
GeoBlocks: AQuery-Cache Accelerated Data Structure
for Spatial Aggregation over Polygons

Christian Winter Andreas Kipf★ Christoph Anneser
Eleni Tzirita Zacharatou⋄ Thomas Neumann Alfons Kemper

Technische Universität München MIT CSAIL★ Technische Universität Berlin⋄
{winterch, anneser, neumann, kemper}@in.tum.de kipf@mit.edu eleni.tziritazacharatou@tu-berlin.de

ABSTRACT
As individual traffic and public transport in cities are changing,
city authorities need to analyze urban geospatial data to improve
transportation and infrastructure. To that end, they highly rely on
spatial aggregation queries that extract summarized information
from point data (e.g., Uber rides) contained in a given polygo-
nal region (e.g., a city neighborhood). To support such queries,
current analysis tools either allow only predefined aggregates
on predefined regions and are thus unsuitable for exploratory
analyses, or access the raw data to compute aggregate results
on-the-fly, which severely limits the interactivity. At the same
time, existing pre-aggregation techniques are inadequate since
they maintain aggregates over rectangular regions. As a result,
when applied over arbitrary polygonal regions, they induce an
approximation error that cannot be bounded.

In this paper, we introduce GeoBlocks, a novel pre-aggregating
data structure that supports spatial aggregation over arbitrary
polygons. GeoBlocks closely approximate polygons using a set
of fine-grained grid cells and, in contrast to prior work, allow
to bound the approximation error by adjusting the cell size. Fur-
thermore, GeoBlocks employ a trie-like cache that caches aggre-
gate results of frequently queried regions, thereby dynamically
adapting to the skew inherently present in query workloads
and improving performance over time. In summary, GeoBlocks
outperform on-the-fly aggregation by up to three orders of mag-
nitude, achieving the sub-second query latencies required for
interactive exploratory analytics.

1 INTRODUCTION
Nowadays, the amount of geospatial data collected in cities is in-
creasing rapidly, thanks to the widespread use of mobility applica-
tions such as Uber [53]. To analyze this data andmake data-driven
decisions, city officials and planners often rely on visualization
frameworks that allow users to visualize data of interest at differ-
ent spatial and temporal resolutions [4, 8, 41, 50, 53]. To generate
common visualizations, such as heatmaps, visual tools perform
spatial aggregation queries that partition the data over different
polygonal-shaped regions and then compute summarized aggre-
gate information for each region. To support exploratory analyses,
visual tools must provide interactive response times as high la-
tency reduces the rate at which users make observations, draw
generalizations, and generate hypotheses [22]. However, the
sheer size of the data combined with the complexity of spatial
queries prohibit interactivity, which severely limits analyses. As
shown in [28], current tools operating over raw geospatial data
cannot produce results fast enough for interactive analysis.

© 2021 Copyright held by the owner/author(s). Published in Proceedings of the
24th International Conference on Extending Database Technology (EDBT), March
23-26, 2021, ISBN 978-3-89318-084-4 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

Error along top edge

© OpenStreetMap contributors Wikipedia (CC-BY-SA)

fare_amount distance tip_rate
min
max
sum

4.11
140

76500.314282.13
51.4

0.2 0.0
1.2

523.4
count: 5114 key: 0x89c2597dec

Figure 1: Cell covering (blue) of the Lower East Side (bor-
der in orange) with bounded error (red), a cell aggregate
(green), and a cached commonly queried region (purple).

On the bright side, interactive analyses are often repetitive
in nature. Analysts, for example, typically run multiple aggre-
gate queries for the same area (e.g., the city center) in a sequence,
changing only the aggregate function (e.g., count, sum) or the data
attribute over which the aggregation is performed. Furthermore,
they often focus on certain geospatial regions during their analy-
sis. They might, for example, iteratively resize the boundary of
the spatial region of interest, extracting an aggregate every time,
or calculate aggregates for neighboring, potentially overlapping,
regions. Such analyses can greatly benefit from query-driven
materialization approaches that store and reuse intermediate or
even full query results.

Naturally, in classical OLAP settings, query-driven materi-
alization and result recycling are widely used and well under-
stood [24, 35, 42, 45]. However, these methods do not address
multi-dimensional spatial data. While methods have also been
proposed for spatio-temporal OLAP queries, such as nanocubes
[21] and the aR-tree [30, 31], these do not provide precision guar-
antees for spatial aggregation queries over arbitrary polygons.
Both nanocubes and the aR-tree store aggregate information in
a hierarchy of rectangles, maintained using a quadtree and an
R-tree, respectively. Therefore, they are designed for aggregate
queries over rectangular regions while their precision depends
on the granularity of the underlying index structure. Using them
to compute aggregates over polygonal regions introduces an ap-
proximation error, which cannot be bounded. There are also some
analysis tools, such as Uber Movement [53], that rely on pre-
computation to provide exact results for spatial aggregations
over polygons. However, they require the polygonal regions to
be pre-defined at aggregation time. This assumes a priori knowl-
edge of the workload and is thus not applicable in exploratory
analyses, where the query polygons are chosen ad-hoc.

We propose GeoBlocks, a novel pre-aggregating data structure
for geospatial point data that guarantees error-bounded results
for spatial aggregation queries over arbitrarily shaped polygons.
Essentially, GeoBlocks are materialized views on geospatial point
data that pre-compute filters and aggregations on pre-defined

Series ISSN: 2367-2005 169 10.5441/002/edbt.2021.16

https://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2021.16

l5

l6 l1

l4

x

y
v0
v1
v2
v3
v4

12
...
...
...
...

l0
l2

l3

Point Data (Known)

lq1
lq2

lq3
x

y

lq4

Queries (Unknown)

a1
a2

3
...
...

l7 lq5

a0

Figure 2: Problem overview: Calculating unknown aggre-
gates 𝑎 from known points 𝑃 contained within an un-
known query polygon 𝑅 (specified by its vertices 𝑙𝑞).

columns. Instead of pre-computing aggregates over a hierarchy of
rectangles as in prior work, GeoBlocks pre-compute aggregates
over fine-grained grid cells. As depicted in Figure 1, GeoBlocks sub-
divide the spatial domain into grid cells, keeping aggregates for
each individual cell. We allow the user to specify the geospatial
granularity, and thereby bound the spatial approximation error.
In addition, we propose a trie-like data structure that caches
aggregates for commonly queried regions in a compact manner,
enabling even faster response times. GeoBlocks are designed for
historical point data and are thus write-once/read-only. How-
ever, while GeoBlocks currently do not support updates, they
can be adapted to do so, as we briefly discuss in Section 5. Our
contributions are summarized as follows:

• We propose GeoBlocks, the first, to the best of our knowl-
edge, data structure that supports spatial aggregation over
arbitrary polygons, while guaranteeing a bounded error.

• We develop a query-driven caching mechanism that fur-
ther accelerates aggregate queries by leveraging the skew
commonly found in exploratory query workloads.

The advantages of our approach are amply clear from our
extensive experimental evaluation on real-world data. The results
show that GeoBlocks achieve up to three orders of magnitude
speedup compared to on-the-fly aggregation approaches and
support sub-second response times.

In the remainder of this paper, we first formalize the problem
in Section 2. Section 3 describes our approach, which we then
experimentally evaluate in Section 4. Section 5 summarizes the
key points discovered in the evaluation and discusses updates
for GeoBlocks. Finally, we present an overview of related work
in Section 6 before concluding in Section 7.

2 PROBLEM STATEMENT
In this paper, we propose a new data structure to speed up the
execution of spatial aggregation queries. Formally, the query can
be defined in SQL-like notation as follows:
SELECT AGG(P.𝑣0), . . . , AGG(P.𝑣𝑘) FROM P
WHERE P.𝑙 INSIDE R(𝑙𝑞1, 𝑙𝑞2, . . . , 𝑙𝑞𝑚) [AND filterCondition]*

Given a set of annotated points of the form P(𝑙 , 𝑣0, 𝑣1, . . . , 𝑣𝑛),
where 𝑙 = (𝑥𝑙 , 𝑦𝑙) is the location of the point and 𝑣𝑖 are numerical
or temporal attributes, this query extracts multiple aggregates
𝑎𝑖 = 𝐴𝐺𝐺 (𝑣𝑖) over all the points contained in a query region 𝑅.
The query region can be any arbitrary polygon, and its geometry is
defined by the locations of the polygon’s vertices 𝑙𝑞1, 𝑙𝑞2, . . . , 𝑙𝑞𝑚 .
The aggregates are non-holistic functions such as count, sum,
min, max, or average. Finally, the query can have zero or more
filterConditions on the attributes.

cell Rectangular area, hierarchically subdivid-
able into four children

cell level Number of subdivisions performed on the
spatial domain to obtain the cell

cell id/spatial key Unique one-dimensional identifier of a cell

block level Level of grid cells in a GeoBlock

cell aggregate Aggregates of all tuples of a grid cell

cell covering Error-bounded approximation of a poly-
gon using cells

Table 1: Terminology

00 11

01 10

0000 0001 1110 1111

level i

level i+1

Figure 3: Hierarchical cell decomposition [16].

In exploratory interactive analyses, users can dynamically
and unpredictably change not only the filtering conditions and
the requested aggregates but also the polygonal query region.
The data points, on the other hand, are known a priori. Figure 2
presents an example of this scenario: The left-hand side shows the
input points that are located at (𝑙0, . . . , 𝑙7) and have five attributes
each. The right-hand side shows the query; the polygonal region
is marked in blue, while three different aggregates are extracted.
As can be seen in the figure, this query applies the aggregation
over the three points that are contained in the query region,
located at 𝑙5, 𝑙6, and 𝑙7.

Existing approaches for spatial aggregation queries, such as
the aR-tree [30, 31], are designed for rectangular regions, and thus
do not support arbitrary polygons. Applying them to the example
of Figure 2 requires to approximate the query polygon with a
minimum bounding rectangle, displayed in grey, over which the
aggregation is performed. This introduces an extra point in the
results, 𝑙3, which is outside the actual query region.

3 GEOBLOCKS
In this section, we first present the geospatial decomposition that
forms the basis of our approach. We then discuss how we can
quantify and bound the error that this decomposition introduces.
Next, we explain the core concepts of GeoBlocks, their storage
layout, and the efficient evaluation of spatial aggregation queries
using GeoBlocks. Finally, Section 3.6 outlines our query-driven
caching mechanism that further improves performance by lever-
aging the characteristics of the query workload. Table 1 provides
an overview of the concepts introduced in this section.

3.1 Geospatial Decomposition
GeoBlocks rely on a hierarchical, quadtree-based spatial decom-
position. In this decomposition, a given area (cf. the outer rec-
tangle in Figure 3) is recursively subdivided into equally-sized
smaller areas that we call cells. Each cell has four children, which

170

leads to an exponentially growing number of 4𝑛 cells after re-
cursively subdividing a cell 𝑛 times. We encode each subdivision
using two bits, which allows us to uniquely identify a cell at level
𝑛 by concatenating the encoding of levels 0 to 𝑛. Equivalently, all
cells at a given level can be enumerated using an order-preserving
space-filling curve. Since children cells share a common prefix
with their parent cell, containment tests are reduced to efficient
bitwise operations. This encoding further allows storing cell ids
in prefix-encoded index structures such as radix trees [16, 17] or
in learned indices [52] to speed up containment queries. Figure 3
shows the decomposition of a cell in four (level 𝑖) and 16 (level
𝑖 + 1) sub-cells, and the corresponding enumeration with a Hil-
bert curve. Applying our decomposition strategy to the Earth’s
surface, we only need 64 bits to address every single square cen-
timeter. That way, we map two-dimensional geospatial locations
(lat/long coordinates) to one-dimensional 64-bit keys. In our im-
plementation, we use the Google S2 library [38] to perform the
spatial decomposition and cell enumeration. Note, however, that
our approach is not restricted to S2 or the Hilbert curve. Any
other framework that supports recursive geospatial subdivisions
and order-preserving cell enumerations can be used instead.
Point Approximation. We map locations (i.e., points) to the
smallest cell that contains them. The imprecision introduced by
this approximation (e.g., at most 6.1mm for any point in the US)
is negligible, as the imprecision of GPS data is often orders of
magnitude worse [54].
Polygon Approximation. Similarly, we approximate the query
polygons on-the-fly by mapping them to a set of cells, possibly
at different levels, as shown in Figure 4 (center and right). We
call this geometric approximation a cell covering. In our imple-
mentation, we calculate cell coverings using the S2 library.

3.2 Bounded Error
Similarly to all geometric approximations, our cell covering in-
troduces a spatial error. This is because all the cells that intersect
the polygon outline, even minimally, are considered to be part
of the polygon. However, in contrast to other coverings like the
widely used minimum bounding rectangle (MBR), our cell cov-
ering is much more fine-grained. As can be seen in Figure 4,
the cell covering approximates the polygon outline much more
closely compared to the MBR. More importantly, the introduced
approximation error can be bounded. In fact, any point on the cell
covering is within a distance

√
𝜖21 + 𝜖22 from the polygon outline,

where 𝜖1, 𝜖2 are the side lengths of the cell. Clearly, the smaller
the cell size, the smaller the approximation error. Consequently,
our cell covering can guarantee a user-defined error bound, i.e., a
bound on the spatial distance between the approximate and the
original polygon, by using an appropriately small cell size. The
MBR cannot guarantee such a bound, because its spatial extent,
and thus its distance from the polygon outline, depends on the
polygon’s minimum and maximum coordinates in each dimen-
sion and cannot be controlled [52]. The user can specify the error
bound by choosing an appropriate cell level1 so that the cell’s di-
agonal is not greater than her desired error. This user-controlled
and bounded spatial error is the only error in GeoBlocks. All
further operations are exact and do not introduce any additional
error. While the error bound should be the driving factor when
selecting a cell level, there are other points to consider: (1) The
cell diagonal is the maximum error, and the average error can

1From the table at https://s2geometry.io/resources/s2cell_statistics

Maximum Spatial Error

Figure 4: MBR (left) and two cell coverings with increas-
ingly fine-grained resolution.

Extract

Raw Data
Clean & Sort

Base Data

Filter &
Aggregate

Build

GeoBlock

Figure 5: Creation of a GeoBlock in two phases. The ex-
tract phase is run once per dataset. The build phase is run
for each filter and error bound combination.

be expected to be lower. (2) The cost of reducing the error is not
linear. Per each level, the diagonal, and thereby the error bound,
reduces by a factor of 2. At the same time, the number of grid
cells, and thus the query input, grows by a factor of 4.

3.3 Preprocessing
In addition to transforming the two-dimensional input space to
one-dimensional spatial keys, we perform some additional pre-
processing steps on the known point data. Our process, outlined
in Figure 5, consists of two phases, extract and build, and is simi-
lar to the ETL process traditionally applied in OLAP settings. In
the first phase, we prepare the raw data by filtering outliers in
the often dirty datasets and limiting the columns to those rele-
vant and suitable for analysis. We furthermore sort the data by
the generated one-dimensional spatial key. This extract phase
is run exactly once per dataset and allows us to cheaply build
GeoBlocks from the extracted base data. The second phase, build,
utilizes the clean and sorted base data to generate a GeoBlock in
a single pass and thus in linear time.
Updates and Filters. An important part of data analysis is fil-
tering to gain insights into the desired subsets of the data. In
our process, we could apply filters either before or after sorting
the raw data. While the first option seems tempting, as it would
reduce the number of tuples over which the expensive sorting
has to be performed, we decided to filter the data in the build
phase. This way, we can utilize the sorted base data to quickly
build GeoBlocks for different filter predicates, aggregates, and
grid resolutions in a single pass. Building new GeoBlocks quickly
is especially useful in exploratory analyses, where the data and
filters of interest might not be fully known a priori. However, the
increased cost of sorting all data has to be amortized over mul-
tiple GeoBlocks and filter predicates. In reality, the sorting cost
might be amortized immediately, as some exploratory queries
might need to compare a subset of the data with the total. Con-
sider, for example, a query comparing the tip rate of expensive
taxi rides (WHERE fare_amount > 20) with that of all rides. In
this case, we would need to build a GeoBlock for all rides, and
therefore sort the entire dataset anyway.

171

Given 𝑘 different filter predicates with average selectivity 𝑠

and a total input size of 𝑛 tuples, we can calculate the runtime
of building isolated GeoBlocks with filters before sorting, and
incremental builds from sorted base data as follows:

𝑘 ∗ (𝑂 (𝑛) +𝑂 (𝑠𝑛 ∗ 𝑙𝑜𝑔(𝑠𝑛)) +𝑂 (𝑠𝑛)) (1)

𝑂 (𝑛 ∗ 𝑙𝑜𝑔(𝑛)) + 𝑘 ∗𝑂 (𝑛) (2)
The isolated build (1) has three phases, cleaning and filtering
in 𝑂 (𝑛), sorting in 𝑂 (𝑠𝑛 ∗ 𝑙𝑜𝑔(𝑠𝑛)), and finally aggregating in
𝑂 (𝑠𝑛). Incremental builds (2) have a fixed component composed
of cleaning and sorting in 𝑂 (𝑛 ∗ 𝑙𝑜𝑔(𝑛)), followed by the incre-
mental filtering and aggregation of the GeoBlock in 𝑂 (𝑛). For
incremental builds to pay off, the sorting cost of the regular builds
(𝑘 ∗ (𝑂 (𝑠𝑛 ∗ 𝑙𝑜𝑔(𝑠𝑛))) has to outweigh the initial cost of the incre-
mental builds (𝑂 (𝑛 ∗ 𝑙𝑜𝑔(𝑛))). As we only have runtime classes
for each variant and de-facto runtimes will vary between systems
and datasets, we cannot determine when amortization is reached
solely depending on 𝑘 and 𝑠 . However, we provide an in-depth
experimental analysis of the amortization in Section 4.

3.4 Storage Layout
Once the filtering of the base data is completed, we can start
aggregating and building a GeoBlock. To build a GeoBlock, for
each grid cell in the decomposed space, we compute a number of
aggregates over all the tuples that it contains. Empty cells that
do not contain any tuples are omitted during aggregation as they
would needlessly consume space. We refer to the aggregates of
a grid cell as cell aggregates. A GeoBlock stores cell aggregates
in ascending order of the cell’s spatial key, which is the same
sorting order as the one applied to the base data. Moreover, a
GeoBlock maintains a global header that combines all cell ag-
gregates into a single GeoBlock-wide aggregate and contains
additional metadata required for querying, such as the minimum
and maximum cell id in the GeoBlock.
Cell Aggregate. Each cell aggregate stores pre-computed an-
swers for spatial aggregation queries at the grid cell level. A cell
aggregate consists of the cell’s spatial key, the base data offset of
the first tuple contained in the cell, and the number of contained
tuples. Furthermore, it maintains aggregates for all columns (both
numeric and temporal attributes) in the extracted data. The main-
tained aggregates are the minimum, maximum, and sum of all
values contained in the cell. Note that using the sum together
with the tuple count allows us to also compute the average as
sum/count. Furthermore, the cell aggregate stores the minimum
and maximum keys of the spatial column. The table in Figure 1
shows an example of a cell aggregate.
Aggregate Granularity. As described in Section 3.2, the block
level (i.e., the granularity of the space decomposition) is defined
by the user at build time. However, it is also possible to adapt
the granularity at a later time. Building a more coarse-grained
GeoBlock from an existing one is rather straightforward and does
not require re-scanning the base data. We can easily combine all
cell aggregates of the finer-grained GeoBlock corresponding to
a more coarse-grained grid cell in a single pass over the aggre-
gates. On the other hand, building a more fine-grained GeoBlock
requires scanning and further subdividing the base data.

3.5 Querying
GeoBlocks support two variants of spatial aggregation queries.
On the one hand, they support regular SQL SELECT queries that
take a query polygon and produce a user-defined subset of the

1 lastAgg = 0
2 def selectQuery(polygon):
3 queryCells = s2.coverPolygon(polygon)
4 # Prune search range
5 queryCells.pruneLess(globalHeader.minCell)
6 queryCells.pruneGreater(globalHeader.maxCell)
7
8 lastAgg = 0
9 resultAggregates = initial
10 for qcell in queryCells:
11 # Map qCell to smaller childCells at the block level
12 childCells = s2.childrenAtLvl(qcell, BLOCK_LVL)
13 for cell in childCells:
14 getAggregates(cell, resultAggregates)
15 return result
16
17 def getAggregates(cell, result):
18 # Check the last results successor
19 if lastAgg == 0:
20 # Search initial header
21 aggregate = allAggregates.upperBound(cell).prev
22 if aggregate.cell == cell:
23 combineAggergates(aggregate, result)
24 lastAgg = aggregate
25 else:
26 if lastAgg.next.cell == cell:
27 lastAgg = lastAgg.next
28 combineAggregates(lastAgg, result)

Listing 1: SELECT query

available aggregates. On the other hand, they support a special-
ized efficient implementation of COUNT queries that only report
the number of points contained in a query polygon. Such COUNT
queries are commonly used in analytics, especially in the context
of visualization. Figure 1 shows an example query that extracts
a set of aggregates over the Lower East Side region, which is
approximated by a cell covering (marked in blue). The answer is
calculated by extracting and combining all the aggregates con-
tained in the blue cells.

To answer a spatial aggregation query over a polygonal region
(Figure 6a), the polygon is approximated using a cell covering,
as discussed in Section 3.1. We compute a cell covering that con-
forms to the error bound (Figure 6b). Note that the cell covering
can have cells at different levels, and some of them might be
larger than our grid cells. Such larger cells can be easily mapped
to smaller grid cells (Figure 6c) in the GeoBlock and offer fur-
ther optimization potential, as discussed next. The cell covering,
however, cannot contain any cells smaller than the cells of the
GeoBlock. Once we obtain the cell covering, we query the Geo-
Block for each of the covering cells, as visualized for a SELECT
query in Figure 6d. We then combine these partial results to
compute the final result for the entire query polygon. In the
following, we describe the query process for each cell of the cov-
ering. First, we use the GeoBlock’s header to check if the cell
overlaps with the GeoBlock at all. Thanks to the prefix-based
containment checks, this is possible in constant time using the
minimum and maximum cell id in the GeoBlock. Only if there
is a possible overlap, we continue with the specific checks for
SELECT and COUNT queries as follows:
SELECT Queries. SELECT queries have to look at all cell aggre-
gates contained in the query cell. Listing 1 presents the pseudo-
code of the algorithm. After a query cell has passed the first
check, we try to further limit the search space to the overlapping
area (Lines 5 & 6). After splitting the query cell to smaller cells
that match the GeoBlock’s granularity if needed (Line 12), we
locate the first intersecting grid cell using an upper-bound binary
search (Lines 21 - 24). For all the following cells, we exploit the

172

1 20
2221

20
2221

10
1211
13

a) b) c) d)
11?

502 411 112 220 523

10? 12? 13?
4+1=5

id val
sum(val)

Figure 6: Query overview: Query polygon (a), cell covering
(b), grid-cell representation of covering (c), and subquery
for covering cell 1 in the cell aggregates (d, Listing 1 Line
12 and following).

1 def countQuery(polygon):
2 queryCells = s2.coverPolygon(polygon)
3 result = 0
4 for c in queryCells:
5 f_child = c.firstChildAtLvl(cell, BLOCK_LVL)
6 l_child = c.lastChildAtLvl(cell, BLOCK_LVL)
7 # Get first & last contained aggregate
8 first = allAggregates.lowerBound(f_child)
9 last = allAggregates.upperBound(l_child, first)
10
11 cnt = last.offset + last.count - first.offset
12 result += cnt
13 return result

Listing 2: COUNT query

fact that cell aggregates are stored contiguously in ascending
order. This allows us to iterate over the cell aggregates (Lines
25 - 28) until we reach a grid cell not contained in the query cell,
combining all cell aggregates along the way into the query result.
COUNT Queries. Intuitively, we can answer COUNT queries faster
than SELECT queries, as we can exploit the sorted order of the
cell aggregates to calculate the count without accessing the cell
aggregates of all grid cells that are contained in the query cell.
Specifically, COUNT queries can be answered using the count and
offset values of only the first and the last cell aggregates that
are contained in the query cell, as outlined in Listing 2. Note
that here we benefit from having larger query cells. The larger
the cells used in the covering, the fewer cell aggregates we need
to access overall. To find the first and last cell aggregates, we
calculate the id of the first and last child of the query cell at our
grid level. We then locate the first child in the aggregates using a
lower bound binary search (Line 8). Then, we use the position of
the first child as a search start to locate the last child, again with
a binary search (Line 9). Once we have located the aggregates of
the first and last contained child, we can calculate (Line 11) the
resulting count in a range-sum manner as:

childlast .offset + childlast .count − childfirst .offset

3.6 Query-Cache Acceleration
While our cell aggregates can speedup queries significantly, there
is further potential in pre-computing aggregates for frequently
queried areas. This is based on the following key observations:

(1) Exploratory analyses are often repetitive in nature. Ana-
lysts, e.g., may run consecutive queries for the same area
to extract different aggregates (i.e., using a different aggre-
gate function, or aggregating over a different attribute).

(2) Furthermore, analysts might only iteratively change the
shape or size of the query polygon. Consequently, part of
the polygon’s interior area remains unchanged.

(3) Lastly, analytical queries often focus on a geographic sub-
set of the whole data. For the analysis of the NYC taxi data,
e.g., the focus lies mostly on Manhattan, Brooklyn, and
the airport regions, ignoring most suburbs [40].

In all the above cases, it is reasonable to pre-aggregate small
grid cells that are often queried together to avoid costly scans
of individual cells. In our example in Figure 1, e.g., we want to
keep a single aggregate for the purple region, instead of having
to consult all 64 contained cell aggregates.
Determining Relevant Aggregates.Wewant to determine the
relevant areas that are worth being additionally pre-aggregated
and cached, without making any assumptions about the expected
query workload or the semantics of the indexed data. To achieve
that, we use all previously seen queries as hints. Precisely, to
determine whether an area is worth aggregating, we consider (i)
the number of times it was queried, and (ii) its cell level.

For each query cell that intersects with the GeoBlock, we keep
track of the number of times it was queried in a trie-like structure.
We then use these statistics to calculate cell scores. The score of a
cell is the sum of the cell’s hits and the hits of its parent. This score
takes into account that child cells can be used to speed up queries
for parent cells. We then sort all cells by descending score. When
scores are identical, we sort by ascending level (coarser-grained
cells come first). As the last criterion, to ensure determinism, we
sort by spatial key. We chose the above metric as it is sufficient to
properly and repeatably represent the skew in the experiments
in our evaluation while being easy to understand and implement.
However, we also identified some weaknesses of our metric:

• Smaller cells might overshadow slightly less frequently
queried bigger cells. Consider, for example, the green and
purple cells of Figure 1 and assume that the green cell is
queried just once more than the purple one. Based on our
metric, we would then aggregate the green cell even if the
purple cell could have an up to 64× bigger impact.

• The parent-child relationship is simplified: Children only
cover parts of their parent but are treated as equally useful.
Furthermore, we do not consider calculating aggregates
by combining the aggregates of the parent and siblings of
a cell. For example, the count for a cell could be calculated
by subtracting the count of its sibling cells from the count
of its parent cell.

Our evaluation showed that these shortcomings have a minor
impact, but we plan to investigate them further and address them,
if needed, in our future work.
Aggregate Storage. We cache aggregates in a trie-like cache,
which we call AggregateTrie. Further, we allow the user to control
the maximum size of the storage available for caching, and we
store the AggregateTrie in-place with our cell aggregates and the
filtered base data. As the cells are strictly ordered, we can simply
insert the most relevant unaggregated cell until the reserved area
is filled. Figure 7 shows an example AggregateTrie.

The storage for the aggregates is split into two parts. The first
part (up until 0x90) contains the trie structure, while the second
part stores the actual aggregates. The root of the trie corresponds
to the cell level that can enclose our input data, which is typically
just a small fraction of the possible earth-wide input space. Each
following trie-level encodes exactly one cell level, resulting in a
fanout of 4. Since we store the AggregateTrie in-place, we chose a
compact encoding storing all nodes contiguously. Nodes consist
of just two 32-bit integers. The first one is the pointer to the
first child in the AggregateTrie. The second one is the pointer
to the corresponding aggregate in the aggregate storage (e.g.,
0xb8). Pointers are encoded as 32-bit offsets from the start of
the allocated memory region. Both aggregates and nodes can
be sufficiently encoded with an offset, as they are of fixed size.

173

root

0x00
0x20
0x40
0x60
0x80
0xa0
0xc0

0x8
n/a

child offset
aggregate offset

n/a
0x68

0x28
n/a

0x48
n/a

n/a
n/a

n/a
n/a

n/a
n/a

n/a n/a
n/a

n/a
n/a

n/a
0xb8

n/a
n/a

n/a
n/a0x90

memory

starting at 0x8

starting at 0x28 starting at 0x48

contiguous memory

single node

Figure 7: AggregateTrie with 40 byte aggregates and in-
memory representation. Non-existent children (or aggre-
gates) are marked with n/a and are encoded as 0x0.

Query for
Cell c

Node for c? c cached?

Direct children
cached?

Yes Yes

No No

Some

AllNone

Answer using
GeoBlocks only

Combine Cache
and GeoBlocks

Answer using
 Cache only

Figure 8: Overview of adapted query algorithm.

Nodes occupy 8 bytes, while the size of the aggregates depends
on the schema. Since we store only the offset to the first child, we
need to always allocate space for all children in a node, even for
children that do not exist in the cache. This can be seen for the
node starting at 0x28, where only one child has an aggregate and
no other children or aggregates exist. While this seems wasteful
at first, the alternative would be to store four individual child
offsets per node. As children are only created and stored if they
are needed, our encoding never occupies more storage than this
alternative. In fact, our design is more space-efficient in all cases,
except for this worst-case in the example above, where only one
out of four children is required.
Adapted Query Algorithm. We integrate the cached aggre-
gates into the query algorithm (cf. Section 3.5). As the runtime
of COUNT queries is mostly independent of the cell level since
only the first and last grid cells are relevant, we do not expect
noticeable speedups for them. Therefore, the adapted process,
highlighted in Figure 8, is only used for SELECT queries.

Once the pre-query checks are completed, we first probe the
query cache and resort to the old algorithm only when necessary.
For each query cell, we traverse the AggregateTrie to locate the
corresponding node. If there is no node for this cell, we abort
probing and answer the query with the old algorithm. Once
the node corresponding to the cell is reached, there are two
possible ways forward. If the cell is cached, i.e., if it has a valid
aggregate offset, the aggregate is extracted as a result. If the
cell is not cached, there has to be at least one child at any level

residing in our cache, as nodes are only created on demand.
While, theoretically, all children could be used to reduce the
number of grid cells of the GeoBlock to query, the number drops
with each level, while keeping track of the missing children
gets increasingly expensive. Therefore, we only consider direct
children for this optimization. If some of the direct children are
cached, we combine their aggregates with the results of the old
algorithm for the non-aggregated ones to obtain the final result.

4 EXPERIMENTAL EVALUATION
We compare GeoBlocks with on-the-fly aggregation approaches
on real-world data. To show that our advantage is not dependent
on the indexing strategy, we use different strategies to index
the base data of the on-the-fly approaches. We also compare
GeoBlocks against a pre-aggregating approach, the aR-tree [30,
31]. However, we do not include the aR-tree in all experiments,
as it is designed for rectangular queries and does not directly
support polygonal ones.

4.1 Experimental Setup
Baselines. To keep the experiments as fair as possible, we use
the mapping from geospatial space to linear space for the base-
lines as an index key unless specified otherwise. Furthermore,
we keep all data in a columnar layout. Below, we describe the
three strategies that we use to index the raw data, as well as our
pre-aggregating baseline:
BinarySearch: This is the simplest baseline. Instead of indexing
the data, we use binary search to locate the first and last con-
tained raw tuple in the data. Afterward, we loop over all tuples
in between and compute the requested aggregates. GeoBlocks
use binary search to locate the cell aggregate in a similar way.
BTree: We use the BTree as a secondary index over the raw data.
For the experiments, we use an open-source B-tree implementa-
tion by Google [7]. We probe the tree for the first child and scan
the sorted raw data until no further tuple qualifies.2
PHTree: Our last non-aggregating baseline is a multidimensional
point index structure, the PH-tree [56]. Instead of the one-di-
mensional spatial key, we use the latitude and longitude of the
points to index the data. As the PH-tree only supports rectan-
gular range queries, we use S2 to get the interior rectangle of
the query polygon and use this as a query region. This way, we
hope to keep the comparison fair, if not favorable for the PHTree,
as this interior rectangle covers fewer points than our approach.
As a consequence, the PHTree’s query results differ from the
results of the other approaches. For the measurements, we use
an open-source C++ implementation [36].
aRTree: We implement the aR-tree [30, 31] based on the boost
R-tree [5]. To minimize overlaps between nodes and thereby
optimize the query performance, we use the 𝑅∗ algorithm. In
our implementation, each node covers a region 𝑟 and has up
to 16 child nodes, which further subdivide 𝑟 into smaller areas.
For each node, we store the aggregates in a cell aggregate cor-
responding to the region covered by the node, and reference it
with an offset (cf. Figure 9). That way, we can modify the RTree
query logic by adding early abortion exactly like in the aR-tree.
Given a search area 𝑠 and a node of the aR-tree that covers a
region 𝑟 , we distinguish three cases, as shown in Listing 3: (a) If
𝑠 is completely contained by the covered region 𝑟𝑐 of one of 𝑛’s
2We first tried the PointIndex of the S2 library (https://s2geometry.io/devguide/
cpp/quickstart.html#s2pointindex) that uses the same b-tree as point storage. Initial
measurements showed that our optimized BTree implementation outperformed the
PointIndex by 3×, so we opted for our implementation.

174

1 def queryARTree(node, searchArea, result):
2 partiallyOverlappingNodes = []
3
4 for child in node:
5 if child.contains(searchArea):
6 return queryARTree(child, searchArea, result)
7 if searchArea.contains(child):
8 result += child.aggregatedResult
9 else if searchArea.intersects(child):
10 partiallyOverlappingNodes.append(child)
11
12 for child in partiallyOverlappingNodes:
13 result += queryARTree(child, searchArea, result)
14 return result

Listing 3: aR-tree lookup query

(0,0)
(6,7)

(6,1)
(9,9)

0 1

Offset
Bounding Box

(0,0)
(3,6)

(4,0)
(6,7)

2 3

(6,1)
(7,8)

(8,8)
(9,9)

4 5

(0,0)
(1,6)

(2,0)
(3,4)

6 7

(4,0)
(5,1)

(5,2)
(6,7)

8 9

Cell Aggregates

Spatial Key Tuple Offset ...

Spatial Key Tuple Offset ...

Spatial Key Tuple Offset ...

Spatial Key Tuple Offset ...

Spatial Key Tuple Offset ...

Spatial Key Tuple Offset ...

Spatial Key Tuple Offset ...

0

1

2

3

4

5

6

Spatial Key Tuple Offset ...

Spatial Key Tuple Offset ...

Spatial Key Tuple Offset ...

7

8

9

Figure 9: Illustration of aRTree with node size two and off-
sets into the cell aggregates.

child nodes, we recursively continue the search at the child node
and do not consider other overlapping child nodes as this would
result in counting values multiple times. (b) If the region covered
by a child node is completely contained within the search area,
we add its aggregated value to the overall result and continue
processing the next child node. (c) If 𝑠 and the child node region
intersect, we mark the child node to be processed later iff no
other child node fulfills criterion (a).

By accepting that points are counted multiple times in the
case of overlapping internal nodes, our aR-tree implementation
follows the query algorithm of the original aR-tree that does not
consider overlapping children.While the implementation delivers
an upper-bound of the result, it visits the internal nodes in the
same way the aR-tree does, thus achieving the same performance.
Implementation.We implement GeoBlocks in C++ as described
in Section 3. Our implementation, as well as that of all baselines,
is single-threaded. Throughout this section, especially in all fig-
ures, we will refer to GeoBlocks as Block. Furthermore, we will
differentiate between the regular Block and BlockQC. Block de-
notes GeoBlocks without query caching using the basic query
algorithm. BlockQC is GeoBlocks using query caching with the
AggregateTrie and adapted query process outlined in Figure 8.
Hardware. All experiments are run on a server machine with
two Intel Xeon E5-2680 v4 processors clocked at 2.4 GHz. The
machine is equipped with 256GiB of DDR4-2400 RAM. All per-
formed experiments fit entirely into main memory.
Dataset. The primary dataset used in the experiments is com-
posed of trip records from 12 million NYC yellow cab rides in
the time between January and March 2015, which we cleaned
of outliers. It is openly available for download from the NYC
Taxi and Limousine Commission (TLC) [49]. It contains data
from individual rides like pickup and drop-off location and time,
passenger count as well as trip distance.

64x

73x

69x

69x

4 Aggregates 8 Aggregates

1 Aggregate 2 Aggregates

10
0

10
2

10
4

10
6

10
0

10
2

10
4

10
6

R
u
n
tim

e
 i
n
 μ

s
[lo

g
 s

c
a
le

]

Algorithm BinarySearch Block BTree

Figure 10: Runtimewith increasing number of aggregates.

Unless otherwise specified, the queries consist of polygons
representing NYC neighborhoods taken from [25]. As a base
workload, we build a query containing each polygon once. For
the skewed workload, we select 10% of neighborhoods uniformly
at random and query themmultiple times. We select 7 aggregates,
requesting each column at least once, as query output.

In addition, we use 8 million geotagged tweets from the con-
tiguous US and query them using polygons representing US
states. Finally, we use an extract of 389 million OpenStreetMap
(OSM) points in the Americas and query them with polygons
representing countries. Both these datasets have randomly gen-
erated integer values as payload. For both, we fix the level at 11
(~7km diagonal). Unless otherwise specified, all experiments are
conducted on the primary dataset only.

4.2 Baseline Comparison
Impact of Number of Aggregates. To show the impact of the
number of aggregates on the performance of the baselines and the
Blocks, we use a combined workload consisting of once the base
and four times the skewed workload. We query this workload
for 1, 2, 4, and 8 aggregates and report the results in Figure 10.

As one can easily see, GeoBlocks outperform both the BTree
and BinarySearch baseline in all cases. We omitted the PHTree
and aRTree from these experiments, as the imprecise rectangular
approximation of the skewed workload lead to a drastic increase
in their runtime. Even for the base workload, the PHTree was
slower by a factor of about 3× while covering fewer tuples.
Indexing Overhead.We compare the build time, i.e., the prepa-
ration time required prior to running any query, in Figure 11a,
with the block level set to 17 (~100m diagonal). The reported times
for sorting are measured once for the optimized out-of-place sort-
ing for the Blocks and reported for each baseline. This step is
completely identical in all sorting baselines. There is a notice-
able gap in the sorting phase between the BTree/BinarySearch
and the Block. This gap is caused by the collection of grid cell
ids to aggregate that we piggybacked on the sorting process to
save an additional pass on the data. Overall, the Block is built
faster than the BTree and the PHTree, and slightly slower than
the BinarySearch, which only needs to sort the input data. We
exclude the aRTree baseline from this experiment as we only op-
timized the implementation for query performance, and the build
time was multiple orders of magnitude slower than the others
described. Most notably, the majority of the Block preparation is
spent on sorting, indicating that once the data is sorted, building
additional Blocks with different filter sets is reasonably cheap.

The relative space overhead of each algorithm is depicted in
Figure 11b. BinarySearch was omitted as it does not require any
additional storage. One could argue that this is not a fair compar-
ison to the BTree and PHTree as they index individual points, but

175

1.37x1.37x1.37x1.37x1.37x1.37x1.37x1.37x

0

5000

10000

BinarySearch Block BTree PHTree

Algorithm

P
re

p
 T

im
e

 (
m

s)

Phase

Building
Sorting

(a) Build time of GeoBlocks and baselines.

45%

21%

54%

3%

0%

20%

40%

60%

Block BTree PHTree aRTree

Algorithm

R
e

la
ti
ve

 O
ve

rh
e

a
d Algorithm

Block
BTree
PHTree
aRTree

(b) Size overhead of GeoBlocks and baselines.

13 141516 1718
19

20

21

0%

20%

40%

6000 7000 8000

Preparation Time in ms

R
e

la
ti
ve

 O
ve

rh
e

a
d

Block Level

13
14
15
16
17

18
19
20
21

(c) Level influence on GeoBlocks overhead.

Figure 11: Index overhead in build time and space.

6×

1667×

10
2

10
3

10
4

10
5

10
6

10
7

0 25 50 75 100

Selectivity in %

R
u
n
tim

e
 in

 μ
s

[l
o
g
 s

ca
le

]

BinarySearch
Block

Block
QC

BTree
PHTree
aRTree

Figure 12: Query runtime for varying selectivity.

as our goal is to provide approximate results, we wanted to show
that storing intermediate results is less space-consuming than
one would assume for such fine-grained aggregates. While the
aRTree is more space-saving when compared to the single-point
indices, it still introduces an order of magnitude higher storage
overhead than GeoBlocks.
Impact of Selectivity. Selectivity is usually defined based on
a single query, but in our context, it is hard to specify what a
single query is. We break down query polygons, e.g., the orange
bordered Lower East Side in Figure 1, to different-sized cells
covering the polygon (e.g., the purple cell), which in turn are
broken down into equally sized cells to query (blue cells). While
the intermediate cells of the query polygon’s covering are the
best representation of individual queries, as each index is probed
once for them, they are artificial concepts introduced by our
algorithm. Furthermore, these are hard to map to the rectangular
query regions of the PHTree and the aRTree. Therefore, we define
selectivity based on query polygons. For this experiment, we
artificially select polygons covering a part of NYC, which contains
a certain percentage of the total rides. Figure 12 reports the
runtime of the base workload at different selectivities using a
logarithmic scale. PHTree’s and aRTree’s measured selectivities
differ slightly from the reported ones due to the less precise
covering using an interior rectangle. As this covering contains
fewer points, this should slightly skew the experiment in favor
of the PHTree and aRTree. Even though GeoBlocks can handle
rectangular queries as well, since rectangles are just constrained
polygons, we opted for the most-precise covering where possible.

While runtime rises quickly for all baselines for selectivities
above 1%, the increase is much softer for both Block variants.
Even though the workload is not skewed, and we only use 2%
of additional storage for query caching, BlockQC still outper-
forms the non-caching Block across all selectivities. This is likely
explained by the shape of the polygons that are often simple
quadrilaterals or pentagons. These can be covered using few cells
and, therefore, most of these cells can be pre-aggregated. Binary-
Search can keep up with the BTree, reporting similar runtimes

B
e
tte

r

0%

20%

40%

60%

1 10 20 30 40 50 60 70 80 90 100

Number of Points (in millions)

R
e
la

tiv
e
 O

ve
rh

e
a
d

Block
BTree
PHTree

(a) Size overhead of GeoBlocks
and baselines.

B
e
tte

r

0

25

50

75

100

1 10 20 30 40 50 60 70 80 90 100

Number of Points (in millions)

R
u
n
tim

e
 I

n
cr

e
a
se

BinarySearch
Block
BTree
PHTree

(b) Relative runtime increase
of GeoBlocks and competitors
compared to 1M points.

Figure 13: Scaling with increasing input sizes.

independent of selectivity, while the PHTree lags behind quickly.
Even if the relative runtime gap narrows for higher selectivity,
the absolute gap still favors GeoBlocks. The aRTree, our imple-
mentation of the aR-tree, outperforms the on-the-fly aggregating
benchmarks easily while staying behind GeoBlocks for lower
selectivities. However, it can catch up with Block at around 50%
selectivity. At 100% selectivity, the aRTree needs to only access
the root aggregate, explaining the sharp drop in runtime. Overall,
GeoBlocks outperform the non-aggregating baselines by at least
two and up to three orders of magnitude, performing on-par with
the aR-tree while delivering far more precise results.
Scalability.To study the performance for different-sized datasets,
we collect 100M taxi rides spanning all of 2015 and build and
query the approaches for an increasing subset of these rides. We
omit the aRTree as the build time exceeded reasonable limits up-
ward of 30 million points. As the build time is dominated by the
sorting process, which is shared and identical in all approaches,
they scale identically in build time. When comparing the size
overhead in Figure 13a, we can see that the BTree overhead is
constant as expected. For the PHTree, we see the positive impact
of the integrated compression strategies for bigger datasets. Still,
the near fixed-size grid aggregates - the size of a GeoBlock is
determined by the spatial distribution of points, not their num-
ber - enables even smaller overheads for GeoBlocks. To focus
on the individual scalability for queries, we analyze the query
runtime normalized to the runtime of each approach for one
million points. As shown in Figure 13b, both the BTree and the
BinarySearch scale linearly with the input size, as the on-the-fly
aggregation dominates the runtime. We expect a similar behav-
ior from the PHTree, but as the covering is less accurate and
chosen deliberately smaller, the increase is not fully linear. For
GeoBlocks, the runtime stays nearly constant, since it depends
on the number of maintained aggregates, and not on the number
of individual points. The number of aggregates is in turn deter-
mined by the spatial distribution of the input. Since one million

176

NYC Taxi USA Tweets OSM Americas

0 2 4 0 1 2 0 50 100
0%

20%

40%

60%

Runtime (in s)

R
e
la

tiv
e
 E

rr
o
r

Algorithm BinarySearch Block BTree PHTree aRTree

Figure 14: Query runtime and relative error for varying
datasets.

States Rectangles

0 10 20 30 0 100 200 300

25%

50%

75%

Average Runtime (in ms)

A
ve

ra
g
e
 R

e
la

tiv
e
 E

rr
o
r

Algorithm

BinarySearch
Block
BTree
PHTree
aRTree

Figure 15: Query runtime and relative error for US states
and generated rectangles on the Twitter dataset.

points already cover most areas in NYC, the distribution does
not change when further increasing the number of points, i.e.,
the number of aggregates does not increase significantly. This
explains why query latency remains nearly constant for bigger
datasets.
Datasets. To show that our approach is not limited to the NYC
taxi dataset, we evaluate it on the two additional datasets in
Figure 14. We again query the whole area represented by the
individual polygons and report runtime, as well as the average
error defined as |# tuples in query result−# tuples in polygon |

tuples in polygon . For the
OSM dataset, the aRTree again was excluded because of its ex-
cessive build time. As the Block, BinarySearch, and BTree use
the same covering, the result and error are identical. While the
aRtree and PHTree use an identical rectangular representation,
the pre-aggregated nodes of the aRTree lead to a different result,
and therefore error. Overall, the aRTree and Block are similarly
fast with a slight advantage for the aRTree, outperforming the
non-aggregating approaches easily. However, the error for Block
is far more stable.
Accuracy. Finally, we want to study the influence of smaller
individual polygons, as well as rectangular areas, on both run-
time and relative error. Therefore, we query all US states and
51 randomly generated rectangles within the US on the Twitter
dataset and report the average runtime and error in Figure 15.
In contrast to the previous experiment, we query all areas in-
dividually. For both polygons and rectangles, the same overall
trends are visible. The aRTree is slightly faster than Blocks as
the large polygons can be answered in the upper levels of the
tree. However, this leads to high imprecision even for rectangular
queries as partially overlapping internal nodes might be counted
multiple times. Besides, we see that the individual errors canceled
out in Figure 14, leading to a seemingly good error bound. While
the PHTree error also improves considerably for the rectangular
workload, we expected it to be exact. We suspect this is caused
by our transformation of the coordinates to integer space, which
is necessary for efficient queries. As expected, the performance

13

14

15

16
17

18 19 20 21

0%

5%

10%

15%

20%

0 1000 2000

Runtime in μs

R
e
la

tiv
e
 E

rr
o
r

Block Level

13
14
15
16
17

18
19
20
21

Figure 16: Relative error and runtime at varying levels.

Level 13 14 15 16 17 18 19 20 21

Sorting 6020 6008 6317 6459 6633 6754 7028 7344 7666
Building 376 499 376 356 411 408 538 666 1025

Table 2: Index build times in ms at varying levels.

of Blocks and the other approximating baselines does not de-
grade for rectangular areas. The aggregating approaches again
far outperform the point indexing approaches in runtime.

4.3 Sensitivity Analysis
After showing that GeoBlocks easily outperform all baselines,
we study the impact that the configuration of GeoBlocks has on
throughput, as well as the impact of data skew on the adaptive
Block version. The Block configuration is specified by three pa-
rameters: The first setting we study is the level of the Block, i.e.,
the resolution of the grid overlying the spatial domain. Next, we
take a look at the impact of skew on both Block and BlockQC.
Finally, we examine how the size of the AggregateTrie influences
the runtime of unskewed and skewed workloads.
Impact of Block Level. We vary the block levels from 13 to
21 (between ~1.5km and ~6m diagonal) while keeping the other
configuration parameters fixed. From a runtime-only point of
view, lower-level (coarser-grained) blocks are always preferable,
as the query algorithm needs to take fewer cells into account.
However, this comes at the price of precision loss. Figure 16 il-
lustrates the connection between the block level, the runtime,
and the relative error introduced by the cell covering. The cell
covering can introduce only false positive results, i.e., some re-
ported results are not contained in the actual polygon. The figure
clearly shows the expected overall trend: the higher the level,
the lower the relative error and the higher the runtime. However,
after a certain point, decreasing the level further does not pay off.
Further, we see that the correlation between error and runtime is
not linear, as we already suspected in Section 3.2. The correlation
does not even follow the discussed influences completely, which
is likely caused by missing sparse children, and the non-uniform
distribution of points leading to a gap between the relative error
and the configurable spatial error.

The block level influences not only the relative error and the
runtime, but also the build time and size of GeoBlocks. Figure 11c
depicts the build time and size overhead for GeoBlocks from
levels 13 to 21. The build time seems to be only slightly affected
by the level, rising slowly with it. Table 2 splits the runtime into
two parts: sorting and building. There is a noticeable increase
in sort time along with the block level, in addition to the ex-
pected increase in build time. This increase in sorting can be
explained through our grid cell extraction that we piggybacked
to the sorting process, which has to extract more finer-grained

177

1.2x

2 skewed runs 4 skewed runs 8 skewed runs 16 skewed runs

Block Block
QC

Block Block
QC

Block Block
QC

Block Block
QC

0

30

60

90

R
u
n
tim

e
 in

 m
s

Workload

Skewed
Base

Figure 17: Query runtime with increasing workload skew.

0

10

20

30

40

0%

25%

50%

75%

100%

0 % 25 % 50 % 75 % 100 %

Aggregate Threshold

R
u

n
tim

e
 in

 m
s

C
a

ch
e

 H
it R

a
te

Aspect Cache Hit Rate Runtime

Workload Base Skewed

Approach Block BlockQC

Figure 18: Impact of threshold onworkload runtime (solid
line) and cache hit rate (dashed line).

cells. The size overhead, however, grows exponentially due to
the exponentially growing number of cells along with the level.
Impact of Skew. To study the impact of data skew on the effec-
tiveness of query caching, we measure the query runtime when
running the NYC workload once, and the skewed workload mul-
tiple times. The number of times we run the skewed workload
varies in each experiment.We fix the block level to 17 (~100m diag-
onal) and the size of the cache to 5% of the cell aggregates, which
roughly corresponds to aggregating all cells of the skewed work-
load. Figure 17 displays the absolute runtime for both the base
and the skewed part of the workload. One can see that after four
skewed runs, the cached aggregates start to pay off. With even
more skew in the total workload, our query-caching BlockQC
quickly starts to outperform Block. Furthermore, as expected,
the runtime for the base workload stays nearly constant, and is
always slightly faster for Block. This is easily explained by the
overhead of probing the AggregateTrie for each cell, regardless
of whether the cell is aggregated or not.
Impact of Aggregate Threshold. Having studied the impact
of skew, we want to examine how the aggregate threshold, and
thereby the size of the query cache (in BlockQC), influences the
runtime of the base and the skewed workload. The aggregate
threshold denotes the relative size overhead that the query cache,
the AggregateTrie, introduces compared to the size of the cell
aggregates in the regular GeoBlock. We again fix the block level
to 17, and the number of skewed runs to four. Figure 18 depicts
the measured runtimes and cache hit rates. The runtime of Block
is unaffected by the changed threshold and only acts as a baseline
to highlight the influence on BlockQC. Up until a threshold of
around 5%, only queries from the skewed workload can be an-
swered using the AggregateTrie. The small speedup in the base
workload can be explained by the inclusion of the skewed work-
load in the base workload. Once all cells in the skewed workload
are cached, and the cache hit rate for the skewed part reaches
100%, other query cells of the base workload start to get cached

5

10

15

20

distance >= 4 passenger_cnt == 1 passenger_cnt > 1

Filter Predicate

P
a
y
o
ff

p
o
in

t

Block Level

15
16
17
18
19

1st
25th
50th
75th
99th

Figure 19: Payoff point: Number of incremental builds re-
quired to amortize the cost of sorting the raw data.

as well. While this, of course, leads to further runtime improve-
ments, it is undesirable, especially when memory is scarce. In our
experiments, at around 50%, the cache hit rate reaches 100% for
both workloads, and there is no further speedup, even when the
cache size is doubled. The cache hit rate, illustrated by the dashed
line and shown on the right axis, shows the desired effect. The
skewed part is cached almost immediately, and the hit rate for
the unskewed workload grows linear with increasing cache size.
The average lookup time slowly grows from 58ns at 1% to 81ns
at 100%. As the lookup time depends on the number of levels (30
in the maximum) and not on the size, this growth is attributable
to more complex access patterns for larger cache trees.

4.4 Changing Filters
Finally, we compare our process of Figure 5, wherein we build
multiple GeoBlocks from the sorted base data, against building
isolated GeoBlocks from scratch. We vary the block level from 15
to 19 (between ~420m and ~27m diagonal), and build 15 GeoBlocks
per level using three different predicates of varying selectivity:

• distance >= 4: Long taxi trips, selectivity of ~16%
• passenger_cnt == 1: Solo taxi trips, selectivity of ~70%
• passenger_cnt > 1: Shared taxi trips, selectivity of ~30%

For this, we want to analyze how many different filter and
level combinations are required to amortize the initial cost of
sorting. Figure 19 shows the payoff point of filter changes for
our three filter predicates. The payoff point is the number of
incremental builds required to be, in sum, faster by creating
incremental builds than building individual GeoBlocks from the
raw data and filtering before sorting. We omitted the individual
runtimes for the passenger_cnt == 1 predicate as they would
be too densely packed vertically.

As expected, themore selective the filter, the lower the speedup.
Once all tuples in the raw data have been filtered according to the
predicate, the qualifying tuples have to be sorted. More selective
predicates take longer to amortize as sorting few tuples is cheap ,
whereas for the 70% selectivity query passenger_cnt == 1, the
more expensive sorting is amortized almost immediately. There
is a correlation between the block level and amortization, most
notably for the most selective predicate distance >= 4. Given
that the payoff point drastically rises with lower selectivity, we
expect that incremental builds will only pay off when the new
filters are less selective. If only a few highly selective queries are
expected, building regular GeoBlocks directly from the raw data
will still be the fastest option. However, the time to switch to a
new filter, and therefore the individual query latency, will always
be lower for incremental builds.

178

5 DISCUSSION
In this section, we discuss the takeaways of the evaluation as
well as updates for GeoBlocks.
Evaluation Summary. First, we showed that pre-aggregation
in a spatial context pays off when a limited and bounded spatial
error is acceptable, independently of the number of aggregates
queried and the selectivity of the query polygons. Furthermore,
GeoBlocks can be built fast, introducing only a small overhead
compared to the simple BinarySearch baseline. Even when the
data is already indexed with one of our baselines (i.e., without
taking the index build time into account), GeoBlock’s build time
of around 7 seconds can be amortized by fewer than 30 poly-
gon queries with a selectivity of 10% (cf. Figures 11a and 12). In
addition, building multiple GeoBlocks once the data is sorted is
possible within one second for our dataset, cf. Figure 11a. Build-
ing new GeoBlocks for different filters is even faster when using
sorted base data, often amortizing the initial extra cost of sorting
all data in less than 10 filter changes (cf. Figure 19). Even though
not all configurations are optimal for GeoBlocks, there are ac-
ceptable error-runtime trade-offs, in our case around levels 17
and 18. While the level does not significantly impact the index
build time, the size overhead growth is almost exponential, cf.
Figure 11c, indicating that it is wise to think about which error is
acceptable for the given query workload when memory is scarce.
Updates.Up until now, we considered GeoBlocks to be read-only
as they are designed for historical point data. However, the layout
of GeoBlocks allows us to integrate updates easily, as long as a cell
aggregate for the region of the newly arriving tuple already exists.
For the non-adaptive version, all we have to do is locate the cell
aggregate containing the tuple and update all stored aggregates.
In the adaptive version, we additionally need to update all cached
parents of the grid cell in the AggregateTrie as well. Thanks to
the prefix-based indexing property of the trie, we can do this
in a single depth-first traversal. Only if tuples arrive for a new,
previously unaggregated region, we have to rebuild the aggregate
layout, as we rely on the cell aggregates to be sorted. However, as
we have shown in the evaluation, recalculating the cell aggregates
is often possible within a second, so this operation would not
induce too much delay when updates are implemented in batches
instead of single tuples. Other indexing approaches on the cell
aggregates (e.g., a clustered B-tree) could eliminate the need to
rebuild by reserving storage for new aggregates. Preliminary
experiments using std::map and a B-tree as an index showed
similar lookup performance at the cost of increased size overhead.

6 RELATEDWORK
Our approach builds on seminal work from decades of research
on spatial indexing. Decomposing space into hierarchical grid
cells [1, 9, 39], as well as approximating polygons using simpler
shapes [18], are all well-known approaches. Likewise, enumerat-
ing cells using a space-filling curve such as Hilbert or Z order [26,
27] and storing aggregate information within cells [20, 30, 46] are
ideas that have been around for some time. However, while build-
ing on these established concepts, GeoBlocks present the first
pre-aggregating data structure that supports a bounded, distance-
based error on the results of polygonal queries. Specifically, prior
work on pre-aggregation [14, 30, 31, 34] is limited to rectangular
queries and requires an expensive post-processing (refinement)
step to answer polygonal queries. GeoBlocks, on the other hand,
yield error-bounded results and do not require expensive refine-
ment.

Spatial Aggregation. Past work has proposed several approach-
es for spatial aggregation queries [23]. These approaches mainly
rely on pre-aggregation [14, 34]: they pre-aggregate records at
various spatial resolutions and store this summarized information
in a hierarchy of rectangular regions, maintained using a spatial
index like the quadtree or the R-tree [19, 30–32]. For instance, the
aRtree [30, 31] enhances the R-tree by storing aggregate informa-
tion for each node. This allows to directly extract the aggregate
of all the records contained in a node, if the node’s MBR is fully
enclosed in the query region. Being a variant of the R-tree, the
aRtree constrains the supported queries to only rectangular re-
gions. Furthermore, the computed aggregates are approximate
and the error cannot be bounded, since the accuracy depends on
the resolution of the rectangular R-tree nodes. Providing preci-
sion guarantees for arbitrary polygons requires accessing the
raw data and involves additional processing. There are also ap-
proaches that store aggregates inside a data cube [6, 37], or using
sketches [48]. Nanocubes [21], for example, store the CUBE op-
erator for spatio-temporal datasets, and are specifically designed
for visualization systems. The data cube-based approaches suffer
from the same limitations as the aRtree, since they also rely on a
hierarchy of rectangular regions. Besides, accessing the raw data
to refine the aggregates might require additional indices, as the
cube does not store individual records. Vorona et al. [55] approxi-
mate the distribution of geospatial points with an autoregressive
deep learning model to answer arbitrary polygonal queries, but
they cannot provide any error bounds. Pandey et al. [29] pro-
pose to use learned indices for query-efficient spatial indexing,
albeit limited to range queries. Finally, Raster Join [51] uses GPU
rendering to compute aggregates over a point-polygon join. In
contrast, GeoBlocks support aggregation over spatial selections.

Prefix sums [10] can be used in addition to pre-aggregation
to enable fast range-sums. This is achieved by only inspecting
the aggregates in the two corners of a query region, rather than
every aggregate inside the query region. An example of this is
our COUNT algorithm. However, in contrast to our SELECT queries,
these range-sums are unable to extract min and max aggregates.
Materialized Views and OLAP Cubes. GeoBlocks are essen-
tially materialized views over geospatial data with support for
filters and aggregations. In contrast to regular views [12, 44],
GeoBlocks are designed for historical spatial data and can adapt to
the query workload at a fine-grained level using a trie-like cache.
Work on materialized view selection [2] also makes materializa-
tion decisions based on the query workload, but at a much coarser
granularity (e.g., what columns to aggregate). There has also been
a lot of work on data cubes and query caching [11, 15, 42], but
these do not support geospatial data as a first-class citizen.
Spatial Point Indexing. Spatial point indexing approaches typ-
ically index points using a hierarchy of MBRs, most notably the
R-tree [13], or by subdividing grid cells into equally-sized chil-
dren, e.g., the quadtree [9, 39]. Both of these index structures
are queried using the dimension-wise min/max values, i.e., the
query regions are rectangular. Other approaches, like the UB-
tree [3], assign univariate keys to the indexed regions first and
rely on these keys for data access. While the UB-tree does not
specify how these keys have to generated, most approaches use
space-filling curves like the Z order [26, 27].

Based on these concepts, more specialized indices have been
developed. The PH-tree [56] combines a quadtree with hyper-
cubes to allow splitting all dimensions in each node, providing
a space-efficient index structure for multidimensional data. The
space efficiency can be partly attributed to the utilization of prefix

179

sharing, similar to the one used in our trie-like cache. Alternating
the indexed dimensions in an in-memory tree structure, the BB-
tree [47] offers fast point and range queries for multidimensional
data. While these structures require the index to be built a priori,
there are others like QUASII [33], where the index is built incre-
mentally as a side product of query execution. As a result, QUASII
can adapt to the query workload at runtime. However, QUASII
only supports spatial range (window) queries. Recently, Shin et
al. [43] proposed integrating grid indices into a tree structure to
achieve faster node accesses and point operations.

7 CONCLUSIONS
We have introduced GeoBlocks, a novel pre-aggregating data
structure for geospatial data. GeoBlocks pre-compute aggregates
over fine-grained grid cells, thereby supporting arbitrarily shaped
polygons. Using these aggregates, GeoBlocks can provide fast
query results with a user-controlled spatial error. Furthermore,
GeoBlocks can speed up aggregate queries for commonly queried
regions by dynamically adapting to any given workload using
limited additional storage.

Comparing GeoBlocks with on-the-fly aggregating indexing
baselines, we have shown that we can outperform them for any
number of aggregates, in parts by three orders of magnitude. The
introduced storage overhead is comparable, and often even lower,
to that of traditional indexing structures, while GeoBlocks can be
built equally fast. Looking at GeoBlocks’ configuration options,
we have shown how they can be adapted to the given dataset and
workload, and how they influence the runtime, the overhead, and
the error in the result. Overall, GeoBlocks are materialized views
over geospatial data that support filter predicates and aggregates
while enabling fine-grained adaptation to the query workload.

REFERENCES
[1] W. G. Aref and H. Samet. Efficient processing of window queries in the

pyramid data structure. In PODS, pages 265–272. ACM Press, 1990.
[2] E. Baralis, S. Paraboschi, and E. Teniente. Materialized views selection in a

multidimensional database. In VLDB, pages 156–165, 1997.
[3] R. Bayer. The universal b-tree for multidimensional indexing: general concepts.

In WWCA, pages 198–209. Springer, 1997.
[4] How to analyse bike data for urban planning? https://www.bikecitizens.net/

analyse-bike-data-urban-planning/.
[5] Boost R-tree. https://www.boost.org/doc/libs/1_69_0/libs/geometry/doc/html/

geometry/reference/spatial_indexes/boost__geometry__index__rtree.html.
[6] F. Braz, S. Orlando, R. Orsini, A. Raffaetà, A. Roncato, and C. Silvestri. Ap-

proximate aggregations in trajectory data warehouses. In ICDE Workshops,
pages 536–545, 2007.

[7] Google code archive. https://code.google.com/archive/p/cpp-btree/.
[8] N. Ferreira, M. Lage, H. Doraiswamy, H. Vo, L. Wilson, H. Werner, M. Park,

and C. Silva. Urbane: A 3d framework to support data driven decision making
in urban development. In Proc. IEEE VAST, pages 97–104, 2015.

[9] R. A. Finkel and J. L. Bentley. Quad trees: A data structure for retrieval on
composite keys. Acta Informatica, 4:1–9, 1974.

[10] S. Geffner, D. Agrawal, A. E. Abbadi, and T. R. Smith. Relative prefix sums:
An efficient approach for querying dynamic OLAP data cubes. In ICDE, pages
328–335, 1999.

[11] J. Gray, S. Chaudhuri, A. Bosworth, A. Layman, D. Reichart, M. Venkatrao,
F. Pellow, and H. Pirahesh. Data cube: A relational aggregation operator
generalizing group-by, cross-tab, and sub totals. Data Min. Knowl. Discov.,
1(1):29–53, 1997.

[12] H. Gupta. Selection of views to materialize in a data warehouse. In ICDT,
pages 98–112. Springer, 1997.

[13] A. Guttman. R-trees: A dynamic index structure for spatial searching. In
SIGMOD, pages 47–57. ACM Press, 1984.

[14] J. Han, N. Stefanovic, and K. Koperski. Selective materialization: An efficient
method for spatial data cube construction. In PAKDD, pages 144–158. Springer,
1998.

[15] V. Harinarayan, A. Rajaraman, and J. D. Ullman. Implementing data cubes
efficiently. In SIGMOD, pages 205–216. ACM Press, 1996.

[16] A. Kipf, H. Lang, V. Pandey, R. A. Persa, C. Anneser, E. Tzirita Zacharatou,
H. Doraiswamy, P. A. Boncz, T. Neumann, and A. Kemper. Adaptive main-
memory indexing for high-performance point-polygon joins. In EDBT, pages
347–358, 2020.

[17] A. Kipf, H. Lang, V. Pandey, R. A. Persa, P. A. Boncz, T. Neumann, and A. Kem-
per. Approximate geospatial joins with precision guarantees. In ICDE, pages
1360–1363. IEEE Computer Society, 2018.

[18] H. Kriegel, H. Horn, and M. Schiwietz. The performance of object decom-
position techniques for spatial query processing. In SSD, volume 525, pages
257–276. Springer, 1991.

[19] I. Lazaridis and S. Mehrotra. Progressive approximate aggregate queries with
a multi-resolution tree structure. In SIGMOD, pages 401–412. ACM, 2001.

[20] I. Lazaridis and S. Mehrotra. Multi-resolution aggregate tree. In Encyclopedia
of GIS, pages 764–765. Springer, 2008.

[21] L. D. Lins, J. T. Klosowski, and C. E. Scheidegger. Nanocubes for real-time
exploration of spatiotemporal datasets. IEEE Trans. Vis. Comput. Graph.,
19(12):2456–2465, 2013.

[22] Z. Liu and J. Heer. The Effects of Interactive Latency on Exploratory Visual
Analysis. Proc. TVCG, 20(12):2122–2131, 2014.

[23] I. F. V. López, R. T. Snodgrass, and B. Moon. Spatiotemporal aggregate compu-
tation: a survey. IEEE Trans. Knowl. Data Eng., 17(2):271–286, 2005.

[24] F. Nagel, P. A. Boncz, and S. Viglas. Recycling in pipelined query evaluation.
In ICDE, pages 338–349, 2013.

[25] NYC neighborhoods. https://data.cityofnewyork.us/City-Government/
Neighborhood-Tabulation-Areas/cpf4-rkhq.

[26] J. A. Orenstein. Spatial query processing in an object-oriented database system.
In SIGMOD Conference, pages 326–336. ACM Press, 1986.

[27] J. A. Orenstein and T. H. Merrett. A class of data structures for associative
searching. In PODS, pages 181–190. ACM, 1984.

[28] V. Pandey, A. Kipf, T. Neumann, and A. Kemper. How good are modern spatial
analytics systems? PVLDB, 11(11):1661–1673, 2018.

[29] V. Pandey, A. van Renen, A. Kipf, J. Ding, I. Sabek, and A. Kemper. The case
for learned spatial indexes. In AIDB@VLDB, 2020.

[30] D. Papadias, P. Kalnis, J. Zhang, and Y. Tao. Efficient OLAP operations in
spatial data warehouses. In SSTD, pages 443–459. Springer, 2001.

[31] D. Papadias, Y. Tao, P. Kalnis, and J. Zhang. Indexing spatio-temporal data
warehouses. In ICDE, pages 166–175, 2002.

[32] D. Papadias, Y. Tao, J. Zhang, N. Mamoulis, Q. Shen, and J. Sun. Indexing and
retrieval of historical aggregate information about moving objects. IEEE Data
Eng. Bull., 25(2):10–17, 2002.

[33] M. Pavlovic, D. Sidlauskas, T. Heinis, and A. Ailamaki. QUASII: query-aware
spatial incremental index. In EDBT, pages 325–336, 2018.

[34] T. B. Pedersen and N. Tryfona. Pre-aggregation in spatial data warehouses.
In SSTD, pages 460–480. Springer, 2001.

[35] T. Phan andW. Li. Dynamic materialization of query views for data warehouse
workloads. In ICDE, pages 436–445, 2008.

[36] mcxme/phtree. https://github.com/mcxme/phtree.
[37] F. Rao, L. Zhang, X. Yu, Y. Li, and Y. Chen. Spatial hierarchy and olap-favored

search in spatial data warehouse. In DOLAP, pages 48–55. ACM, 2003.
[38] S2 geometry. https://s2geometry.io/.
[39] H. Samet. The quadtree and related hierarchical data structures. ACM Comput.

Surv., 16(2):187–260, 1984.
[40] T. Schneider. Analyzing 1.1 Billion NYC Taxi and Uber Trips, with a

Vengeance. https://toddwschneider.com/posts/analyzing-1-1-billion-nyc-taxi-
and-uber-trips-with-a-vengeance/.

[41] V. Shah. Citi Bike 2017 Analysis - Towards Data Science. https://
towardsdatascience.com/citi-bike-2017-analysis-efd298e6c22c.

[42] J. Shim, P. Scheuermann, and R. Vingralek. Dynamic caching of query results
for decision support systems. In SSDBM, pages 254–263, 1999.

[43] J. Shin, A. R. Mahmood, and W. G. Aref. An investigation of grid-enabled tree
indexes for spatial query processing. In SIGSPATIAL, pages 169–178, 2019.

[44] O. Shmueli and A. Itai. Maintenance of views. In SIGMOD, pages 240–255.
ACM Press, 1984.

[45] A. Shukla, P. Deshpande, and J. F. Naughton. Materialized view selection for
multidimensional datasets. In VLDB, pages 488–499, 1998.

[46] S. Singla, A. Eldawy, R. Alghamdi, and M. F. Mokbel. Raptor: Large scale
analysis of big raster and vector data. PVLDB, 12(12):1950–1953, 2019.

[47] S. Sprenger, P. Schäfer, and U. Leser. Bb-tree: A main-memory index structure
for multidimensional range queries. In ICDE, pages 1566–1569, 2019.

[48] Y. Tao, G. Kollios, J. Considine, F. Li, and D. Papadias. Spatio-temporal aggre-
gation using sketches. In ICDE, pages 214–225, 2004.

[49] Nyc tlc data. https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page.
[50] TNCs TODAY. http://tncstoday.sfcta.org/.
[51] E. Tzirita Zacharatou, H. Doraiswamy, A. Ailamaki, C. T. Silva, and J. Freire.

GPU rasterization for real-time spatial aggregation over arbitrary polygons.
PVLDB, 11(3):352–365, 2017.

[52] E. Tzirita Zacharatou, A. Kipf, I. Sabek, V. Pandey, H. Doraiswamy, and
V. Markl. The case for distance-bounded spatial approximations. In CIDR.
http://cidrdb.org, 2021.

[53] Uber Movement. https://movement.uber.com/.
[54] F. van Diggelen and P. Enge. The world’s first GPS MOOC and worldwide

laboratory using smartphones. In Proc. ION GNSS+, pages 361–369, 2015.
[55] D. Vorona, A. Kipf, T. Neumann, and A. Kemper. DeepSPACE: Approximate

geospatial query processing with deep learning. In SIGSPATIAL/GIS, pages
500–503. ACM, 2019.

[56] T. Zäschke, C. Zimmerli, and M. C. Norrie. The ph-tree: a space-efficient
storage structure and multi-dimensional index. In SIGMOD, pages 397–408.
ACM, 2014.

180

	GeoBlocks: A Query-Cache Accelerated Data Structure for Spatial Aggregation over PolygonsChristian Winter, Andreas Kipf, Christoph Anneser, Eleni Tzirita Zacharatou, Thomas Neumann, Alfons Kemper

