O

proceedings

Cache on Track (CoT): Decentralized Elastic Caches for Cloud
Environments

Victor Zakhary, Lawrence Lim, Divyakant Agrawal, Amr El Abbadi
UC Santa Barbara
Santa Barbara, California
victorzakhary,lawrenceklim,divyagrawal,elabbadi@ucsb.edu

ABSTRACT

Distributed caches are widely deployed to serve social net-
works and web applications at billion-user scales. This paper
presents Cache-on-Track (CoT), a decentralized, elastic, and pre-
dictive caching framework for cloud environments. CoT proposes
a new cache replacement policy specifically tailored for small
front-end caches that serve skewed workloads with small update
percentage. Small front-end caches are mainly used to mitigate
the load-imbalance across servers in the distributed caching layer.
Front-end servers use a heavy hitter tracking algorithm to con-
tinuously track the top-k hot keys. CoT dynamically caches the
top-C hot keys out of the tracked keys. CoT’s main advantage
over other replacement policies is its ability to dynamically adapt
its tracker and cache sizes in response to workload distribution
changes. Our experiments show that CoT’s replacement policy
consistently outperforms the hit-rates of LRU, LFU, and ARC for
the same cache size on different skewed workloads. Also, CoT
slightly outperforms the hit-rate of LRU-2 when both policies are
configured with the same tracking (history) size. CoT achieves
server size load-balance with 50% to 93.75% less front-end cache
in comparison to other replacement policies. Finally, experiments
show that CoT’s resizing algorithm successfully auto-configures
the tracker and cache sizes to achieve back-end load-balance in
the presence of workload distribution changes.

1 INTRODUCTION

Social networks, the web, and mobile applications have at-
tracted hundreds of millions of users who need to be served in
timely personalized way [9]. To enable this real-time experience,
the underlying storage systems have to provide efficient, scalable,
and highly available access to big data.

Figure 1 presents a typical web and social network system
deployment [9] where user-data is stored in a distributed back-
end storage layer in the cloud. The back-end storage layer consists
of a distributed in-memory caching layer deployed on top of
a distributed persistent storage layer. The caching layer aims
to improve the request latency and system throughput and to
alleviate the load on the persistent storage layer at scale [44].
Distributed caching systems such as Memcached [3] and Redis [4]
are widely adopted by cloud service providers such as Amazon
ElastiCache [1] and Azure Redis Cache [2]. As shown in Figure 1,
hundreds of millions of end-users send streams of page-load and
page-update requests to thousands of stateless front-end servers.
These front-end servers are either deployed in the same core
datacenter as the back-end storage layer or distributed among
other core and edge datacenters near end-users. Each end-user
request results in hundreds of data object lookups and updates
served from the back-end storage layer. According to Facebook

© 2021 Copyright held by the owner/author(s). Published in Proceedings of the
24th International Conference on Extending Database Technology (EDBT), March
23-26, 2021, ISBN 978-3-89318-084-4 on OpenProceedings.org.

Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

Series ISSN: 2367-2005

217

= Cache invalidation

Cache getorset _ _ Storage getorset — -

Core or Edge Datacenters Cloud Core Datacenters

100s of Millions

of end-users Front-end Servers

Caching Servers Persistent Storage

- -

| Small Cache ’._’ - T =
) = :,..-.-) q = -
. ' /
“ | small cache |, ’/ .
= 4 B
<, ‘e’
“ ;aIICache 2 eeeeeeeeeens 2 ‘ -

Lookups streams

Request streams

Figure 1: A typical web and social network system deploy-
ment

Tao [9], 99.8% of the accesses are reads and 0.2% of them are
writes. Therefore, the storage system has to be read optimized
to efficiently handle end-user requests at scale.

Redis and Memcached use consistent hashing [30] to distribute
keys among several caching servers. Although consistent hashing
ensures a fair distribution of the number of keys assigned to each
caching shard, it does not consider the workload per key in the
assignment process. Real-world workloads are typically skewed
with few keys being significantly hotter than other keys [25].
This skew causes load-imbalance among caching servers.

Load imbalance in the caching layer can have significant im-
pact on the overall application performance. In particular, it may
cause drastic increases in the latency of operations at the tail end
of the access frequency distribution [24]. In addition, the average
throughput decreases and the average latency increases when the
workload skew increases [11]. This increase in the average and
tail latency is amplified for real workloads when operations are
executed in chains of dependent data objects. A single page-load
results in retrieving hundreds of objects in multiple rounds of
data fetching operations [9, 38]. Finally, solutions that equally
overprovision the caching layer resources to handle the most
loaded caching server suffer from resource under-utilization in
the least loaded caching servers.

In this paper, we propose Cache-on-Track (CoT); a decentral-
ized, elastic, and predictive heavy hitter caching at front-end
servers. CoT proposes a new cache replacement policy specifi-
cally tailored for small front-end caches that serve skewed work-
loads with small update percentage. CoT uses a small front-end
cache to solve back-end load-imbalance as introduced in [20].
However, CoT does not assume perfect caching at the front-end.
CoT uses the space saving algorithm [37] to track the top-k heavy
hitters. The tracking information allows CoT to cache the exact
top-C hot keys out of the approximate top-k tracked keys pre-
venting cold and noisy keys from the long tail to replace hot keys
in the cache. CoT is decentralized in the sense that each front-end
independently determines its hot key set based on the key access

10.5441/002/edbt.2021.20

https://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2021.20

distribution served at this specific front-end. This allows CoT
to address back-end load-imbalance without introducing single
points of failure or bottlenecks that typically come with central-
ized solutions. In addition, this allows CoT to scale to thousands
of front-end servers, a common requirement of social network
and modern web applications. Unlike traditional replacement
policies, CoT is elastic in the sense that each front-end uses its
local load information to monitor its contribution to the back-end
load-imbalance. Each front-end elastically adjusts its tracker and
cache sizes to reduce the load-imbalance caused by this front-end.
In the presence of workload changes, CoT dynamically adjusts
front-end tracker to cache ratio in addition to both the tracker
and cache sizes to eliminate any back-end load-imbalance.

In traditional architectures, memory sizes are static and caching
algorithms strive to achieve the best usage of all the available re-
sources. However, in cloud settings where there are theoretically
infinite memory and processing resources and cloud instance
migration is the norm, cloud end-users aim to achieve their SLOs
while reducing the required cloud resources and thus decreasing
their monetary deployment costs. CoT’s main goal is to reduce the
necessary front-end cache size independently at each front-end
to eliminate server-side load-imbalance. In addition, CoT strives
to dynamically find this minimum front-end cache size as the
workload distribution changes. Reducing front-end cache size is
crucial for the following reasons: 1) it reduces the monetary cost
of deploying front-end caches. For this, we quote David Lomet in
his recent works [33-35] where he shows that cost/performance
is usually more important than sheer performance: "the argu-
ment here is not that there is insufficient main memory to hold
the data, but that there is a less costly way to manage data.". 2)
In the presence of data updates and when data consistency is a
requirement, increasing front-end cache sizes significantly in-
creases the cost of the data consistency management technique.
Note that social networks and modern web applications run on
thousands of front-end servers. Increasing front-end cache size
not only multiplies the cost of deploying bigger cache by the
number of front-end servers, but also increases several costs in
the consistency management pipeline including a) the cost of
tracking key incarnations in different front-end servers and b) the
network and processing costs to propagate updates to front-end
servers. 3) Since the workload is skewed, our experiments clearly
demonstrate that the relative benefit of adding more front-end
cache-lines, measured by the average cache-hits per cache-line
and back-end load-imbalance reduction, drastically decreases as
front-end cache sizes increase.

CoT’s resizing algorithm dynamically increases or decreases
front-end allocated memory in response to dynamic workload
changes. CoT’s dynamic resizing algorithm is valuable in different
cloud settings where all front-end servers are deployed in the
same datacenter or in different datacenters at the edge. These
front-end servers obtain workloads of the same dynamically
evolving distributions or different distributions. In particular, CoT
aims to capture local trends from each individual front-end server
perspective. In social network applications, front-end servers that
serve different geographical regions might experience different
key access distributions and different local trends (e.g., #miami
vs. #ny).

We summarize our contributions in this paper as follows.

e Design and implement Cache-on-Track (CoT), a front-end
cache replacement policy specifically tailored for small

218

caches that serve skewed workloads with small update
percentages.

Design and implement CoT’s resizing algorithm. The resiz-
ing algorithm dynamically minimizes the required front-
end cache size to achieve back-end load-balance. CoT’s
built-in elasticity is a key novel advantage over other re-
placement policies.

Evaluate CoT’s replacement policy hit-rates to the hit-
rates of traditional as well as state-of-the-art replacement
policies, namely, LFU, LRU, ARC, and LRU-2. In addition,
experimentally show that CoT achieves server size load-
balance for different workload with 50% to 93.75% less
front-end cache in comparison to other replacement poli-
cies.

Experimentally evaluate CoT’s resizing algorithm showing
that CoT successfully adjust its tracker and cache sizes in
response to workload distribution changes.

Report a bug at YCSB’s [15] ScrambledZipfian workload
generator. This generator generates workloads that are
significantly less-skewed than the promised Zipfian distri-
bution.

The rest of the paper is organized as follows. The related
work is discussed in Section 2. In Section 3, the data model is
explained. Section 4 further motivates CoT by presenting the
main advantages and limitations of using LRU, LFU, ARC, and
LRU-k caches at the front-end. We present the details of CoT
in Section 5. In Section 6, we evaluate the performance and the
overhead of CoT and the paper is concluded in Section 7.

2 RELATED WORK

Distributed caches are widely deployed to serve social net-
works and the web at scale [9, 38, 44]. Load-imbalancing among
caching servers negatively affects the overall performance of
the caching layer. Therefore, significant research has addressed
the load-imbalacing problem from different angles. Solutions
use different load-monitoring techniques (e.g., centralized track-
ing [6, 7, 26, 43], server-side tracking [11, 24], and client-side
tracking [20, 28]). Based on the load-monitoring, different solu-
tions redistribute keys among caching servers at different gran-
ularities. The following summarizes the related works under
different categories.

Centralized load-monitoring: Slicer [7] and Centrifuge [6]
are examples of centralized load-monitoring where a centralized
control plane is separated from the data plane. Centrifuge uses
consistent hashing to map keys to servers. However, Slicer propa-
gates the key assignments from the control plane to the front-end
servers. Slicer’s control plane collects metadata about shard ac-
cesses and server workload. The control plane periodically runs
an optimization algorithm that decides to redistribute, repartition,
or replicate slices of the key space to achieve better back-end
load-balance. Also, Slicer replicates the centralized control plane
to achieve high availability and to solve the fault-tolerance prob-
lem in both Centrifuge [6] and in [11]. CoT is complementary to
systems like Slicer and Centrifuge since CoT operates on a fine-
grain key level at front-end servers while solutions like Slicer [7]
operate on coarser grain slices or shards at the caching servers.
Our goal is to cache heavy hitters at front-end servers to reduce
key skew at back-end caching servers and hence, reduce Slicer’s
initiated re-configurations. Also, CoT is distributed and front-end
driven that does not require any system component to develop a

global view of the workload. This allows CoT to scale to thou-
sands of front-end servers without introducing any centralized
points of failure or bottlenecks.

Server side load-monitoring: Another approach to load-
monitoring is to distribute the load-monitoring among the caching
shard servers. In [24], each caching server tracks its own hot-
spots. When the hotness of a key surpasses a certain threshold,
this key is replicated to y caching servers and the replication deci-
sion is broadcast to all the front-end servers. Any further accesses
on this hot key shall be equally distributed among these y servers.
Cheng et al. [11] extend the work in [24] to allow moving coarse-
grain key cachelets (shards) among threads and caching servers.
Our approach reduces the need for server side load-monitoring.
Instead, load-monitoring happens at the edge. This allows in-
dividual front-end servers to independently identify their local
trends and cache them without adding the monitoring overhead
to the caching layer, a critical layer for the performance of the
overall system.

Client side load-monitoring: Fan et al. [20] use a distributed
front-end load-monitoring approach. This approach shows that
adding a small perfect cache in the front-end servers has sig-
nificant impact on solving the back-end load-imbalance. Fan et
al. theoretically show through analysis and simulation that a
small perfect cache at each front-end solves the back-end load-
imbalance problem. Following [20], Gavrielatos et al. [21] propose
symmetric caching to track and cache the hot-most items at every
front-end server. Symmetric caching assumes that all front-end
servers obtain the same access distribution and hence statically
allocates the same cache size to all front-end servers. However,
different front-end servers might serve different geographical
regions and therefore observe different access distributions. CoT
discovers the workload access distribution independently at each
front-end server and adjusts the cache size to achieve some tar-
get load-balance among caching servers. NetCache [28] uses
programmable switches to implement heavy hitter tracking and
caching at the network level. Like symmetric caching, NetCache
assumes a fixed cache size for different access distributions. To
the best of our knowledge, CoT is the first front-end caching al-
gorithm that exploits the cloud elasticity allowing each front-end
server to independently reduce the necessary required front-end
cache memory to achieve back-end load-balance.

Other works in the literature focus on maximizing cache hit
rates for fixed memory sizes. Cidon et al. [12, 13] redistribute
available memory among memory slabs to maximize memory
utilization and reduce cache miss rates. Fan et al. [19] use cuckoo
hashing [41] to increase memory utilization. Lim et al. [32] in-
crease memory locality by assigning requests that access the
same data item to the same CPU. Bechmann et al. [8] propose
Least Hit Density (LHD), a new cache replacement policy. LHD
predicts the expected hit density of each object and evicts the
object with the lowest hit density. LHD aims to evict objects that
contribute low hit rates with respect to the cache space they
occupy. Unlike these works, CoT does not assume a static cache
size. In contrast, CoT maximizes the hit rate of the available cache
and exploits the cloud elasticity allowing front-end servers to
independently expand or shrink their cache memory sizes as
needed.

3 DATA MODEL

We assume a typical key/value store interface between the
front-end servers and the storage layer. The API consists of the
following calls:

219

o v = get(k) retrieves value v corresponding to key k.
o set(k, v) assigns value v to key k. set(k, null) to delete k.

Front-end servers use consistent hashing [30] to locate keys
in the caching layer. Consistent hashing solves the key discovery
problem and reduces key churn when a caching server is added
to or removed from the caching layer. We extend this model by
adding an additional layer in the cache hierarchy. As shown in
Figure 1, each front-end server maintains a small cache of its hot
keys. This cache is populated according to the accesses that are
served by each front-end server.

We assume a client driven caching protocol similar to the
protocol implemented by Memcached [3]. A cache client library
is deployed in the front-end servers. Get requests are initially
attempted to be served from the local cache. If the requested key is
in the local cache, the value is returned and the request is marked
as served. Otherwise, a null value is returned and the front-end
has to request this key from the caching layer at the back-end
storage layer. If the key is cached in the caching layer, its value is
returned to the front-end. Otherwise, a null value is returned and
the front-end has to request this key from the persistent storage
layer and upon receiving the corresponding value, the front-end
inserts the value in its front-end local cache and in the server-
side caching layer as well. As in [38], a set, or an update, request
invalidates the key in both the local cache and the caching layer.
Updates are directly sent to the persistent storage, local values
are set to null, and delete requests are sent to the caching layer
to invalidate the updated keys. The Memcached client driven
approach allows the deployment of a stateless caching layer. As
requests are driven by the client, a caching server does not need
to maintain the state of any request. This simplifies scaling and
tolerating failures at the caching layer. Although, we adopt the
Memcached client driven request handling protocol, our model
works as well with write-through request handling protocols.

Our model is not tied to any replica consistency model. Each
key can have multiple incarnations in the storage layer and the
caching layer. Updates can be synchronously propagated if strong
consistency guarantees are needed or asynchronously propagated
if weak consistency guarantees suffice. Since the assumed work-
load is mostly read requests with very few update requests, we
do not address consistency of updates in this paper. Achieving
strong consistency guarantees among replicas of the same ob-
ject has been widely studied in [11, 24]. Ghandeharizadeh et
al. [22, 23] propose several complementary techniques to CoT
to deal with consistency in the presence of updates and configu-
ration changes. These techniques can be adopted in our model
according to the application requirements. We understand that
deploying an additional vertical layer of cache increases potential
data inconsistencies and hence increases update propagation and
synchronization overheads. Therefore, our goal in this paper is
to reduce the front-end cache size in order to limit the incon-
sistencies and the synchronization overheads that result from
deploying front-end caches, while maximizing their benefits on
back-end load-imbalance.

4 FRONT-END CACHE ALTERNATIVES

Fan et al. [20] show that a small perfect cache in the front-
end servers has big impact on the caching layer load-balance. A
perfect cache of C cache-lines is defined such that accesses to
the C hot-most keys always hit the cache while accesses to any
other keys always miss the cache. The perfect caching assumption
is impractical especially for dynamically changing and evolving
workloads. Several replacement policies have been developed to

approximate perfect caching for different workloads. This section
discusses the workload assumptions and various client caching
objectives. This is followed by a discussion of the advantages and
limitations of common caching replacement policies.

Workload assumptions: Real-world workloads are typically
skewed with few keys being significantly hotter than other keys.
In this paper, we assume skewed mostly read workloads with
periods of stability (where hot keys remain hot during these
periods).

Client caching objectives: Front-end servers construct their
perspective of the key hotness distribution based on the re-
quests they serve. Front-end servers aim to achieve the following
caching objectives:

e The cache replacement policy should prevent cold keys
from replacing hotter keys in the cache.

e Front-end caches should adapt to the changes in the work-
load. In particular, front-end servers should have a way
to retire hot keys that are no longer accessed. In addition,
front-end caches should have a mechanism to expand or
shrink their local caches in response to changes in work-
load distribution. For example, front-end servers that serve
uniform access distributions should dynamically shrink
their cache size to zero since caching is of no value in this
situation. On the other hand, front-end servers that serve
highly skewed Zipfian (e.g., s = 1.5) should dynamically ex-
pand their cache size to capture all the hot keys that cause
load-imbalance among the back-end caching servers.

A popular policy for implementing client caching is the LRU
replacement policy. Least Recently Used (LRU) costs O(1) per
access and caches keys based on their recency of access. This
may allow cold keys that are recently accessed to replace hotter
cached keys. Also, LRU cannot distinguish well between fre-
quently and infrequently accessed keys [31]. Alternatively, Least
Frequently Used (LFU) can be used as a replacement policy. LFU
costs O(log(C)) per access where C is the cache size. LFU is
typically implemented using a min-heap and allows cold keys
to replace hotter keys at the top levels of the heap. Also, LFU
cannot distinguish between old references and recent ones. This
means that LFU cannot adapt to changes in workload. Both LRU
and LFU are limited in their knowledge to the content of the
cache and cannot develop a wider perspective about the hotness
distribution outside of their static cache size.

Adaptive Replacement Cache (ARC) [36] tries to realize the
benefits of both LRU and LFU policies by maintaining two caching
lists: one for recency and one for frequency. ARC dynamically
changes the number of cache-lines allocated for each list to either
favor recency or frequency of access in response to workload
changes. In addition, ARC uses shadow queues to track more
keys beyond the cache size. This helps ARC to maintain a broader
perspective of the access distribution beyond the cache size. ARC
is designed to find the fine balance between recent and frequent
accesses. As a result, ARC pays the cost of caching every new
cold key in the recency list evicting a hot key from the frequency
list. This cost is significant especially when the cache size is much
smaller than the key space and the workload is skewed favoring
frequency over recency.

LRU-k [39] tracks the last k accesses of each cached key, in
addition to a pre-configured manually fixed size history that
includes the access information of the recently evicted keys from
the cache. New keys replace the cached key with the least recently
k' access. The evicted key is moved to the history, which is

220

typically implemented using LRU. LRU-k is a suitable strategy to
mock perfect caching of periodically stable skewed workloads
when its cache and history sizes are perfectly pre-configured
for this specific workload. However, due to the lack of LRU-k’s
dynamic resizing and elasticity of both its cache and history
sizes, we choose to introduce CoT that is designed with native
resizing and elasticity functionality. This functionality allows
CoT to adapt its cache and tracker sizes in response to workload
changes.

5 CACHE ON TRACK (COT)

Front-end caches serve two main purposes: 1) decrease the load
on the back-end caching layer and 2) reduce the load-imbalance
among the back-end caching servers. CoT focuses on the latter
goal and considers back-end load reduction a complementary
side effect. CoT’s design philosophy is to track more keys beyond
the cache size. This tracking serves as a filter that prevents cold
keys from populating the small cache and therefore, only hot
keys can populate the cache. In addition, the tracker and the
cache are dynamically and adaptively resized to ensure that the
load served by the back-end layer follows a load-balance target.

The idea of tracking more keys beyond the cache size has been
widely used in replacement policies such as 2Q [29], MQ [45],
LRU-k [39, 40], and ARC [36]. Both 2Q and MQ use multiple
LRU queues to overcome the weaknesses of LRU of allowing
cold keys to replace warmer keys in the cache. All these policies
are desgined for fixed memory size environments. However, in
a cloud environment where elastic resources can be requested
on-demand, a new cache replacement policy is needed to take
advantage of this elasticity.

CoT presents a new cache replacement policy that uses a
shadow heap to track more keys beyond the cache size. Previ-
ous works have established the efficiency of heaps in tracking
frequent items [37]. In this section, we explain how CoT uses
tracking beyond the cache size to achieve the caching objectives
listed in Section 4. In particular, CoT answers the following ques-
tions: 1) how to prevent cold keys from replacing hotter keys in
the cache?, 2) how to reduce the required front-end cache size that
achieves lookup load-balance?, 3) how to adaptively resize the cache
in response to changes in the workload distribution? and finally 4)
how to dynamically retire old heavy hitters?.

5.1 Notation

The key space, denoted by S, is assumed to be large in the scale
of trillions of keys. Each front-end server maintains a cache of size
C <<< S. The set of cached keys is denoted by S. To capture the
top-C hottest keys, each front-end server tracks K > C keys. The
set of tracked key is denoted by S. Front-end servers cache the
top-C hottest keys where S; C Si. A key hotness Ay, is determined
using the dual cost model introduced in [18]. In this model, read
accesses increase a key hotness by a read weight r,, while update
accesses decrease it by an update weight u.,,. As update accesses
cause cache invalidations. Therefore, frequently updated keys
should not be cached and thus an update access decreases a key’s
hotness. For each tracked key, the read count k.r, and the update
count k.u. are maintained to capture the number of read and
update accesses of this key. Equation 1 shows how the hotness
of key k is calculated. We use ry, = u,, = 1 in our experiments.

¢Y)

hmin refers to the minimum key hotness in the cache. hnin
splits the tracked keys into two subsets: 1) the set of cached keys
(also tracked) S, of size C and 2) the set of tracked but not cached

hp = kore X ryy — ke Xty

S key space

K number of tracked keys at the front-end

C number of cached keys at the front-end

hy hotness of a key k

k.re | read count of a key k

k.uc | update count of a key k

T'w the weight of a read operation

Uy the weight of an update operation

hmin | the minimum hotness of keys in the cache

Sk the set of all tracked keys

Se the set of cached keys (these keys are also tracked)
Sk—c | the set of tracked but not cached keys

I the current local lookup load-imbalance

I the target lookup load-imbalance

a the average hit-rate per cache-line in an epoch
E Epoch: a configurable number of accesses

Table 1: Summary of notation.

keys Sy._. of size K — C. The current local load-imbalance among
caching servers lookup load is denoted by I.. I.. is a local variable
at each front-end that determines the current contribution of
this front-end to the back-end load-imbalance. I, is defined as
the workload ratio between the most loaded back-end server
and the least loaded back-end server as observed at a front-end
server. For example, if a front-end server sends, during an epoch,
a maximum of 5K key lookups to some back-end server and,
during the same epoch, a minimum of 1K key lookups to another
back-end server then I, at this front-end, equals 5. I; is the target
load-imbalance among the caching servers. I; is the only input
parameter set by the system administrator and is used by front-
end servers to dynamically adjust their cache and tracker sizes.
Ideally I; should be set close to 1. I; = 1.1 means that back-end
load-balance is achieved if the most loaded server observes at
most 10% more key lookups than the least loaded server. Finally,
we define another local auto-adjusted parameter a. « is the
average hits per cache-line and it determines the quality of the
cached keys. A cache-line, or entry, contains one cached key and
its corresponding value and o determines the average hits per
cache-line during an epoch. For example, if a cache consists of 10
cache-lines and they cumulatively observe 2000 hits in an epoch,
we consider a to be 200. a helps detect changes in workload and
adjust the cache size accordingly. Note that CoT automatically
infers the value of « based on the observed workload. Hence, the
system administrator does not need to set the value of a. E is an
epoch parameter defined by a configurable number of accesses.
CoT runs its dynamic resizing algorithm every E accesses. Table 1
summarizes the notation.

5.2 Space-Saving Tracking Algorithm

CoT uses the space-saving algorithm introduced in [37] to
track the key hotness at front-end servers. Space-saving uses a
min-heap to order keys based on their hotness and a hashmap to
lookup keys in the tracker in O(1). The space-saving algorithm
is shown in Algorithm 1. If the accessed key k is not in the
tracker (Line 1), it replaces the key with minimum hotness at the
root of the min-heap (Lines 2, 3, and 4). The algorithm gives the
newly added key the benefit of doubt and assigns it the hotness
of the replaced key. As a result, the newly added key gets the
opportunity to survive immediate replacement in the tracker.
Whether the accessed key k was in the tracker or is newly added
to the tracker, the hotness of the key is updated based on the

221

access type according to Equation 1 (Line 6) and the heap is
accordingly adjusted (Line 7).

Algorithm 1 The space-saving algorithm: track_key(key k, ac-
cess_type t).

State: Si: keys in the tracker.

Input: (key k, access_type t)

if k ¢ S;. then
let k' be the root of the min-heap
replace k” with k
hy = hy

end if

hy := update_hotness(k, t)

: adjust_heap(k)

. return hy

I A U T A A

5.3 CoT: Cache Replacement Policy

CoT’s tracker captures the approximate top K hot keys. Each
front-end server should cache the exact top C keys out of the
tracked K keys where C < K. The exactness of the top C cached
keys is considered with respect to the approximation of the top
K tracked keys. Caching the exact top C keys prevents cold and
noisy keys from replacing hotter keys in the cache and achieves
the first caching objective. To determine the exact top C keys,
CoT maintains a cache of size C in a min-heap structure. Cached
keys are partially ordered in the min-heap based on their hotness.
The root of the cache min-heap gives the minimum hotness, A,
among the cached keys. hyip, splits the tracked keys into two
unordered subsets S. and Si_. such that:

o |Sc| = Cand Vyes hx = hmin
® [Sk_¢c|=K-Cand VxeSk,chx < hmin

cold

hot Tracking minheap of size K Caching minheap of size C

Figure 2: CoT: a key is inserted to the cache if its hotness
exceeds the minimum hotness of the cached keys.

For every key access, the hotness information of the accessed
key is updated in the tracker. If the accessed key is cached, its
hotness information is updated in the cache as well. However, if
the accessed key is not cached, its hotness is compared against
hmin. As shown in Figure 2, the accessed key is inserted into the
cache only if its hotness exceeds hpin. Algorithm 2 explains the
details of CoT’s cache replacement algorithm.

For every key access, the track_key function of Algorithm 1 is
called (Line 1) to update the tracking information and the hot-
ness of the accessed key. Then, a key access is served from the
local cache only if the key is in the cache (Lines 3). Otherwise,
the access is served from the caching server (Line 5). Serving an
access from the local cache implicitly updates the accessed key
hotness and location in the cache min-heap. If the accessed key

Algorithm 2 CoT’s caching algorithm

State: Si.: keys in the tracker and S;: keys in the cache.
Input: (key k, access_type t)
1: hy = track_key(k, t) as in Algorithm 1
2: if k € S; then
3 let v = access(Sc, k) // local cache access
4: else
5 let v = server_access(k) // caching server access
6 if hy > hpin then
7 insert(S¢, k, v) // local cache insert
8: end if
9: end if

10: return v

is not cached, its hotness is compared against hp;, (Line 6). The
accessed key is inserted to the local cache if its hotness exceeds
hmin (Line 7). This happens only if there is a tracked but not
cached key that is hotter than one of the cached keys. Keys are
inserted to the cache together with their tracked hotness informa-
tion. Inserting keys into the cache follows the LFU replacement
policy. This implies that a local cache insert (Line 7) would result
in the replacement of the coldest key in the cache (the root of
the cache heap) if the local cache is full.

5.4 CoT: Adaptive Cache Resizing

This section explains CoT’s resizing algorithm. This algorithm
reduces the necessary front-end cache size that achieves back-
end lookup load-balance. In addition, this algorithm dynamically
expands or shrinks CoT’s tracker and cache sizes when the served
workload changes. Also, this algorithm detects changes in the
set of hot keys and retires old hot keys that are not hot any
more. As explained in Section 1, reducing the front-end cache size
decreases the front-end cache monetary cost, limits the overheads
of data consistency management techniques, and maximizes the
benefit of front-end caches measured by the average cache-hits
per cache-line and back-end load-imbalance reduction.

- 20
1L 1.00 Relative Server load —— |
Load imbalance —=— | 18
g 16
% 0.8 {1 :’:(3
: 5]
c -
5 06f 2 s
° S
(3 -
2 041 =
® o
@ —
T 02t
0

0 2 4 8 16 32 64 128 256 512 10242048

Cache size

Figure 3: Reduction in relative server load and load-
imbalance among caching servers as front-end cache size
increases.

The Need for Cache Resizing: Figure 3 experimentally shows
the effect of increasing the front-end cache size on both back-
end load-imbalance reduction and decreasing the workload at
the back-end. In this experiment, 8 memcached shards are de-
ployed to serve back-end lookups and 20 clients send lookup
requests following a significantly skewed Zipfian distribution (s
= 1.5). The size of the key space is 1 million and the total num-
ber of lookups is 10 millions. The front-end cache size at each
client is varied from 0 cachelines (no cache) to 2048 cachelines
(=0.2% of the key space). Front-end caches use CoT’s replacement
policy and a ratio of 4:1 is maintained between CoT’s tracker

222

size and CoT’s cache size. We define back-end load-imbalance
as the workload ratio between the most loaded server and the
least loaded server. The target load-imbalance I; is set to 1.5. As
shown in Figure 3, processing all the lookups from the back-end
caching servers (front-end cache size = 0) leads to a significant
load-imbalance of 16.26 among the caching servers. This means
that the most loaded caching server receives 16.26 times the
number of lookup requests received by the least loaded caching
server. As the front-end cache size increases, the server size load-
imbalance drastically decreases. As shown, a front-end cache
of size 64 cache lines at each client reduces the load-imbalance
to 1.44 (an order of magnitude less load-imbalance across the
caching servers) achieving the target load-imbalance I; = 1.5.
Increasing the front-end cache size beyond 64 cache lines only
reduces the back-end aggregated load but not the back-end load-
imbalance. The relative server load is calculated by comparing
the server load for a given front-end cache size to the server
load when there is no front-end caching (cache size = 0). Fig-
ure 3 demonstrates the reduction in the relative server load as
the front-end cache size increases. However, the benefit of dou-
bling the cache size proportionally decays with the key hotness
distribution. As shown in Figure 3, the first 64 cachelines reduce
the relative server load by 91% while the second 64 cachelines
reduce the relative server load by only 2% more.

The failure of the "one size fits all" design strategy suggests
that statically allocating fixed cache and tracker sizes to all front-
end servers is not ideal. Each front-end server should indepen-
dently and adaptively be configured according to the key access
distribution it serves. Also, changes in workloads can alter the
key access distribution, the skew level, or the set of hot keys.
For example, social networks and web front-end servers that
serve different geographical regions might experience different
key access distributions and different local trends (e.g., #miami
vs. #ny). Therefore, CoT’s cache resizing algorithm learns the
key access distribution independently at each front-end and dy-
namically resizes the cache and the tracker to achieve lookup
load-imbalance target I;. CoT is designed to reduce the front-end
cache size that achieves I;. Any increase in the front-end cache
size beyond CoT’s recommendation mainly decreases back-end
load and should consider other conflicting parameters such as
the additional cost of the memory cost, the cost of updates and
maintaining the additional cached keys, and the percentage of
back-end load reduction that results from allocating additional
front-end caches.

Cache Resizing Algorithm (parameter configuration):
Front-end servers use CoT to minimize the cache size that achieves
a target load-imbalance I;. Initially, front-end servers are config-
ured with no front-end caches. The system administrator con-
figures CoT by an input target load-imbalance parameter I; that
determines the maximum tolerable imbalance between the most
loaded and least loaded back-end caching servers. Afterwards,
CoT expands both tracker and cache sizes until the current load-
imbalance achieves the inequality I, < I;.

Algorithm 3 describes CoT’s cache resizing algorithm. CoT
divides the timeline into epochs and each epoch consists of E
accesses. Algorithm 3 is executed at the end of each epoch. The
epoch size E is proportional to the tracker size K and is dynami-
cally updated to guarantee that E > K (Line 3). This condition
helps ensure that CoT does not trigger consecutive resizes before
the cache and the tracker are warmed up with keys. During each
epoch, CoT tracks the number of lookups sent to every back-end
caching server. In addition, CoT tracks the total number of cache

hits and tracker hits during this epoch. At the end of each epoch,
CoT calculates the current load-imbalance I.. as the ratio between
the highest and the lowest load on back-end servers during this
epoch. Also, CoT calculates the current average hit per cached
key a.. ac equals the total cache hits in the current epoch divided
by the cache size. Similarly, CoT calculates the current average
hit per tracked but not cache key a;_.. CoT compares I to I
and decides on a resizing action as follows.

(1) I > I; and a¢ > ap_. (Line 1), this means that the target
load-imbalance is not achieved and cached keys observe
more hits than the keys in the tracker. CoT follows the bi-
nary search algorithm in searching for the front-end cache
size that achieves I;. Therefore, CoT decides to double the
front-end cache size (Line 2). As a result, CoT doubles the
tracker size as well to maintain a tracker to cache size ratio
of at least 2, K > 2- C (Line 2). The cache and tracker sizes
are doubled until either I; is achieved or a configurable
upper limit cache size is hit. In addition, CoT uses a local
variable a; to capture the quality of the cached keys when
I; is first achieved. Initially, @; = 0. CoT then sets «; to the
average hits per cache-line ¢, during the current epoch
(Line 4). In subsequent epochs, a; is used to detect changes
in workload.

(2) I < I (Line 5), this means that the target load-imbalance
has been achieved. However, changes in workload could
alter the quality of the cached keys. Therefore, CoT uses
a; to detect and handle changes in workload in future
epochs as explained below.

Algorithm 3 CoT’s elastic resizing algorithm.

State: S.: keys in the cache, Sg: keys in the tracker, C: cache
capacity, K: tracker capacity, a,: average hits per key in S, in the
current epoch, ap_.: average hits per key in Si_. in the current
epoch, I..: current load-imbalance, and a;: target average hit per
key
Input: I;

1 if I > I; && ac >= ap_. then

2 resize(S¢, 2 X C) , resize(Sg, 2 X K)

3 E := max (E, K)

4 Let a; = a¢

5. else

6: if ac < (1 —¢€).ar and op_. < (1 —€).0; then

7 resize(Se, %), resize(S, %)

8 elseif o, < (1 -€).a; and ap_. > (1 —€).a; then
9 half_life_time_decay()

10: end if

11: end if

a; is reset whenever the inequality I < I; is violated and
Algorithm 3 expands cache and tracker sizes. Ideally, when the
inequality I, < I; holds, keys in the cache (the set S¢) achieve a;
hits per cache-line during every epoch while keys in the tracker
but not in the cache (the set S._) do not achieve a;. This happens
because keys in the set Si._. are colder than keys in the set S,.
ar represents a target hit-rate per cache-line for future epochs.
Therefore, if keys in the cache do not meet the target a; in a
following epoch, this indicates that the quality of the cached
keys has changed and an action needs to be taken as follows.

(1) Case 1: keys in S¢, on the average, do not achieve «; hits
per cacheline and keys in S;_. do not achieve a; hits as

223

well (Line 6). This indicates that the quality of the cached
keys decreased. In response. CoT shrinks both the cache
and the tracker sizes (Line 7). If shrinking both cache and
tracker sizes results in a violation of the inequality I < I,
Algorithm 3 doubles both tracker and cache sizes in the
following epoch and a; is reset as a result. In Line 6, we
compare the average hits per key in both S¢ and Sy, to
(1 —€) - a; instead of a;. Note that € is a small constant
<<< 1 that is used to avoid unnecessary resizing actions
due to insignificant statistical variations.

Case 2: keys in S¢ do not achieve a; while keys in Sg_,
achieve a; (Line 8). This signals that the set of hot keys
is changing and keys in Si_. are becoming hotter than
keys in Sc. For this, CoT triggers a half-life time decay-
ing algorithm that halves the hotness of all cached and
tracked keys (Line 9). This decaying algorithm aims to
forget old trends that are no longer hot to be cached (e.g.,
Gangnam style song). Different decaying algorithms have
been developed in the literature [14, 16, 17]. Therefore,
this paper only focuses on the resizing algorithm details
without implementing a specific decaying algorithm.
Case 3: keys in S¢ achieve a; while keys in Sx_. do not
achieve a;. This means that the quality of the cached keys
has not changed and therefore, CoT does not take any
action. Similarly, if keys in both sets S; and Si_. achieve
ay, CoT does not take any action as long as the inequality
I. < I; holds.

6 EXPERIMENTAL EVALUATION

This section evaluates both CoT’s caching and adaptive resiz-
ing algorithms. We choose to compare CoT to traditional and
widely used replacement policies like LRU and LFU. In addition,
we compare CoT to both ARC [36] and LRU-k [39]. As stated
in [36], ARC, in its online auto-configuration setting, achieves
comparable performance to LRU-2 (which is the most responsive
LRU-K) [39, 40], 2Q [29], LRFU [31], and LIRS [27] even when
these policies are perfectly tuned offline. Also, ARC outperforms
the online adaptive replacement policy MQ [45]. Therefore, we
compare with ARC and LRU-2 as representatives of these dif-
ferent polices. Section 6.1 explains the experimental setup. First,
we compare the hit rates of CoT’s cache algorithm to LRU, LFU,
ARC, and LRU-2 hit rates for different front-end cache sizes
in Section 6.2. Then, we compare the required front-end cache
size for each replacement policy to achieve a target back-end
load-imbalance I; in Section 6.3. In Section 6.4, we provide an
end-to-end evaluation of front-end caches comparing the end-to-
end performance of CoT, LRU, LFU, ARC, and LRU-2 on different
workloads with the configuration where no front-end cache is
deployed. Finally, CoT’s resizing algorithm is evaluated in Sec-
tion 6.5.

@

~

3

=

6.1 Experiment Setup

We deploy 8 instances of memcached [3] on a small cluster
of 4 caching servers (2 memcached instance per server). Each
caching server has an Intel(R) Xeon(R) CPU E3-1235 (8MB Cache
and 16GB RAM) with 4GB RAM dedicated to each memcached
instance. Caching servers and clients run ubuntu 18.04 and con-
nected to the same 10Gbps Ethernet network. No explicit network
or OS optimization are used.

A dedicated client machine with Intel(R) Core(TM) i7-6700HQ
CPU and 16GB of RAM is used to generate client workloads.
The client machine executes multiple client threads to submit
workloads to caching servers. Client threads use Spymemcached

2.11.4 [5], a Java-based memcached client, to communicate with
memcached cluster. Spymemcached provides communication ab-
stractions that distribute workload among caching servers using
consistent hashing [30]. We slightly modified Spymemcached to
monitor the workload per back-end server at each front-end.
Client threads use Yahoo! Cloud Serving Benchmark (YCSB) [15]
to generate workloads for the experiments. YCSB is a standard
key/value store benchmarking framework. YCSB is used to gen-
erate key/value store requests such as Get, Set, and Insert. YCSB
enables configuring the ratio between read (Get) and write (Set)
accesses. Also, YCSB allows the generation of accesses that fol-
low different access distributions. As YCSB is CPU-intensive, the
client machine runs at most 20 client threads per machine to
avoid contention among client threads. During our experiments,
we realized that YCSB’s ScrambledZipfian workload generator
has a bug as it generates Zipfian workload distributions with
significantly less skew than the skew level it is configured with.
Therefore, we use YCSB’s Zipfian generator instead of YCSB’s
ScrambledZipfian. Figure 4 shows the hits per key generated for
the top 1024 out 1 million keys and 100 million samples of a zip-
fian 0.99 distribution from YCSB-Zipfian, YCSB-ScambledZipfian,
and theoretical zipfian generators. As shown, YCSB-Zipfian gen-
erator (CDF 0.512) is almost identical to the theoretical generator
(CDF 0.504) while YCSB-ScrambledZipfian generator (CDF 0.30)
has much less skew than the theoretical zipfian generator (40%
less hits in the top 1024 keys than the theoretical distribution).

6| YCSB-Zipf ——
4.1943x10 YCSB-ScrambledZipt
Theoretical-Zipf ——
1.04858x10°

262144 -

Hits per key

65536 -

16384

4096

400 600

Key

800 1000 1200

Figure 4: YCSB-Zipf vs ScrambledZipf vs Theoretical-Zipf

Our experiments use different variations of YCSB core work-
loads. Workloads consist of 1 million key/value pairs. Each key
consists of a common prefix "usertable:" and a unique ID. We use a
value size of 750 KB making a dataset of size 715GB. Experiments
use read intensive workloads that follow Tao’s [9] read-to-write
ratio of 99.8% reads and 0.2% updates. Unless otherwise specified,
experiments consist of 10 million key accesses sampled from
different access distributions such as Zipfian (s = 0.90, 0.99, or 1.2)
and uniform. Client threads submit access requests back-to-back.
Each client thread can have only one outgoing request. Clients
submit a new request as soon as they receive an acknowledge-
ment for their outgoing request.

6.2 Hit Rate

The first experiment compares CoT’s hit rate to LRU, LFU,
ARC, and LRU-2 hit rates using equal cache sizes for all replace-
ment policies. 20 client threads are provisioned on one client
machine and each cache client thread maintains its own cache.
Configuration: The cache size is varied from a very small cache
of 2 cache-lines to 2048 cache-lines. The hit rate is compared
using different Zipfian access distributions with skew parame-
ter values s = 0.90, 0.99, and 1.2 as shown in Figures 5(a), 5(b),
and 5(c) respectively. In addition, 14 days of Wikipedia’s real

224

traces, collected by [42], are used to compare CoT to other re-
placement policies, including LHD [8], as shown in Figure 5(d).
CoT’s tracker to cache size ratio determines how many tracking
nodes are used for every cache-line. CoT automatically detects
the ideal tracker to cache ratio for any workload by fixing the
cache size and doubling the tracker size until the observed hit-
rate gains from increasing the tracker size are insignificant i.e.,
the observed hit-rate saturates. The tracker to cache size ratio
decreases as the workload skew increases. A workload with high
skew simplifies the task of distinguishing hot keys from cold keys
and hence, CoT requires a smaller tracker size to successfully
filter hot keys from cold keys. Note that LRU-2 is also config-
ured with the same history to cache size as CoT’s tracker to
cache size. In this experiment, for each skew level, CoT’s tracker
to cache size ratio is varied as follows: 16:1 for Zipfian 0.9 and
Wikipedia, 8:1 for Zipfian 0.99, and 4:1 for Zipfian 1.2. Note that
CoT’s tracker maintains only the meta-data of tracked keys. Each
tracker node consists of a read counter and a write counter with
8 bytes of memory overhead per tracking node. In real-world
workloads, value sizes vary from tens of KBs to few MBs. For
example, Google’s Bigtable [10] uses a value size of 64 KB. There-
fore, a memory overhead of at most % KB (16 tracker nodes * 8
bytes) per cache-line is negligible (0.2%).

In Figures 5, the x-axis represents the cache size expressed as
the number of cache-lines. The y-axis represents the front-end
cache hit rate (%) as a percentage of the total workload size. At
each cache size, the cache hit rates are reported for LRU, LFU,
ARC, LRU-2, and CoT cache replacement policies. In addition,
TPC represents the theoretically calculated hit-rate from the
Zipfian distribution CDF if a perfect cache with the same cache
size is deployed. For each experiment, the TPC is configured with
the same key space size N = (1 million keys), the same sample
generated size (10 million samples), the same skew parameter s
(e.g., 0.9, 0.99, 1.2) of the experiment, and k equals to the cache
size (ranging from 2 - 2048). For example, a perfect cache of
size 2 cache-lines stores the top-2 hot keys and hence any access
to these 2 keys results in a cache hit while accesses to other
keys result in cache misses. For Wikipedia traces, the TPC is the
cumulative accesses of the top-C keys.

Analysis: As shown in Figure 5(a), CoT surpasses LRU, LFU,
ARC, and LRU-2 hit rates at all cache sizes. In fact, CoT achieves
almost similar hit-rate to the TPC hit-rate. In Figure 5(a), CoT
outperforms TPC for some cache size which is counter intuitive.
This happens as TPC is theoretically calculated using the Zipfian
CDF while CoT’s hit-rate is calculated out of YCSB’s sampled dis-
tributions which are approximate distributions. In addition, CoT
achieves higher hit-rates than both LRU and LFU with 75% less
cache-lines. As shown, CoT with 512 cache-lines achieves 10%
more hits than both LRU and LFU with 2048 cache-lines. Also,
CoT achieves higher hit rate than ARC using 50% less cache-
lines. In fact, CoT configured with 512 cache-lines achieves 2%
more hits than ARC with 1024 cache-lines. Taking tracking mem-
ory overhead into account, CoT maintains a tracker to cache
size ratio of 16:1 for this workload (Zipfian 0.9). This means that
CoT adds an overhead of 128 bytes (16 tracking nodes * 8 bytes
each) per cache-line. The percentage of CoT’s tracking memory
overhead decreases as the cache-line size increases. For example,
CoT introduces a tracking overhead of 0.02% when the cache-line
size is 750KB. Finally, CoT consistently achieves 8-10% higher
hit-rate than LRU-2 configured with the same history and cache
sizes as CoT’s tracker and cache sizes.

(a) Zipfian 0.9
40 T T T T T

35

30

25

20

Cache hit rate (%)

LS v e v e

256 512

N
®©

1024 2048

Cache Size

(c) Zipfians =1.2

920 T T T T

Cache hit rate (%)

LUKl |
512 1024 2048

256
Cache Size

Cache hit rate (%)

Cache hit rate (%)

(b) Zipfian s = 0.99
60 T T T T T

50

40

30

20

S EEEEEEIS

I oo arav v ar s s av aral

64 12i
Cache Size

®©

2048

(d) Wikipedia Traces
35 T T T T

TPC Sy

[H
512

1024 2048

64
Cache Size

Figure 5: Comparison of LRU, LFU, ARC, LRU-2, LHD, CoT and TPC’s hit rates using various Zipfian and Wikipedia traces

Similarly, as illustrated in Figures 5(b) and 5(c), CoT outpaces
LRU, LFU, ARC, and LRU-2 hit rates at all different cache sizes.
Figure 5(b) shows that a configuration of CoT using 512 cache-
lines achieves 3% more hits than both configurations of LRU and
LFU with 2048 cache-lines. Also, CoT consistently outperforms
ARC’s hit rate with 50% less cache-lines. Finally, CoT achieves
3-7% higher hit-rate than LRU-2 configured with the same history
and cache sizes. Figures 5(b) and 5(c) highlight that increasing
workload skew decreases the advantage of CoT. As workload
skew increases, the ability of LRU, LFU, ARC, LRU-2 to distin-
guish between hot and cold keys increases and hence CoT’s
preeminence decreases.

In addition to YCSB synthetic traces, Wikipedia real traces
show in Figure 5(d) that CoT significantly outperforms other
replacement policies at every cache size. This Wikipedia real
traces comparison includes LHD [8], a recently proposed caching
policy specifically for cloud applications. As Figure 5(d) shows,
CoT is the only replacement policy that achieves almost the same
hit rate of the cumulative top-C keys beating LRU, LFU, ARC,
LRU-2, and LHD by 23-84%, 14-51%, 9-42%, 37-58%, and 4-24%
respectively for different cache sizes.

6.3 Back-End Load-Imbalance

In this section, we compare the required front-end cache sizes
for different replacement policies to achieve a back-end load-
imbalance target I;. Configuration: Different skewed workloads
are used, namely, Zipfian s = 0.9, s = 0.99, and s = 1.2. For each
distribution, we first measure the back-end load-imbalance when
no front-end cache is used. A back-end load-imbalance target I;
is set to I; = 1.1. This means that the back-end is load balanced
if the most loaded back-end server processes at most 10% more
lookups than the least loaded back-end server. We evaluate the
back-end load-imbalance while increasing the front-end cache

225

size using different cache replacement policies, namely, LRU, LFU,
ARC, LRU-2, and CoT. In this experiment, CoT uses the same
tracker-to-cache size ratio as in Section 6.2. For each replacement
policy, we report the minimum required number of cache-lines
to achieve I;.

Dist. Load- Number of cache-lines

imbalance | to achieve I; = 1.1

No cache | LRU | LFU | ARC | LRU-2 | CoT
Zipf 0.9 1.35 64 16 16 8 8
Zipf0.99 1.73 128 16 16 16 8
Zipf 1.20 | 4.18 2048 | 2048 | 1024 | 1024 512

Table 2: The minimum required number of cache-lines for
different replacement policies to achieve a back-end load-
imbalance target I; = 1.1 for different workload distribu-
tions.

Analysis: Table 2 summarizes the reported results for dif-
ferent distributions using LRU, LFU, ARC, LRU-2, and CoT re-
placement policies. For each distribution, the initial back-end
load-imbalance is measured using no front-end cache. As shown,
the initial load-imbalances for Zipf 0.9, Zipf 0.99, and Zipf 1.20 are
1.35, 1.73, and 4.18 respectively. For each distribution, the min-
imum required number of cache-lines for LRU, LFU, ARC, and
CoT to achieve a target load-imbalance of I; = 1.1 is reported. As
shown, CoT requires 50% to 93.75% less cache-lines than other
replacement policies to achieve I;. Since LRU-2 is configured with
a history size equals to CoT’s tracker size, LRU-2 requires the
second least number of cache-lines to achieve I;.

6.4 End-to-End Evaluation
In this section, we evaluate the effect of front-end caches
using LRU, LFU, ARC, LRU-2, and CoT replacement policies on

the overall running time of different workloads. This experiment
also demonstrates the overhead of front-end caches on the overall
running time. Configuration: This experiment uses 3 different
workload distributions, namely, uniform, Zipfian (s = 0.99), and
Zipfian (s = 1.2) distributions as shown in Figure 6. For all the
three workloads, each replacement policy is configured with 512
cache-lines. Also, CoT and LRU-2 maintain a tracker (history) to
cache size ratio of 8:1 for Zipfian 0.99 and 4:1 for both Zipfian
1.2 and uniform distributions. In this experiment, a total of 1M
accesses are sent to the caching servers by 20 client threads
running on one client machine. Each experiment is executed 10
times and the average overall running time with 95% confidence
intervals are reported.

1024 T T T

. No Cache ——1
5 512 | LRU xxx1 =
[}
E 256 -
=
j=2)
£ 128
<
c
>
o 64
=
2 32
o

16

zipf-0.99
Workload Distribution

uniform zipf-1.2

Figure 6: Front-end caching effect on the end-to-end over-
all running time using different workload distributions.

In this experiment, the front-end servers are allocated in the
same cluster as the back-end servers. The average Round-Trip
Time (RTT) between front-end machines and back-end machines
is 244ps. This small RTT allows us to fairly measure the overhead
of front-end caches by minimizing the performance advantages
achieved by front-end cache hits. In real-world deployments
where front-end servers are deployed in edge-datacenters and
the RTT between front-end servers and back-end servers is in
order of milliseconds, front-end caches achieve more significant
performance gains.

Analysis: The uniform workload is used to measure the over-
head of front-end caches. In a uniform workload, all keys in the
key space are equally hot and front-end caches cannot take any
advantage of workload skew to benefit some keys over others.
Therefore, front-end caches only introduce the overhead of main-
taining the cache without achieving any significant performance
gains. As shown in Figure 6, there is no significant statistical dif-
ference between the overall run time when there is no front-end
cache and when there is a small front-end cache with different
replacement policies. Adding a small front-end cache does not
incur run time overhead even for replacement policies that use a
heap, e.g., LFU, LRU-2, and CoT.

The workloads Zipfian 0.99 and Zipfian 1.2 are used to show
the advantage of front-end caches even when the network delays
between front-end servers and back-end servers are minimal. As
shown in Figure 6, workload skew results in significant over-
all running time overhead in the absence of front-end caches.
This happens because the most loaded server introduces a per-
formance bottleneck especially under thrashing (managing 20
connections, one from each client thread). As the load-imbalance
increases, the effect of this bottleneck is worsen. Specifically, in
Figure 6, the overall running time of Zipfian 0.99 and Zipfian 1.2
workloads are respectively 8.9x and 12.27x of the uniform work-
load when no front-end cache is deployed. Deploying a small

226

front-end cache of 512 cachelines significantly reduces the effect
of back-end bottlenecks. Deploying a CoT small cache in the
front-end results in 70% running time reduction for Zipfian 0.99
and 88% running time reduction for Zipfian 1.2 in comparison to
having no front-end cache. Other replacement policies achieve
running time reductions of 52% to 67% for Zipfian 0.99 and 80%
to 88% for Zipfian 1.2. LRU-2 achieves the second best average
overall running time after CoT with no significant statistical dif-
ference between the two policies. Since both policies use the same
tracker (history) size, this again suggests that having a bigger
tracker helps separate cold and noisy keys from hot keys. Since
the ideal tracker to cache size ratio differs from one workload to
another, having an automatic and dynamic way to configure this
ratio at run-time while serving workload gives CoT a big leap
over statically configured replacement policies.

2048

=

[

<23

(]

E

E

> —

2 1024

=1

o

p=}

o

E 5

S - NZ
512

zipf-0.99
Workload Distribution

Figure 7: Front-end caching effect on the end-to-end over-
all running time in Amazon EC2 cloud.

Similar results have been observed in a cloud setup as well.
We run the same end-to-end evaluation on Amazon EC2’s cloud.
20 client threads run on a t2.xlarge machine in California to send
1M requests following zipfian 0.99 distribution to 8 m3.medium
ElastiCache cluster in Oregon. Front-end cache and tracker sizes
are similar to the local experiments configuration. The key space
consists of 1M keys and each key has a value of 10KB (smaller
values are used since network latency is large in comparison to
local experiments). As shown in Figure 7, a small front-end cache
of 512 cache-lines has significant performance gains in compar-
ison to the setup where no front-end cache is deployed. Also,
both CoT and LRU-2 outperform other front-end cache replace-
ment policies. Also, CoT slightly outperforms LRU-2 achieving
2% performance gain on the average. The main advantage of
CoT over LRU-2 is its ability to dynamically discover the ideal
cache and tracker sizes that achieve backend load-balance as the
workload distribution changes. The following section illustrates
CoT’s performance in response to workload changes.

6.5 Adaptive Resizing

This section evaluates CoT’s auto-configure and resizing al-
gorithms. Configuration: First, we configure a front-end client
that serves a Zipfian 1.2 workload with a tiny cache of size two
cachelines and a tracker of size of four tracking entries. This
experiment aims to show how CoT expands cache and tracker
sizes to achieve a target load-imbalance I; as shown in Figure 8.
After CoT reaches the cache size that achieves I;, the average
hit per cache-line a; is recorded as explained in Algorithm 3.
Second, we alter the workload distribution to uniform and mon-
itors how CoT shrinks tracker and cache sizes in response to
workload changes without violating the load-imbalance target
I; in Figure 9. In both experiments, I; is set to 1.1 and the epoch

size is 5000 accesses. In both Figures 8a and 9a, the x-axis repre-
sents the epoch number, the left y-axis represents the number of
tracker and cache lines, and the right y-axis represents the load-
imbalance. The black and red lines represent cache and tracker
sizes respectively with respect to the left y-axis. The blue and
green lines represent the current load-imbalance and the tar-
get load-imbalance respectively with respect to the right y-axis.
Same axis description applies for both Figures 8b and 9b except
that the right y-axis represents the average hit per cache-line
during each epoch. Also, the light blue and the dark blue lines
represent the current average hit per cache-line and the target
hit per cache-line at each epoch with respect to the right y-axis.

Cache Size Current Load-imbalance I, ———
Tracker Size Target Load-imbalance Ic,
4096
R
1024 J J

Number of Cache/Tracker-lines
Load-imbalance

64
Epoch

256 1024

(a) Changes in cache and tracker sizes and the current load-
imbalance I over epochs.

Cache Size
Tracker Size

Target Alpha o
Current Alpha o, ———

o 4096 1024

(] e)
= [- - £
3 1024 %
[5] [*]
8 256 8
E 64 g
] 2
o I
XS] 16 ©
N S
2 4 5
E 2
z 1

1 4 16 64 256 1024
Epoch

(b) Changes in cache and tracker sizes and the current hit rate per
cacheline a. over epochs.

Figure 8: CoT adaptively expands tracker and cache sizes
to achieve a target load-imbalance I; = 1.1 for a Zipfian 1.2
workload.

Analysis: In Figure 8a, CoT is initially configured with a cache
of size 2 and a tracker of size 4. CoT’s resizing algorithm runs in
2 phases. In the first phase, CoT discovers the ideal tracker-to-
cache size ratio that maximizes the hit rate for a fixed cache size
for the current workload. For this, CoT fixes the cache size and
doubles the tracker size until doubling the tracker size achieves
no significant benefit on the hit rate. This is shown in Figure 8b in
the first 15 epochs. CoT allows a warm up period of 5 epochs after
each tracker or cache resizing decision. Notice that increasing
the tracker size while fixing the cache size reduces the current
load-imbalance I (shown in Figure 8a) and increases the current
observed hit per cache-line a. (shown in Figure 8b). Figure 8b
shows that CoT first expands the tracker size to 16 and during
the warm up epochs (epochs 10-15), CoT observes no significant
benefit in terms of a; when compared to a tracker size of 8. In
response, CoT therefore shrinks the tracker size to 8 as shown
in the dip in the red line in Figure 8b at epoch 16. Afterwards,
CoT starts phase 2 searching for the smallest cache size that
achieves I;. For this, CoT doubles the tracker and caches sizes

227

until the target load-imbalance is achieved and the inequality
I. < I; holds as shown in Figure 8a. CoT captures a; when I; is
first achieved. a; determines the quality of the cached keys when
I; is reached for the first time. In this experiment, CoT does not
trigger resizing if I is within 2% of I;. Also, as the cache size
increases, a. decreases as the skew of the additionally cached
keys decreases. For a Zipfian 1.2 workload and to achieve I; = 1.1,
CoT requires 512 cache-lines and 2048 tracker lines and achieves
an average hit per cache-line of a; = 7.8 per epoch.

Cache Size Current Load-imbalance T, ———

Tracker Size Target Load-imbalance IC'
o 4096
3
£ 1024 | S 1
5 .
g g
IS kS
> ©
8 £
2]
s k!
]
Qo
£
=]
=z

1 4 16 64 256 1024
Epoch

(a) Changes in cache and tracker sizes and the current load-
imbalance I over epochs.

Cache Size Target Alpha oy

Tracker Size Current Alpha o,
@ 4096

()
£ 1024 T 18 £
g \ 1 2
8 16 g
S 178
2 o]
S 14 o
8 2
o 1 T
ks) 12 o
I} &
Qo 5
£ L L T, 8
=4
1 4 16 64 256 1024
Epoch

(b) Changes in cache and tracker sizes and the current hit rate per
cache-line a. over epochs.

Figure 9: CoT adaptively shrinks tracker and cache sizes
in response to changing the workload to uniform.

Figure 9 shows how CoT successfully shrinks tracker and cache
sizes in response to workload skew drop without violating I;.
After running the experiment in Figure 8, we alter the workload
to uniform. Therefore, CoT detects a drop in the current average
hit per cache-line as shown in Figure 9b. At the same time, CoT
observe that the current load-imbalance I, achieves the inequality
I, < Iy = 1.1. Therefore, CoT decides to shrink both the tracker
and cache sizes until either a, ~ ay = 7.8 or I; is violated or until
cache and tracker sizes are negligible. First, CoT resets the tracker
to cache size ratio to 2:1 and then searches for the right tracker
to cache size ratio for the current workload. Since the workload
is uniform, expanding the tracker size beyond double the cache
size achieves no hit-rate gains as shown in Figure 9b. Therefore,
CoT moves to the second phase of shrinking both tracker and
cache sizes as long a; is not achieved and I; is not violated. As
shown, in Figure 9, CoT shrinks both the tracker and the cache
sizes until front-end cache size becomes negligible. As shown in
Figure 9a, CoT shrinks cache and tracker sizes while ensuring
that the target load-imbalance is not violated.

7 CONCLUSION

Cache on Track (CoT) is a decentralized, elastic and predictive
cache at the edge of a distributed cloud-based caching infrastruc-
ture. CoT’s novel cache replacement policy is specifically tailored

for small front-end caches that serve skewed workloads. Using
CoT, system administrators do not need to statically specify the
cache size at each front-end. Instead, they specify a target back-
end load-imbalance I; and CoT dynamically adjusts front-end
cache sizes to achieve I;. Our experiments show that CoT’s re-
placement policy outperforms the hit-rates of LRU, LFU, ARC,
and LRU-2 for the same cache size on different skewed workloads.
CoT achieves a target server size load-imbalance with 50% to
93.75% less front-end cache in comparison to other replacement
policies. Finally, our experiments show that CoT successfully
auto-configures the size of front-end caches in the presence of
workload distribution changes.

8

ACKNOWLEDGEMENT

We would like to thank Prabal Saha for his help setting up
the experiments on EC2 instances. This work is funded by NSF
grants CNS-1703560 and CNS-1815733.

REFERENCES

(1]

&

[9

=

[10]

[11

[12

[13]

[14

[15]

[16]

[17

=
&

[19]

[20]

2018. Amazon ElastiCache in-memory data store and cache. https://aws.
amazon.com/elasticache/.

2018. Azure Redis Cache. https://azure.microsoft.com/en-us/services/cache/.
2018. Memcached. A distributed memory object caching system. https:
//memcached.org/.

2018. Redis. http://redis.io/.

2018. A simple, asynchronous, single-threaded memcached client written in
java. http://code.google.com/p/spymemcached/.

Atul Adya, John Dunagan, and Alec Wolman. 2010. Centrifuge: Integrated
lease management and partitioning for cloud services. In Proceedings of the 7th
USENIX conference on Networked systems design and implementation. USENIX
Association, 1-1.

Atul Adya, Daniel Myers, Jon Howell, Jeremy Elson, Colin Meek, Vishesh
Khemani, Stefan Fulger, Pan Gu, Lakshminath Bhuvanagiri, Jason Hunter, et al.
2016. Slicer: Auto-Sharding for Datacenter Applications.. In OSDIL 739-753.
Nathan Beckmann, Haoxian Chen, and Asaf Cidon. 2018. LHD: Improving
Cache Hit Rate by Maximizing Hit Density. In 15th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 18). USENIX Associ-
ation, Renton, WA, 389-403. https://www.usenix.org/conference/nsdi18/
presentation/beckmann

Nathan Bronson, Zach Amsden, George Cabrera, Prasad Chakka, Peter Dimov,
Hui Ding, Jack Ferris, Anthony Giardullo, Sachin Kulkarni, Harry Li, et al.
2013. Tao: Facebook’s distributed data store for the social graph. In Presented
as part of the 2013 USENIX Annual Technical Conference (USENIX ATC 13).
49-60.

Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C Hsieh, Deborah A
Wallach, Mike Burrows, Tushar Chandra, Andrew Fikes, and Robert E Gru-
ber. 2008. Bigtable: A distributed storage system for structured data. ACM
Transactions on Computer Systems (TOCS) 26, 2 (2008), 4.

Yue Cheng, Aayush Gupta, and Ali R Butt. 2015. An in-memory object caching
framework with adaptive load balancing. In Proceedings of the Tenth European
Conference on Computer Systems. ACM, 4.

Asaf Cidon, Assaf Eisenman, Mohammad Alizadeh, and Sachin Katti. 2015.
Dynacache: Dynamic cloud caching. In 7th USENIX Workshop on Hot Topics in
Cloud Computing (HotCloud 15).

Asaf Cidon, Assaf Eisenman, Mohammad Alizadeh, and Sachin Katti. 2016.
Cliffhanger: Scaling Performance Cliffs in Web Memory Caches.. In NSDL
379-392.

Edith Cohen and Martin Strauss. 2003. Maintaining time-decaying stream
aggregates. In Proceedings of the twenty-second ACM SIGMOD-SIGACT-SIGART
symposium on Principles of database systems. ACM, 223-233.

Brian F Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and
Russell Sears. 2010. Benchmarking cloud serving systems with YCSB. In
Proceedings of the 1st ACM symposium on Cloud computing. ACM, 143-154.
Graham Cormode, Flip Korn, and Srikanta Tirthapura. 2008. Exponentially
decayed aggregates on data streams. In Data Engineering, 2008. ICDE 2008.
IEEE 24th International Conference on. IEEE, 1379-1381.

Graham Cormode, Vladislav Shkapenyuk, Divesh Srivastava, and Bojian Xu.
2009. Forward decay: A practical time decay model for streaming systems. In
Data Engineering, 2009. ICDE’09. IEEE 25th International Conference on. IEEE,
138-149.

Anirban Dasgupta, Ravi Kumar, and Tamas Sarl6s. 2017. Caching with Dual
Costs. In Proceedings of the 26th International Conference on World Wide Web
Companion. International World Wide Web Conferences Steering Committee,
643-652.

Bin Fan, David G Andersen, and Michael Kaminsky. 2013. MemC3: Compact
and concurrent memcache with dumber caching and smarter hashing. In
Presented as part of the 10th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 13). 371-384.

Bin Fan, Hyeontaek Lim, David G Andersen, and Michael Kaminsky. 2011.
Small cache, big effect: Provable load balancing for randomly partitioned

228

[21]

[22]

[23]

[24

[25]

[26]

[27]

[28]

[29]

(30]

(31

[32]

(33]

[34]

[35]
[36]

[37]

[38]

[39]

[40

[41]

[42]

[43]

[44]

[45]

cluster services. In Proceedings of the 2nd ACM Symposium on Cloud Computing.
ACM, 23.

Vasilis Gavrielatos, Antonios Katsarakis, Arpit Joshi, Nicolai Oswald, Boris
Grot, and Vijay Nagarajan. 2018. Scale-out ccNUMA: exploiting skew with
strongly consistent caching. In Proceedings of the Thirteenth EuroSys Conference.
ACM, 21.

Shahram Ghandeharizadeh, Marwan Almaymoni, and Haoyu Huang. 2019.
Rejig: a scalable online algorithm for cache server configuration changes.
In Transactions on Large-Scale Data-and Knowledge-Centered Systems XLIL.
Springer, 111-134.

Shahram Ghandeharizadeh and Hieu Nguyen. 2019. Design, implementa-
tion, and evaluation of write-back policy with cache augmented data stores.
Proceedings of the VLDB Endowment 12, 8 (2019), 836-849.

Yu-Ju Hong and Mithuna Thottethodi. 2013. Understanding and mitigating
the impact of load imbalance in the memory caching tier. In Proceedings of the
4th annual Symposium on Cloud Computing. ACM, 13.

Qi Huang, Helga Gudmundsdottir, Ymir Vigfusson, Daniel A Freedman, Ken
Birman, and Robbert van Renesse. 2014. Characterizing load imbalance in
real-world networked caches. In Proceedings of the 13th ACM Workshop on Hot
Topics in Networks. ACM, 8.

Jinho Hwang and Timothy Wood. 2013. Adaptive Performance-Aware Dis-
tributed Memory Caching.. In ICAC, Vol. 13. 33-43.

Song Jiang and Xiaodong Zhang. 2002. LIRS: an efficient low inter-reference
recency set replacement policy to improve buffer cache performance. ACM
SIGMETRICS Performance Evaluation Review 30, 1 (2002), 31-42.

Xin Jin, Xiaozhou Li, Haoyu Zhang, Robert Soulé, Jeongkeun Lee, Nate Fos-
ter, Changhoon Kim, and Ion Stoica. 2017. NetCache: Balancing Key-Value
Stores with Fast In-Network Caching. In Proceedings of the 26th Symposium
on Operating Systems Principles. ACM, 121-136.

Theodore Johnson and Dennis Shasha. 1994. X3: A low overhead high perfor-
mance buffer management replacement algorithm. In Proceedings of the 20th
VLDB Conference.

David Karger, Eric Lehman, Tom Leighton, Rina Panigrahy, Matthew Levine,
and Daniel Lewin. 1997. Consistent hashing and random trees: Distributed
caching protocols for relieving hot spots on the World Wide Web. In Proceed-
ings of the twenty-ninth annual ACM symposium on Theory of computing. ACM,
654-663.

Donghee Lee, Jongmoo Choi, Jong-Hun Kim, Sam H Noh, Sang Lyul Min,
Yookun Cho, and Chong Sang Kim. 2001. LRFU: A spectrum of policies that
subsumes the least recently used and least frequently used policies. IEEE
transactions on Computers 50, 12 (2001), 1352-1361.

Hyeontaek Lim, Dongsu Han, David G Andersen, and Michael Kaminsky.
2014. MICA: a holistic approach to fast in-memory key-value storage. In 11th
USENIX Symposium on Networked Systems Design and Implementation (NSDI
14). 429-444.

David Lomet. 2018. Caching Data Stores: High Performance at Low Cost.
In 2018 IEEE 34th International Conference on Data Engineering (ICDE). IEEE,
1661-1661.

David Lomet. 2018. Cost/performance in modern data stores: how data caching
systems succeed. In Proceedings of the 14th International Workshop on Data
Management on New Hardware. ACM, 9.

David B Lomet. 2019. Data Caching Systems Win the Cost/Performance Game.
IEEE Data Eng. Bull. 42, 1 (2019), 3-5.

Nimrod Megiddo and Dharmendra S Modha. 2003. ARC: A Self-Tuning, Low
Overhead Replacement Cache.. In FAST, Vol. 3. 115-130.

Ahmed Metwally, Divyakant Agrawal, and Amr El Abbadi. 2005. Efficient
computation of frequent and top-k elements in data streams. In International
Conference on Database Theory. Springer, 398-412.

Rajesh Nishtala, Hans Fugal, Steven Grimm, Marc Kwiatkowski, Herman
Lee, Harry C Li, Ryan McElroy, Mike Paleczny, Daniel Peek, Paul Saab, et al.
2013. Scaling memcache at facebook. In Presented as part of the 10th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 13). 385—
398.

Elizabeth J O’neil, Patrick E O’neil, and Gerhard Weikum. 1993. The LRU-K
page replacement algorithm for database disk buffering. Acm Sigmod Record
22, 2 (1993), 297-306.

Elizabeth J O’neil, Patrick E O’Neil, and Gerhard Weikum. 1999. An optimality
proof of the LRU-K page replacement algorithm. Journal of the ACM (JACM)
46,1 (1999), 92-112.

Rasmus Pagh and Flemming Friche Rodler. 2004. Cuckoo hashing. Journal of
Algorithms 51, 2 (2004), 122-144.

Zhenyu Song, Daniel S Berger, Kai Li, Anees Shaikh, Wyatt Lloyd, Soudeh
Ghorbani, Changhoon Kim, Aditya Akella, Arvind Krishnamurthy, Emmett
Witchel, et al. 2020. Learning relaxed belady for content distribution network
caching. In 17th {USENIX} Symposium on Networked Systems Design and
Implementation ({NSDI} 20). 529-544.

Chenggang Wu, Vikram Sreekanti, and Joseph M Hellerstein. 2019. Autoscal-
ing tiered cloud storage in Anna. Proceedings of the VLDB Endowment 12, 6
(2019), 624-638.

Victor Zakhary, Divyakant Agrawal, and Amr El Abbadi. 2017. Caching at
the web scale. Proceedings of the VLDB Endowment 10, 12 (2017), 2002-2005.
Yuanyuan Zhou, James Philbin, and Kai Li. 2001. The Multi-Queue Replace-
ment Algorithm for Second Level Buffer Caches.. In USENIX Annual Technical
Conference, General Track. 91-104.

	Cache on Track (CoT): Decentralized Elastic Caches for Cloud EnvironmentsVictor Zakhary, Lawrence Lim, Divy Agrawal, Amr El Abbadi

