-
spaces need to be collected stage-wise with smaller differences in
their score. RefOut proves to be more sensitive than Beam w.r.t.
the number of features in the dataset 𝐷 . As the dimensionality of
random subspace projections in the pool is proportional to 𝐷’s
dimensionality, it becomes more difficult for RefOut to identify
important features due to the less distinguishable score popula-
tions in subspaces. Observe that none of the algorithms seem to
work for 4𝑑 explanations from 70 dimensions and higher and for
5𝑑 explanations from 23 dimensions and higher. Note that we run
10 times iForest (see Section 3.1) for every subspace considered
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Figure 9: Mean Average Precision (MAP) of Beam and RefOut in HiCS synthetic datasets (a)-(e) and real-world datasets
(f)-(h) for explanations of increasing dimensionality (best viewed in color)

by Beam up to 4𝑑 explanations for 70𝑑 and 100𝑑 datasets and Fast
ABOD up to 4𝑑 explanations in 70𝑑 and up to 3𝑑 in 100𝑑 datasets.
Specifically, to explain 100 outliers with 5𝑑 explanations in a
70𝑑 dataset, Beam needs to assess approximately 2.2M subspaces.
In Section 4.3, we demonstrate that Beam requires an efficient
detector such as LOF to assess a significant amount of subspaces.

Figures 9-f) to -h) illustrate the MAP obtained in the three
real-world datasets of our testbed. Recall that in these datasets,
the majority of the outliers are identifiable even in the full feature
space. In general, Beam with LOF retrieves the optimal subspace
for every outlier point (MAP = 1), despite of the explanation
dimensionality. However, the effectiveness of Beam with Fast
ABOD and iForest is significantly lower. On the contrary, RefOut
seems to have very low MAP regardless of the employed detector.
This is because RefOut cannot distinguish which features of full
space outliers affect significantly the score populations generated
by the corresponding detector.

Lessons Learned. Depending on the dataset characteristics, out-
lier detectors behave differently, affecting the effectiveness of
explanation algorithms. A critical factor is whether outliers are
masked by inliers in lower dimensional projections of the rele-
vant subspaces (as in HiCS datasets). In this case, for datasets and
explanations of low dimensionality, RefOut’s random projection
technique along with a detector suitable for the nature of outliers
(e.g., LOF for clustered outliers) is preferred. For high dimensional
datasets and low explanation dimensionality, Beam’s stage-wise
technique along with iForest or ABOD can effectively capture
the small deviation of outliers in the subspaces considered by
early stages. None of the algorithms seems to work for high
explanation dimensionality (e.g., 4𝑑 and 5𝑑) and high dataset
dimensionality (e.g., 70𝑑 and 100𝑑). When outliers are also visible
in the full feature space (as in real-world datasets) the random
projection technique exhibits poor MAP as it fails to find relevant
features that significantly affect the score distributions. In this
case, a stage-wise technique coupled with a suitable detector
should be preferred regardless of the explanation dimensionality.

4.2 Evaluation of Summarization Algorithms
The experiments presented in this section aim to answer three
questions: (a) Is it effective to combine any explanation sum-
marization algorithm with any outlier detector?, (b) How is the
behavior of outlier detection and explanation pipelines affected
by the number of features or their correlation in a dataset?, and
(c) What is the quality of summaries in the presence of outliers
explained by subspaces of different dimensionality? To answer
these questions, we run HiCS and LookOut with LOF, Fast ABOD
and iForest using the settings described in Section 3.1 for the
synthetic and real-world datasets presented in Section 3.2. Figure
10 depicts per dataset the MAP (y-axis) of different pairs of outlier
detection and explanation algorithms for explanations of increas-
ing dimensionality (x-axis). Despite the fact that HiCS does not
use any detector to search candidate subspaces, it employs a
detector to rank the retrieved subspaces. Thus, its effectiveness
should be also evaluated for different detectors.

Figures 10-a) to -e) show the MAP of different algorithms
for the five synthetic datasets of our testbed. Starting from 14
dimensions in Figure 10-a), HiCS and LookOut with LOF achieve
optimal MAP regardless of the explanation dimensionality. As
dataset’s dimensionality and outlier ratio increase in Figures 10-
b) to -e), HiCS with LOF and Fast ABOD are the most effective
because (i) small groups of outliers are hidden within subspaces
with correlated features and (ii) outliers are highly clustered at the
borders of data distribution, allowing LOF and Fast ABOD to score
their relevant subspaces at the top positions. The lowest MAP
value of HiCS is observed in the 39 dimensional dataset where
some 4𝑑 relevant subspaces do not contain highly correlated
features. This drop clearly demonstrates the strong dependency
of HiCS on the feature correlation heuristic.

As we can see in Figures 10-b and -e) LookOut’s effectiveness
significantly drops as the explanation dimensionality increases
in higher dimensional datasets. One reason of this drop is related
to the lower scores returned by the detectors in high dimen-
sional subspaces. An additional reason stems from the existence
of points exhibiting high outlyingness also in their augmented
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Figure 10: Mean Average Precision (MAP) of HiCS and LookOut in HiCS synthetic datasets (a)-(e) and real-world datasets
(f)-(h) for explanations of increasing dimensionality (best viewed in color)

Figure 11: Runtime of detection and explanation pipelines (best viewed in color)
subspaces. According to complementary experiments not pre-
sented here due to space restrictions, detectors (especially LOF
and iForest) assign higher scores to outliers in their augmented
subspaces of dimensionality 𝑑 than to outliers explained exclu-
sively in 𝑑 . As the outlier ratio increases along with dataset’s
dimensionality, more outliers get high scores in their augmented
subspaces of a requested dimensionality. As a small fraction of
outliers is explained by high dimensional subspaces, LookOut
mainly retrieves augmented subspaces of outliers explained in
lower dimensions that provide higher marginal gain. Observe
that LookOut with Fast ABOD starts performing better than with
LOF for high dataset dimensionality. Note that we run LookOut
with LOF up to 4𝑑 explanations in 100 dimensions and Fast ABOD
and iForest only up to 3𝑑 explanations for 70 and 100 dimensions.
Specifically, to explain the outliers with 4𝑑 explanations in a 70𝑑
dataset, LookOut needs to assess 900K subspaces. In Section 4.3,

we demonstrate that LOF is the most efficient detector when a
significant amount of subspaces need to be assessed.

Figures 10-f) to -h) illustrate the MAP obtained in the 3 real-
world datasets of our testbed. HiCS has poor MAP regardless
of the explanation dimensionality or the detector used. This
is because outliers are not contained in subspaces with highly
correlated features. LookOut with LOF is the most effective as it
is able to retrieve almost all relevant subspaces even when they
maximally explain one outlier. On the contrary, LookOut with
iForest and Fast ABOD exhibit poor performance as they are not
able to highly score the relevant subspaces.

Lessons Learned. The fact that relevant subspaces may be
formed by highly correlated features could be exploited to avoid
a blind search of subspaces. When datasets exhibit strong feature
correlation in relevant subspaces, HiCS exploits this heuristic
and provides the best performance regardless of the dataset’s
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or explanation’s dimensionality. It only depends on the ability
of LOF or Fast ABOD to highly rank the retrieved subspaces.
LookOut is as effective as HiCS in the synthetic datasets for low
dataset dimensionality (e.g. 14𝑑). When subspaces are formed by
uncorrelated features, LookOut is a better alternative. However,
LookOut is heavily impacted by the varying dimensionality of
subspaces explaining different outliers. Indeed, the utility of sub-
spaces in LookOut is defined exclusively in terms of their scores,
without considering any semantic property of explanations such
as the coverage of the points to be explained, or the overlap or
the equivalence of subspaces in the explanation summaries.

4.3 Algorithms RunTime & Tradeoffs
In this section we report the execution time of the two point
explanation and the two summarization algorithms we evaluated
their effectiveness in Sections 4.1 and 4.2. In this respect, we are
using the same synthetic (up to HiCS 39𝑑) and real (Electricity
23𝑑) datasets containing a similar amount of samples (∼ 1000).
We report execution time only for Electricity as it contains the
highest number of samples exhibiting the same behavioral trends
as the other two real datasets. Recall that as we are looking for
explanations of fixed dimensionality (2-5𝑑) the ratio of relevant
features decreases as dataset’s dimensionality increases.

Outlier Detection. Unlike HiCS, subspace search in explanation
algorithms like Beam, RefOut and LookOut, heavily depends on
the efficiency (and effectiveness) of used off-the-self detectors.
According to the performance curves of detection and explana-
tion pipelines depicted in Figure 11, LOF is the fastest followed
by iForest and Fast ABOD across all datasets and explanation
algorithms. This is due to low number of samples (∼ 1000) despite
the fact that iForest has the lowest time complexity. A similar
result has been reported in [8] for the same hyper-parameter
settings as those used in our testbed (see Section 3.1). Note that
for iForest we report the average time out of 10 repetitions per
subspace. Specifically, to score a single subspace LOF needed 0.05,
iForest 0.2 and Fast ABOD 2 seconds approximately.

Point Explanation. The runtime of pipelines involving Beam,
RefOut are illustrated in Figures 11-a) to -d). Critical factors af-
fecting Beam’s efficiency are: (i) the requested explanation dimen-
sionality (more stages to be built), (ii) the dataset’s dimensionality
(more subspaces to be assessed per stage), (iii) the efficiency of
the employed detector and (iv) the number of outliers to explain
(the process is repeated per outlier). However, due to its random
sampling technique, RefOut’s runtime is relatively stable regard-
less of the explanation or dataset’s dimensionality. Note that up
to 39𝑑 datasets and 2𝑑 explanations, RefOut and Beam with LOF
need almost the same time to assess a similar amount of sub-
spaces. RefOut with LOF outperforms Beam with LOF from 1 (in
real datasets) up to 3 orders (in synthetic datasets) of magnitude
for 39𝑑 datasets and 5𝑑 explanations.

Explanation Summarization. The runtime of pipelines involv-
ing LookOut and HiCS are illustrated in Figures 11-e) to -h). The
critical factors affecting LookOut’s efficiency are: (i) dataset’s
and explanation dimensionality (exhaustive subspace search) and
(ii) the efficiency of the employed detector. On the other hand,
by decoupling subspace search from outlier scoring, the critical
factor of HiCS efficiency is only the explanation dimensionality
(more subspaces to be assessed per stage). Thus, HiCS exhibits
similar running times when executed with LOF, iForest and Fast

ABOD (used only to rank the discovered subspaces). Surpris-
ingly, LookOut with LOF7 outperforms all HiCS pipelines up to
4𝑑 explanations (by 1 order of magnitude in 2𝑑). For the size of
datasets used in our experiments, HiCS statistical tests to assess
feature correlation prove to be more costly than LOF distance
calculation of points to assess their outlyingness. Performance
gains of LookOut with LOF drop as we increase the number of
features along with explanation dimensionality, leading HiCS to
outperform LookOut in the 39𝑑 dataset for 5𝑑 explanations.

Table 2 demonstrates the point explanation and summariza-
tion algorithms along with their corresponding detector that
exhibit the best tradeoff between effectiveness (according to Fig-
ures 9 and 10) and efficiency (according to Figure 11) from 2𝑑
up to 5𝑑 explanations across decreasing relevant feature ratios.
For every cell we take the top pair of algorithms according to
their efficiency and effectiveness in pareto order. We prioritize
generic algorithms like LookOut over algorithms like HiCS that
work under specific conditions. For instance, LookOut with LOF
is slightly less effective than HiCS with LOF in Figure 10-c), while
they have the same execution time in Figure 11-g). In cells 2𝑑 and
3𝑑 with a 12% ratio, we consider that LookOut achieves a better
tradeoff since it is more generic than HiCS. When point expla-
nation or summarization algorithms exhibit zero effectiveness
in all executed pipelines for a particular dataset and explanation
dimensionality, no top pair is reported. For instance, for 5𝑑 and
21% or 12% ratios only one pair for detection and summarization
algorithms is reported (HiCS with LOF) as no point explanation
algorithm succeeds to return relevant 5𝑑 explanations. The main
conclusions drawn from Table 2 are:

1. State-wise subspace search employed by Beam achieves the
best tradeoff for full space outliers. Both its effectiveness and
efficiency significantly decrease for subspace outliers as the ratio
of relevant features decreases. However, it is the only option
for high explanation dimensionality (3𝑑 - 4𝑑) and low relevant
feature ratio (< 12%).

2. Random subspace projection employed by RefOut provides
a good tradeoff for subspace outliers with a medium ratio of
relevant features (35% and 21%). Its effectiveness drops to zero
as the explanation dimensionality becomes greater than 3𝑑 (for
21% ratio).

3. Exhaustive subspace search employed by LookOut exhibits
top effectiveness and efficiency for full space outliers regardless
of the explanation dimensionality, as well as, for subspace outliers
up to 3𝑑 . Its effectiveness significantly drops for subspace outliers
explained by subspaces greater than 3𝑑 (for 21% ratio).

4. Correlation heuristic exploited by HiCS achieves the best
tradeoff for 4𝑑-5𝑑 explanations especially when the relevant fea-
ture ratio is low. This heuristic however, strongly depends on the
data distribution as highly clustered outliers may are not always
be visible in correlated features.

5 RELATEDWORK
In this section we survey additional explanation algorithms for
data in rest (databases) or in motion (streams) and justify why
they have not included in our benchmark.

Explaining Black-Box Models. Several methods have been pro-
posed to explain why a supervised model predicted a particular
label for a particular example [10, 19, 24, 26, 33]. LIME [33] con-
structs a linear interpretable model that is locally faithful to the

7LookOut has been experimentally evaluated by its authors [15] only with iForest
and 2𝑑 explanations.
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Explanation
Dimensionality Relevant Features Ratio

100% 35% 21% 12%

2𝑑 Beam LOF
LookOut LOF

RefOut LOF
LookOut LOF

RefOut LOF
LookOut LOF

RefOut LOF
LookOut LOF

3𝑑 Beam LOF
LookOut LOF

RefOut LOF
LookOut LOF

RefOut LOF
LookOut LOF

Beam Fast Abod
LookOut LOF

4𝑑 Beam LOF
LookOut LOF

RefOut LOF
LookOut LOF

Beam iForest
HiCS LOF

Beam iForest
HiCS LOF

5𝑑 Beam LOF
LookOut LOF

RefOut LOF
LookOut LOF HiCS LOF HiCS LOF

Table 2: Tradeoffs of outlier detection and explanation algorithms

predictor. [10, 19] explain the model by perturbing the features
to quantify their influence on predictions. Other works aim to
produce explanations in the form of feature relevance scores by
comparing the difference between a classifier’s prediction score
and the score when a feature is assumed to be unobserved [34],
or by considering the local gradient of the classifier’s prediction
score with respect to the features for a particular example [4].
[38, 39] considered how to score features in a way that takes into
account the joint influence of feature subsets on the classification
score. This body of work requires as input a supervised model
rather than an unsupervised anomaly detector. However, in real
application settings it is difficult or even impossible to label data
as anomalous or normal examples [12].

Explaining Outliers in Query Answers. Scorpion [47] was the
first system for explaining outliers in the result of group-by
queries. Given a set of outliers spotted by analysts on the re-
sults of queries, the system searches for a logical formulae that
describes a set of tuples that contribute most to the excessively
high or low aggregate value of a specific group. It is hard to extend
this work for explaining outliers recognized by off-the-self de-
tectors. Furthermore, empirical explanations for data points that
violate specific data quality constraints (i.e., inconsistencies w.r.t.
domain-specific rules) have been studied in [7]. A glitch expla-
nation is a collection of values of features that have statistically
significant propensity signatures. In our work, we are interested
in a quantitative form of data anomalies frequently encountered
in transaction or measurement-based datasets, i.e., outliers in
numerical features for which quality constraints are difficult or
impossible to obtain. Finally, an interactive explanation discovery
system has been proposed [35]. It relies on a set of explanation
templates given by analysts that need to be precomputed per
dataset. Neither of the previous methods satisfy our requirements
for explaining data anomalies in a way that is both domain and
detector agnostic without making strong assumptions regarding
how the input datasets have been processed.

Explaining Outliers in Temporal Data.MacroBase [1] enables
efficient, accurate, and modular analyses that highlight and aggre-
gate important and unusual behavior in fast data. It introduces an
operator for explaining outliers in a data stream based on the cat-
egorical features rather than the numerical features used to actu-
ally detect outliers. In contrast to the notion of relevant subspaces,
the explanation of continuous outliers consists of conjunctions of
categorical features whose values cover most of the outliers de-
tected by a density-based method called MAD. ExplainIT [16] is a
recent system for unsupervised root-cause analysis of time series
that shares similar motivations with MacroBase. It empowers a
declarative interface (SQL based) for specifying a large number
of cause hypothesis that need to be tested and ranked to assist

analysts with a reduced number of causal dependencies that have
to exploit regarding an observed phenomenon. The use of causal
models for explaining data outlyingness is an interesting idea
that we plan to study in the future by leveraging our previous
work on scalable algorithms for causal feature discovery [45].
Finally, EXstream [49] is a system providing high-quality expla-
nations for anomalous behaviors of streaming data that analysts
annotate using CEP-based monitoring results. Explanations take
the form of logical formulae in CNF involving relational predi-
cates (i.e., =, <, ≤) over feature values computed for time series.
Authors formalize the problem of optimally explaining anomalies
in CEP as an information reward maximization problem. In this
respect, an entropy-based distance function of time series is used
to measure the contribution in the reward of each feature. As
the reward function is sub-modular, greedy approximation tech-
niques could be used as in the case of LookOut [15]. Computing
explanations based on single-feature rewards bears similarity
with the univariate feature selection problem while computing
subspace based outlier explanations is closer to the more complex
problem of multivariate feature selection [45].

6 CONCLUSIONS AND FUTUREWORK
In this experimental study, we addressed missing insights regard-
ing the performance of existing outlier explanation and summa-
rization algorithms under realistic settings. We underlined the
main challenge that stems from the lack of inherent pruning
properties to effectively search the exponential space. Existing
subspace search strategies exploit the distributional characteris-
tics either: (i) of data such as features’ correlation in subspaces
(HiCS [17]) or (ii) of scores given by an outlier detector in sub-
spaces (LookOut [15], Beam [28] and RefOut [18]). The former
strategy is effectivewhen highly clustered outliers over correlated
features are contained in datasets regardless of their dimensional-
ity, while the latter is effective in low explanation dimensionality
where the outlier detectors can discriminate accurately the out-
liers from the inliers. It remains open to assess whether the low
dimensional subspaces retrieved by an explainer are projections
of a high dimensional subspace fully explaining a specific point.

We should additionally note that the detection of outliers in
LOF, ABOD and iForest, is actually decoupled from the search of
subspaces likely to contain them. HiCS, RefOut and Beam instead
are explaining outlier detectors that rely on per-subspace mea-
sures to quantify the explanation quality of subspaces. We are
planning to extend our testbed with recent works [44] taking into
account the relationship between subspaces using a dimension-
based measure of their explanation quality. Moreover, in case
of recurring anomaly patterns, it is also interesting to bench-
mark group-based explanation summarization techniques [25].
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Another interesting aspect would be to investigate outlier expla-
nation in stream processing settings such as LODA [31].

We should finally stress that existing outlier explanation and
summarization algorithms actually provide descriptive explana-
tions. In essence, subspace explanations are verbose descriptions
of the decision boundary discovered by unsupervised detectors
to distinguish inliers from outliers. This is the reason why ex-
planation tasks should be re-executed for every new bunch of
data made available in ML pipelines even if they stem from the
same generative process. As summarization algorithms can only
exploit the subspaces which are assessed to be relevant to a given
set of points, they may result in summaries of very poor quality
when individual outliers are explained by disjoint feature subsets.
In this respect, we are planning to build a surrogate model to
predict the scores (or labels) of points produced by an unsuper-
vised outlier detector and approximate its decision boundary
using minimal predictive signatures. Such predictive explana-
tions overcome the high computation cost of subspace search per
point and provide formal guarantees regarding minimality in the
explanation dimensionality.
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