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ABSTRACT
Indexing large-scale databases in main memory is still challeng-

ing today. Learned index structures — in which the core com-

ponents of classical indexes are replaced with machine learning

models — have recently been suggested to significantly improve

performance for read-only range queries.

However, a recent benchmark study shows that learned in-

dexes only achieve limited performance improvements for real-

world data on modern hardware. More specifically, a learned

model cannot learn the micro-level details and fluctuations of

data distributions thus resulting in poor accuracy; or it can fit to

the data distribution at the cost of training a big model whose

parameters cannot fit into cache. As a consequence, querying a

learned index on real-world data takes a substantial number of

memory lookups, thereby degrading performance.

In this paper, we adopt a different approach for modeling a

data distribution that complements the model fitting approach

of learned indexes. We propose Shift-Table, an algorithmic layer

that captures the micro-level data distribution and resolves the

local biases of a learned model at the cost of at most one memory

lookup. Our suggested model combines the low latency of lookup

tables with learned indexes and enables low-latency processing of

range queries. Using Shift-Table, we achieve a speedup of 1.5X to

2X on real-world datasets compared to trained and tuned learned

indexes.

1 INTRODUCTION
Trends in new hardware play a significant role in the way we

design high-performance systems. A recent technological trend is

the divergence of CPU and memory latencies, which encourages

decreasing random memory access at the cost of doing more

compute on cache-resident data [25, 42, 44].

A particularly interesting family of methods exploiting the

memory/CPU latency gap are learned index structures. A learned

index uses machine learning instead of algorithmic data struc-

tures to learn the patterns in data distribution and exploits the

trained model to carry out the operations supported by an al-

gorithmic index, e.g., determining the location of records on

physical storage [7, 12, 18, 24, 25, 29]. If the learned index man-

ages to build a model that is compact enough to fit in processor

cache, then the results can ideally be fetched with a single access

to main memory, hence outperforming algorithmic structures

such as B-trees and hash tables.

In particular, learned index models have shown a great poten-

tial for range queries, e.g., retrieving all records where the key is

in a certain range 𝐴 < key < 𝐵. To enable efficient retrieval of

range queries, range indexes keep the records physically sorted.

Therefore, retrieving the range query is equivalent to finding

the first result and then sequentially scanning the records to
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retrieve the entire result set. Therefore, processing a range query

𝐴 < key < 𝐵 is equivalent to finding the first result, i.e., the

smallest key in the dataset that is greater than or equal to 𝐴 (sim-

ilar to lower_bound(A) in the C++ Library standard). A learned

index can be built by fitting a regression model to the cumulative

distribution function (CDF) of the key distribution. The learned

CDF model can be used to determine the physical location where

the lower-bound of the query resides, i.e., pos(A) = 𝑁 × 𝐹𝜃 (A)
where N is the number of keys and 𝐹𝜃 is the learned CDF model

with model parameters 𝜃 .

Learned indexes are very efficient for sequence-like data (e.g.,

machine-generated IDs), as well as synthetic data sampled from

statistical distributions. However, a recent study using the Search-

On-Sorted-Data benchmark (SOSD) [22] shows that for real-

world data distributions, a learned index has the same or even

poorer performance compared to algorithmic indexes. For many

real-world data distributions, the CDF is too complex to be learned

efficiently by a small cache-resident model. The data distribution

of real-world data has "too much information" to be accurately

represented by a small machine-learning model, while an accu-

rate model is needed for an accurate prediction. One can of course

use smaller models that fit in memory with the cost of lower pre-

diction accuracy, but will end up in searching a larger set of

records to find the actual result which consequently increases

memory lookups and degrades performance. Alternatively, a

high accuracy can be achieved by training a bigger model, but

accessing the model parameters incurs multiple cache misses

and also increases memory lookups, reducing the margins for

performance improvement.

In this paper, we address the challenge of using learned models

on real-world data and illustrate how the micro-level details

(e.g., local variance) of a cumulative distribution can dramatically

affect the performance of a range index. We also argue that a

pure machine learning approach cannot shoulder the burden of

learning the fine-grained details of an empirical data distribution

and demonstrate that not much improvement can be achieved

by tuning the complexity or size thresholds of the models.

We suggest that by going beyond mere machine learning mod-

els, the performance of a learned index architecture can be sig-

nificantly improved using a complementary enhancement layer

rather than over-emphasizing on the machine learning tasks. Our

suggested layer, called Shift-Table is an algorithmic solution that

improves the precision of a learned model and effectively acceler-

ates the search performance. Shift-Table, targets the micro-level

bias of the model and significantly improves the accuracy, at the

cost of only one memory lookup. The suggested layer is optional

and applied after the prediction; it can hence be switched on or

off without re-training the model.

Our contributions can be summarized as follows:

• We identify the problem of learning a range index for real-

world data, and illustrate the difficulty of learning from

this data.
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• We suggest the Shift-Table approach for correcting a learned

index model, which complements a valid (monotonically

increasing) CDF model by correcting its error.

• We show how, and in which circumstances, the suggested

methods can be used for best performance.

• We suggest cost models that determine whether the Shift-

Table layer can boost performance.

• The experimental results show that our suggested method

can improve existing learned index structures and bring

stable and almost-constant lookup time for real-world

data distributions. Our enhancement layer achieves up

to 3X performance improvement over existing learned

indexes. More interestingly, we show that for non-skewed

distributions, the Shift-Table layer is effective enough to

help a dummy linear model outperform the state of the

art learned indexes on real-world datasets

2 MOTIVATION
2.1 Lookup Cost for Learned Models
In modern hardware, the lookup times of in-memory range in-

dexes and the binary search algorithm are mainly affected by

their memory access pattern, most notably by how the algorithm

uses the cache and the Last-Level-Cache (LLC) miss rate.

Processing a range query in a learned index has two stages:

1) Prediction: Running the learned model to predict the location

of the first result for the range query; and 2) Local search (also

known as last-mile search): searching around the predicted loca-

tion to find the actual location of the first result. Figure 1a shows

common search methods for the local search. If the learned model

can determine a guaranteed range area around the predicted po-

sition, one can perform binary search. Otherwise, exponential or

linear search should be used, starting from the predicted position.

A cache miss in a learned index can occur in the first stage

for accessing the parameters of the model (if the model is too

big to fit in cache), or in stage two for the local search. Key in

understanding the cost of a learned index is that local search is

done entirely over non-cached blocks of memory. A learned index

built over millions of records could predict the location of records

with an error of, say, 1000 records and yet achieve no performance

gain over binary search algorithms or algorithmic indexes. This

is because while the learned index fits the models in cache, its

algorithmic competitors also fit the frequently-accessed parts of

the data in cache, which limits the potential for improvement for

a learned index.

2.2 Lookup Cost for Algorithmic Indexes
Classical algorithms, such as binary search, can be seen as a hi-

erarchy of [non-learned] models, which take the middle-point

as its parameter and predicts (accurately) which direction the

search should follow. Specifically for the first few steps of binary

search where the middle-points usually reside in cache, the func-

tionality of binary search is the same as a learned model from a

performance point of view.

In a pure binary search on the entire data, the first set of mem-

ory locations accessed by the algorithm (i.e., the median, quarters,

etc.) will already be in the CPU cache after a few lookups. There-

fore, the major bottleneck in binary search is for the latter stages

of search where the middle elements are not in cache, causing

last-level-cache (LLC) misses. Figure 1b shows a schematic illus-

tration of how caching accelerates binary search.

In basic implementations of binary search, the “hot keys” are

cached with their payload and nearby records in the same cache

line, which wastes cache space. Binary search thus uses the cache

poorly and there are more efficient algorithmic approaches whose

performance is not sensitive to data distributions.

Cache-optimized versions of binary search, e.g., a binary search

tree such as FAST [21], a read-only search tree that co-locates

the hot keys but still follows the simple bisecting method of bi-

nary search, are up to 3X faster than binary search [22]. This

is because FAST keeps more hot keys in the cache and hence it

needs to scan a shorter range of records in the local search phase

(cache-non-resident iterations of the search).

2.3 Preliminary Experimental Analysis
For a tangible discussion and to elaborate on the real cost of a

learned model, we provide a micro-benchmark that measures

the cost of errors in a learned index. We use the experimental

configuration used in the SOSD benchmark [22], i.e., searching

over 200M records with 32-bit keys and 64-bit payloads. Figure 2a

shows the lookup time of the second phase (local search) in a

learned model for different prediction errors. We include the

lookup times for binary search, as well as FAST [21], over the

whole array of 200M keys.

We are interested to see that if the position predicted by a

learned index, say predicted_pos(𝑥), has an error Δ, then how

long does it take in the local phase to find the correct record. Thus,

for each query 𝑥𝑖 , we pre-compute the ‘output’ of the learned

index with error Δ, i.e., [predicted_pos(𝑥𝑖 ) ± Δ], and then run

the benchmark given {𝑥𝑖 , [predicted_pos(𝑥𝑖 ) ± Δ]} tuples.
As shown in Figure 2a, if the error of the model is more than

∼300 records on average, then FAST outperforms the learned

model (with linear or exponential local search). Even if the learned

model can give a guaranteed range around the predicted point

to guide the local search and enable binary search, FAST outper-

forms it if the error exceeds 1000 records. The same trend can be

seen for the LLC miss rates in Figure 2b.

Note that this micro-benchmark over-estimates the maximum

error that the learned index can have because we only compare

the time of local search phase in a learned index with the total
search time of FAST and binary search. Considering the time

taken to execute the model for predicting the location, a learned

model needs to have a much lower error to compete with the

generic, reliable, and distribution-independent algorithms such

as binary search and FAST. For example, FAST takes 200 nanosec-

onds to search a key in the entire 200M-key dataset. If a learned

index takes, say, 120 nanoseconds to run (for accessing model

parameters and computing the prediction), then the local search

can take at most 80 nanoseconds so that the learned index can

outperform FAST, which means that the prediction error (Δ) must

be less than 16 records (based on Figure 2a).

Tuning the learned index for a balance of model size and ac-

curacy is a challenging task. Improving the local search time

requires using a more accurate model with a higher learning

capacity and more parameters. However, accessing such a big

model typically incurs further cache misses during model exe-

cution, and consequently the lookup time. Therefore, if the data

distribution cannot be learned efficiently with a small memory

footprint (fitting into cache), outperforming cache-efficient al-

gorithmic indexes is very challenging. This is indeed the case

for most real-world datasets that cannot be modelled accurately

with a small-sized model.
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(a) Different "last-mile" search methods (performed after location prediction) in learned index. The locations predicted by the
model depend on the query and are not known in advance. Since the last-mile search algorithms need to access different memory
locations for each query, they cannot exploit the processor cache and the search algorithm incurs multiple cache misses
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(b) Schematic illustration of processor caching in binary search. The locations accessed by the very early stage of binary search,
such as the min, max, and the midpoint, are frequently accessed and available in the L1 cache. Further steps of binary access
locations that are less frequently accessed and fit on lower levels of the memory hierarchy. Therefore, a deterministic search
algorithm like binary search enjoys a high cache hit rate

Figure 1: Comparison of patterns in binary search (partially cached) and local search in learned indices (non-cached).

2.4 Difficulty of Learning Real-world Data
To use a learned index in a production system, it is essential to

identify when learned indexes fail to achieve superior perfor-

mance and what aspects of the data distribution contributes to

the performance of a learned index model. We realized that a

major challenge in understanding learned indexes is that the

common practices of performance evaluation for indexing al-

gorithms are misleading for learned indexes. For example, it is

common to use the uniform and skewed distributions (such as

log-normal) as arguably the two best- and worst-case extremes

for a search task [25]. However, for evaluating search over sorted

read-only data, the difficulty of the task is determined by the

unpredictability of the data, which is not necessarily a factor of

skewness or shape parameter of the data distribution. As we will

show in this section, most statistical distributions are much easier

to model than real-world data.

Distributions that matter. An interesting observation from the

SOSD benchmark results is that even for datasets that have the

same background distribution, e.g., both closely match a uniform

distribution, the performance of a learned model can vary signif-

icantly, depending on the fine-grained details in the empirical

CDFs. For example, consider Figures 3a and 3b, which repre-

sent two CDFs that are both close to uniform. The uniform data

(uden64 [22]) is comprised of dense integers that are synthetically

sampled from a uniform distribution, and Facebook (face64 [22])
is a Facebook user ID dataset. While both datasets match closely

with the uniform distribution, face64 is significantly harder to

model due to its fine-grained details in the CDF. The lookup time

of learned indexes (both RMI and Radix-Splines) for face64 is

6-7× higher than that of uden64 (see Table 2) because there are

many micro-level details (unpredictability) in the CDF, hence a

huge model with a high learning capacity is needed to fit the CDF

accurately. Using the RMI learned index, for example, the uden64

data is easily modelled with a simple line (two parameters) with

near-zero error, while the best architecture found by the SOSD

benchmark for modelling the face64 data is a hierarchy of two

linear models, a huge model (136MB), with an average error of

202 records.

Generally speaking, real-world datasets are more difficult to

learn compared to synthetic ones and the learned index built

over them is not significantly faster than the algorithmic rivals.

The main question remains what distinguishes a real-world data

from a synthetic one? Consider the four distributions in Figure 3,

where Figures 3a, 3c are synthetic (generated from uniform and

log-normal distributions), and Figures 3b, 3d are real-world data.

The mini-chart inside each CDF highlights the distribution in

a small sub-range, i.e., a “zoomed-in” view of the CDF. For the

synthetic data, the CDF is very smooth in any short sub-range

of the whole CDF. Synthetic data (such as uniform, normal and

log-normal) are built using a cumulative density function that

is derivable, meaning that the at any small sub-range, the shape

of the CDF is close to a straight line with a slope that is close

to the derivation of the underlying CDF in that range. Such a
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Figure 2: Cost of local search in a learned index

smooth CDF has less information to be compressed into a model.

For example, a learned index model based on linear splines can

accurately fit the whole CDF by fitting each part of the CDF to a

line. Even for very skewed distributions, such as log-normal, the

data is so predictable that it can be easily fitted to simple, linear

models.

Real-world data, however, is much less predictable and has

a much higher level of complexity in its patterns. Even if an

ideal learning algorithm is used to model the real-world data, the

model itself needs to be very big because the compressed version

of the CDF (to be stored as a model) is still very big.

This explains why state-of-the-art learned indexes perform ex-

tremely well for datasets that are synthetically generated from a

statistical distribution (such as uniform, normal, and log-normal),

but perform comparably poor for real-world data that even al-

most match (shapewise) with those synthetic distributions [22].

On real-world datasets, learned indexes have a high cache miss

rate and lookup time, contrary to their primary goal of having

fewer cache misses.

Using learned models is beneficial when they are 1) accurate

enough to predict a position within the same cache line that con-

tains the data point, otherwise the lookup time will be adversely

affected due to multiple cache misses, and 2) compact enough to

fit in cache and not to cause LLC misses. With this in mind, we

can argue that a pure machine-learning approach might fail to

“learn the data perfectly” and “fit the model in cache” simultane-

ously, specifically in case of real-world datasets that contain a lot

of underlying patterns like spikes and generally noise.

As a consequence, learned models are crucial to indexing but

they cannot shoulder the burden of indexing the data alone. We

hence suggest an algorithmic layer that can mitigate the difficulty

(a) uniform (b) Facebook

(c) Lognormal (d) OSMC

Figure 3: Example distributions with different complexi-
ties in micro and macro levels
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Figure 4: Leveraging correction layers to a learned index

of learning the data distribution. In this approach, the learned

model is allowed to learn an semi-accurate, small model that

learns the holistic shape of the distribution, and the fine-tuned

modelling is provided by the algorithmic layers.

2.5 Model Correction
While learned index models are powerful tools for describing a

data distribution in a compact representation, merely focusing

on learning a highly-accurate model does not necessarily lead

to a high-performance index. In this paper, we suggest a new

approach for boosting existing learned models with additional

layers, specifically developed with hardware costs in mind.

The suggested helping layers add a small overhead when exe-

cuting queries, but significantly reduce the overall lookup time

of the learned index. The suggested layers are very powerful

and consequently allow for using more lightweight models, yet

ideally avoid computationally-expensive algorithms for training.

As Figure 4 illustrates, in addition to the learned index model

we add a correction layer, an optional component, that can be

added to improve the performance. We explore the potential of

correction layers in the next sections.

3 SHIFT-TABLE
A learned model predicts a relative position 𝐹𝜃 (𝑥) for a given
query 𝑥 . To calculate the position of the result, the estimated
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relative position is multiplied by the number of keys, and trun-

cated to an integer (the index), hence the predicted position is

[𝑁𝐹𝜃 (𝑥)]. The actual position of the record, however, is 𝑁𝐹 (𝑥)
where 𝐹 (𝑥) is the empirical CDF of the data points, and 𝑁 is

the data size. Therefore, the result is 𝑁𝐹 (𝑥) − [𝑁𝐹𝜃 (𝑥)] records
ahead of the predicted position.We identify𝑁𝐹 (𝑥)−[𝑁𝐹𝜃 (𝑥)] as
the drift of 𝐹𝜃 at key 𝑥 , which is the signed error of the prediction,
as opposed to the absolute error.

The idea of the Shift-Table layer is to have a lookup table that

contains the drift values so that the drift of the prediction can

be corrected. Capturing the drift for every value of 𝑥 requires an

auxiliary index, which is not feasible. However, we can use the

output of the learned index model ([𝑁𝐹𝜃 (𝑥)]), which is in the

range of [0, 𝑁 ], and we construct a mapping from each possible

output of themodel, say𝑘 , to “how far ahead is the actual record if

model predicts k’s record”, so that we can correct the predictions

using this mapping. This means that for each prediction, we only

need an extra lookup of 𝑘 in a fixed array of size 𝑁 .

To build the Shift-Table layer, we first partition the keys𝑥0, · · · , 𝑥𝑁−1

into 𝑁 partitions. We define 𝑃𝑘 as the set of keys for which the

model predicts 𝑘 as the position:

𝑃𝑘 = {𝑥 | [𝑁𝐹𝜃 (𝑥)] = 𝑘} (1)

Each of the indexed keys in 𝑃𝑘 has an index, say 𝑁𝐹 (𝑥) and
a prediction 𝑘 = [𝑁𝐹𝜃 (𝑥)]. For each partition, we extract two

parameters that specify the range for local search, namely Δ𝑘
and 𝐶𝑘 . Δ𝑘 is defined as:

Δ𝑘 = min (𝑁𝐹 (𝑥) − 𝑘]) ∀𝑥 ∈ 𝑃𝑘 (2)

which indicates that if the predicted location is 𝑘 , the search

should be started at point 𝑘+Δ𝑘 . Also,𝐶𝑘 = |𝑃𝑘 | is the cardinality
of 𝑃𝑘 , i.e., the number of indexed keys for which the prediction

predicts the 𝑘’th record, in other words, the length of the area

that has to be searched in the local search phase.

To correct the prediction, we first compute the predicted posi-

tion 𝑘 = [𝑁𝐹𝜃 (𝑥)], and then perform local search in the range

of [𝑘 + Δ𝑘 , 𝑘 + Δ𝑘 +𝐶𝐾 − 1].
The number of partitions depends on the range of the output of

the learned index, which should be 0, 𝑁 ). Therefore, The <Δ𝑘 ,𝐶𝑘>
pairs: pairs are stored in a single array of size 𝑁 , so that the

correction can be done using a single lookup into the array of

pairs.

A Shift-Table layer is depicted in Figure 5. The index contains

100 elements in range [0,999]. The CDF model is a simple model:

𝐹𝜃 (𝑥) = 𝑥/1000, hence the prediction is simply 𝑘 = [𝑥/10]. If the
query is 771, for example, the prediction of the model is 𝑘 = 77.

The correction information are Δ77 = −41 and 𝐶77 = 2, which

indicates that the result is -41 records ahead of the prediction,

and the search area is of length 2. Therefore, the local search is

performed on the indexes of range [36, 37].
Algorithm 1 shows how Shift-Table is used to accelerate query

processing. The Shift-Table layer reduces the prediction error of

the model, but incurs an additional memory lookup.

3.1 Querying non-indexed keys
If the query is on the indexed keys, the result is in range [𝑘 +
Δ𝑘 , 𝑘 +Δ𝑘 +𝐶𝐾 − 1]. In Figure 5, for example, querying 771 and

782 points to the correct range that contains the result. However,

if the query is not among the indexed keys, then the query is

either within the range, or in the position just after the range (at

data[𝑘+Δ𝑘+𝐶𝐾 ]. For example, in Figure 5, the record correspond-

ing to queries 778 and 781 is the same, though the aforementioned

Algorithm 1 Search with direct-mapped learned index

1: procedure FIND_LOWER(𝑞, model, Shift-Table)

2: pos = model.predict(q)

3: pos = Shift_Table.mapping[pos].startPoint

4: range = Shift_Table.mapping[pos].range

5: if range < linear_to_binary_threshold then
6: pos = LinearSearch(start=data[pos],range)

7: else
8: pos = BinarySearch(start=data[pos],range)

9: end if
10: return pos

11: end procedure

model (𝑘 = [𝑞/10]), maps 778 to range [36, 37], and 781 to [38, 39].
In both cases, however, the local search algorithm (either binary

or linear search) within the range computes the correct position

of the result (i.e., 38). Notably for 𝑞 = 778, a typical local search

implementation realizes that the query is greater than the largest

value in range and returns the first index right after the range of

[36, 37], which is 38.

Another issue that can arise for non-indexed keys is when the

predicted position 𝑃𝑘 has an empty partition that none of the

indexed keys belongs to. In Figure 5, if the query is 15, then the

predicted position is 𝑘 = [15/10] = 1, but 𝑃1 is empty because

the model does not predict position 1 for any of the indexed

keys. If the query is predicted to be in an empty partition, the

result is the first record in the next non-empty partition, e.g.,

the result of query=15 is record 3. To make the Shift-Table layer

consistent for the empty partitions, we put pseudo values for

Δ,𝐶 in the mapping layer such that they refer to the same range

as the next existing partition. If 𝑃𝑘∅ is an empty partition and

𝑃𝑘 is the first non-empty partition after 𝑃𝑘∅ , then𝐶𝑘∅ = 𝐶𝑘 and

Δ𝑘∅ = Δ𝑘 + (𝑘 −𝑘∅). The pseudo Δ,𝐶-values are depicted using
dashed arrows in Figure 5.

3.2 CDF and duplicate values
It should be noted that the empirical CDF function, i.e., 𝐹 (𝑋 ) =
𝑃 (𝑋 ≤ 𝑥) does not exactly identify the result of a range query

on x. In this paper, we use the CDF (F(x)) notation as the index of

the result corresponding to 𝑥 . We consider range queries of type

(key <= query), hence the CDF for a point 𝑥 is the relative posi-

tion of the first key in the indexed keys, as the range is scanned

towards the right. More precisely, we assume that 𝑁𝐹 (𝑥0) = 0

and 𝑁𝐹 (𝑥𝑁−1) = 𝑁 − 1 (for the last key).

A range learned index built for a specific comparison operator,

say 𝑥 ≤ 𝑞, can be used for other operators (≥, >,, etc.) with a

brief left/right scan. However, if there are too many duplicates

in the indexed data, then the the performance of the learned

index will be worse for queries that do not match the presumed

definition of F(X). In such cases, it is more efficient to use the

specific definition of 𝐹 (𝑥) that reflects the position of the result of
the query in the most common type of constraint in the queries.

For example, if most of the queries are of type 𝑥 >= 𝑞, then 𝐹 (𝑥)
should be defined such that 𝑁𝐹 (𝑥) identifies the index of the last
key among the duplicate values.

3.3 Building the Shift-Table layer
Algorithm 2 describes how the mapping of the Shift-Table layer

is built. In the first stage, it computes the Δ,𝐶 values and updates

for the non-empty partitions, i.e., 𝑃𝑘s for which at least one of
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Figure 5: Shift-Table

the indexed keys is mapped to 𝑘 . In the second stage, a backward

traversal is performed on the Shift-Table layer and the compute

the pseudo-values for the empty partitions (Algorithm 2, lines

10–14). Starting from the last entry, a pseudo-partition has the

same count (𝐶) as the first non-empty partition on its right side,

but the shift Δ is adjusted so that they both point the the same

region for local search.

The computational complexity of building the Shift-Table layer

is𝑂 (𝑁 ) ×𝑂 (𝐹𝜃 ) to compute the drifts and updating the mapping,

as it only traverses the data and the Shift-Table layer once. In

case that running the model is expensive, model executions can

be parallelized for faster execution.

Algorithm 2 Building the Shift-Table layer

1: procedure Shift-Table_Build(model (𝐹𝜃 ), data)

2: Shift-Table = Array of tuples <Δ,𝐶>, all set to zero

3: for all x ∈ data do
4: 𝑝𝑜𝑠 = 𝑁𝐹 (𝑥) ⊲ Position of x (sec 3.2)

5: 𝑘 = [𝑁𝐹𝜃 (data[i])]
6: Δ = 𝑝𝑜𝑠 − 𝑘
7: Shift_Table[k].Δ = min(Shift_Table[𝑘] .Δ,Δ)
8: Shift-Table[k].C += 1

9: end for
10: for 𝑘 ← 𝑁 − 1 · · · 0 do
11: if Shift_Table[k].C = 0 then ⊲ Empty partitions

12: Shift_Table[k].C = Shift_Table[k-1].C

13: Shift_Table[k].Δ = Shift_Table[k-1].Δ + 1

14: end if
15: end for
16: return Shift_Table

17: end procedure

3.4 Compressing the Shift-Table layer
Correcting the prediction of the model using the Shift-Table layer

takes a single DRAM lookup irrespective of the size of the index.

However, it might be of interest to reduce the size of the layer.

The Shift-Table layer is an array of size N, containing <Δ,𝐶>
tuples. Further compression can be used to decrease the memory

footprint of the Shift-Table layer.

One approach is to keep a single parameter instead of the

<Δ,𝐶> tuples. In this regard, a predicted position 𝑘 should be

mapped to the key that is in the median point among the keys in

𝑃𝑘 , which is

Δ̄𝑘 =

[
Δ𝑘 +

𝐶𝑘

2

]
(3)

To correct using the Δ̄𝑘 values, the final position is computed

as 𝑝𝑜𝑠 = 𝑘 + Δ̄𝑘 , which indicates where the search should be

started without specifying the guaranteed range that should be

searched. Therefore, search algorithms that require the bound-

aries specified such as binary search cannot be used for local

search. As discussed in section 2.4, linear or exponential search

can be used for local search without boundaries, but they are

slightly slower if the error is considerable after the correction.

A second approach that complements the first one, is to shrink

the size of the Shift-Table layer by merging nearby partitions.

We can extend the definition of P = {𝑃1, · · · , 𝑃𝑁 } to allow

partitions that have a size of 𝑀 < 𝑁 . We define 𝑀 partitions

P𝑀 =
{
𝑃𝑀

1
, · · · , 𝑃𝑀

𝑀

}
where each partition is defined as:

𝑃𝑀
𝑘

= {𝑥 | [𝑀𝐹𝜃 (𝑥)] = 𝑘} (4)

Similarly, Δ𝑀
𝑘

is the minimum "move to the right" shifts that

each of the keys in 𝑃𝑀
𝐾

need:

Δ𝑀
𝑘

= min (𝑁𝐹 (𝑥) − [𝑁𝐹𝜃 (𝑥)]) ∀𝑥 ∈ 𝑃𝑀𝑘 (5)

and 𝐶𝑘 should be defined such that the boundary is valid for

all keys in 𝑃𝑀
𝐾
, which is:

𝐶𝑀
𝑘

= max(𝑁𝐹 (𝑥) − ([𝑁𝐹𝜃 (𝑥)] + Δ𝑀𝑘︸              ︷︷              ︸
start of the search window

)) ∀𝑥 ∈ 𝑃𝑀
𝑘

(6)

To combine approaches to compact the Shift-Table layer, we

can use average drifts Δ̄𝑀
𝑘

instead of the <Δ𝑀
𝑘
,𝐶𝑀
𝑘
> pairs:

Δ̄𝑀
𝑘

=


1

|𝑃𝑀
𝑘
|

∑
𝑥 ∈𝑃𝑀

𝑘

(𝑁𝐹 (𝑥) − [𝑁𝐹𝜃 (𝑥)])
 (7)

and then use [𝑁𝐹𝜃 (𝑥)]+Δ̄𝑀[𝑀𝐹𝜃 (𝑥) ] as the corrected prediction.
Suppose the same data as in Figure 5, but instead of a Shift-Table

layer of size N, we use only M=30 partitions. Table 1 shows how

a compact Shift-Table layer is built and used for correction, on

a portion of the index. We use the same model (𝐹𝜃 = [𝑥/1000]),
hence the prediction is 𝑁𝐹𝜃 (𝑥) = [0.1𝑥], and the partition cor-

responding to a key is 𝑁𝐹𝜃 (𝑥) = [0.03𝑥]. All of the records

from data[35..39] are assigned to the same partition 𝑃30

23
and their

predictions are shifted 40 records backwards. Note that when
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𝑀 ≠ 𝑁 , a partition does not specify a single point (or range) for

all of the keys in the partition. Instead, the position of a key af-

ter correction depends on both 𝑁𝐹𝜃 (𝑥) (prediction) and𝑀𝐹𝜃 (𝑥)
(partition number). For example, all keys belonging to 𝑃30

23
, i.e.,

data[35 · · · 39] have the same correction of Δ̄30

23
= −40, but their

final predictions are different. Therefore, the correction error of

a compact Shift-Table layer is less than the number of elements

in the partitions.

Table 1: Illustration of Shift-Table with 𝑀 = 30 mapping
entries on an index with 𝑁 = 100 keys

Index 34 35 36 37 38 39 40 41

key (x) 752 769 770 771 782 785 820 830

Predicted index= [0.1 x] 75 76 77 77 78 78 82 83

Error before correction -41 -41 -41 -40 -40 -39 -42 -42

Partition (k) = [0.03 x] 22 23 24

Δ̄30

𝑘
-41 -40 -42

Prediction after correction 34 36 37 37 38 38 40 41

Error after correction 0 1 1 0 0 -1 0 0

The drift of 𝑃𝑀
𝑘
, namely Δ̄𝑀

𝑘
is the index of the median key

among themembers of 𝑃𝑀
𝑘
. This means that if the key is predicted

to be in the 𝑘’th partition (among the 𝑀 partitions), the local

search is done around [𝑁𝐹𝜃 (𝑥)] + Δ̄𝑀𝑘 .

Using a Shift-Table layer of size 𝐾 < 𝑁 does not affect the

complexity of building the layer, which is𝑂 (𝑁 ) ×𝑂 (𝐹𝜃 ) +𝑂 (𝑀).
However, if the midpoint-values are used (correction without

specifying the boundary), it is possible to construct the map

using a sample of the indexed keys, which comes at the cost of

the accuracy. Using a sample of size 𝑆 < 𝑁 , the layer can be built

in 𝑂 (𝑆) ×𝑂 (𝐹𝜃 ) +𝑂 (𝐾) time.

Nonetheless, keep in mind that the Shift-Table layer is de-

signed for applications that favour latency to memory footprint,

hence reducing the memory footprint of the Shift-Table layer

by a large factor will limit its margin for improvement as the

fine-grained details of the empirical CDF will be lost to some

extent.

3.5 Measuring the error
Since the Shift-Table layer specifies a range for local search,

the notion of error is not trivial. However, we can use the es-

timates without range Δ̄), for which the correction picks the

median value among the keys in the 𝑃𝑘 . The error for the keys

in each partition is

{
[𝐶𝑘

2
], · · · , 0, · · · , [𝐶𝑘

2
]
}
if 𝐶𝑘 is odd, and{

[𝐶𝑘

2
] − 1, · · · , 0, · · · , [𝐶𝑘

2
]
}
if 𝐶𝑘 is even. The average error is

approximately 𝐶𝑘/4.
In a learned index without Shift-Table, the error is the distance

between 𝐹 (𝑥) and 𝐹𝜃 (𝑥). After correcting the model with the

Shift-Table, however, the error only depends on the𝐶𝑘 values, i.e.,

a prediction error only occurs when [𝐹𝜃 (𝑥)] predicts the same

position for multiple keys. Therefore, the local search range and

the error are combinations of multiple step functions over the

𝑃𝑘 s with 𝐶𝑘 > 1.

The average error depends on the data distribution in the

query workload. If the queries are uniformly sampled from the

keys, then the average error is:

𝑒 =
1

2𝑁

∑
𝑘∈P

𝐶2

𝑘
(8)
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Figure 6: Error correction using the Shift-Table layer

3.6 Behaviour of the Shift-Table layer
Figure 6 illustrates how the Shift-Table layer corrects the error of

a linear interpolation model on the OSMC data. While the model

is too simple to capture the patterns in data, the Shift-Table layer

alone is effective for correcting the predictions.While the average

error of the model is 28 million keys, Shift-Table reduces the error

to only 129 keys.

Shift-Table corrects two types of error. First, when the model

has a considerable local bias, which means that 𝑁𝐹 (𝑥) diverges
significantly from 𝑁𝐹𝜃 (𝑥) in a sub-range of the data distribution.

The second type of error is the fluctuations of the distribution

between the nearby keys, for most of which the Shift-Table layer

is very effective. The only type of error that can degrade the

performance of the Shift-Table layer is when there is a congestion

of keys in a small sub-range of values, leading to many of the

keys being classified in a single layer, and hence having some

partitions with high 𝐶𝑘 .

The behavior of the Shift-Table layer and its error estimate

indicates that it can be effective in eliminating different types

of errors that models have. One common type of error is the

local bias in the model, i.e., when the error of the model, i.e.,

𝑁𝐹𝜃 (𝑥) − 𝑁𝐹 (𝑥) has a considerable bias in some sub-ranges of

the distribution, meaning that the 𝐹 and 𝐹𝜃 diverge at some point.

This happens when the model cannot capture the CDF in a local

neighborhood. Table 2 shows that even if a single line is used as

a model, which has a huge bias in most areas of the distribution,

the Shift-Table layer can efficiently eliminate the huge bias of a

fully linear model (a single line as a model), and reduces the error

significantly such that the linear model outperforms all other

algorithms for the real-world datasets, as well as the uspr dataset

(sparse uniformly-distributed integers) which has a significantly

higher variance than uniformly-distributed dense integers.

Another type of error that the Shift-Table layer eliminates is

the local variance in the data, which is the fluctuations of the

values between nearby keys. This type of error is very common

in real-world data. For example, the face, uspr, and uden datasets

all follow a uniform distribution, but they have different local

variances, which is the amount of fluctuations in the nearby keys.

The uden dataset is very easy to model using the learned indexes

and does not require a helping layer such as Shift-Table. The

other two datasets, however, are very hard to model using the

learned index structures. This is because the Shift-Table model

can easily correct the fluctuations of values (different increments

between each two points), as long as the model does not predict

a single record for a lot of nearby keys (resulting in a high 𝐶𝑘
value).
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3.7 Cost model of the Shift-Table layer
The accuracy of the model after correction with Shift-Table de-

pends on the cardinalities of the partitions (𝐶𝑖 values). Ideally,

if the records of each partition reside on a single cache line, the

results will be retrieved in a single memory lookup. The cost

of local search, i.e., the mapping between the accuracy in each

partition and the latency to do local search depends on the hard-

ware. As discussed in section 2.1, the latency of search for various

ranges can be measured by a micro-benchmark over non-cached

regions with different sizes. Let 𝐿(𝑠) be the measured latency of

non-cached search over a range containing 𝑠 records. The latency

for looking up a key in a region of size 𝑠 is 𝐿(𝐶𝑘 ). Assuming that

the queries have the same distribution as the data points, the

average lookup latency for the index is:

Latency with Shift-Table = Latency(𝐹𝜃 ) +
1

𝑁

∑
𝑘∈P

𝐶𝑘𝐿(𝐶𝑘 ) (9)

The cost model can also be used to estimate which of the

local search algorithms should be used, by substituting in equa-

tion 9 the local search cost of each local search algorithm, i.e.,

𝐿(𝑠) mappings for linear, binary, and exponential search; and for

and their different implementations. Branch-optimized binary

search would be the natural choice if the Shift-Table model can

determine the boundary (if using the Δ𝑘 ,𝐶𝑘 pairs), otherwise

either linear or exponential search should be chosen based on

the latency estimate.

Taking the cost of running the Shift-Table layer into account,

we should consider how much the correction improves the accu-

racy of the learned index model and hence estimate the speedup.

The lookup time of themodel without using the Shift-Table model

can be estimated once the Shift-Table model is built, without run-

ning a speedup benchmark. The model error for each key is

Δ̄𝑘 = Δ𝑘 + 𝐶𝑘

2
, therefore the estimated runtime of the index

without correction is:

Latency without Shift-Table = Latency(𝐹𝜃 ) +
1

𝑁

∑
𝑘∈P

𝐶𝑘𝐿(Δ̄𝑘 )

(10)

3.8 CDF model validity constraint
The correction layer requires the learned model to be a valid

CDF function, i.e., 𝐹𝜃 (𝑥) should be monotonically increasing:

𝑥𝑖 > 𝑥 𝑗 −→ 𝐹𝜃 (𝑥𝑖 ) >= 𝐹𝜃 (𝑥 𝑗 ). Among our baselines, the RadixS-

plines learned index always produces a valid (increasing) CDF,

but the RMI index does not always produce monotonically in-

creasing predictions. In RMI, for example, the CDF model might

decrease when using cubic models [30] or on the edge point

between two models in the second-level. If 𝐹𝜃 (𝑥) is not mono-

tonically increasing, then the correction layer could identify a

range that does not include the query result, because the values

of 𝑥 for which the learned model predicts 𝑘’th record are not in

a contagious memory block.

A learned index model that is non-monotonic can still use the

Shift-Table layer, as the output of the Shift-Table layer would still

predict a position but it is not guaranteed that the position is in

the predicted range. Therefore, the local search algorithm should

check if the query is in the predicted range and perform a search

outside of the range. Another hack for non-monotonic model is

to use the Δ̄ midpoint-values instead of the Δ𝑘 ,𝐶𝑘 pairs, which

predicts a location (instead of a range) to start the local search.

If the Shift-Table layer uses the <Δ𝑀
𝑘
,𝐶𝑀
𝑘
> pairs, it can deter-

mine the range for local search and we can apply either linear or

binary search, depending on the error range. We do linear search

if the range is smaller than a threshold (8 keys, in our experi-

ments), otherwise a binary search is performed. However, if it

only contains the average shift values (Δ̄𝑘 , it predicts a position
without specifying the boundaries that contain the record; hence

either linear or exponential search can be performed depending

on the average error rate and performance objectives (average or

worst-case latency).

3.9 Tuning the system
The Shift-Table layer is optional and adds overhead to the search.

Therefore, enabling Shift-Table is only worthwhile if it can even-

tually accelerate the original learned index structure. An effective

configuration of the index is a choice between 1) Using the model

alone, 2) model + Shift-Table. Note that the Shift-Table layer is

optional and can be deactivated with zero cost. The output of the

model and the Shift-Table layer are of the same type and both

represent a prediction of the records, hence if the Shift-Table

layer is disabled, we can easily use the model alone for prediction

of the records.

While tuning the system, the performance of each configu-

ration can be directly measured using performance tests, or by

measuring the model error and then using the cost model of the

Shift-Table model on the bottom of the architecture (section 3.7).

The parameters of the architecture, i.e., the Shift-Table array

size 𝑀 and the parameters of the learned CDF model, can be

tuned by computing the error estimate using Shift-Table’s cost

model, or alternatively, by running a performance tests on the

built architecture. Our suggested default value for the Shift-Table

layer is𝑀 = 𝑁 , because using a mapping layer that has the same

number of entries as the keys will ensures that the layer can

exhibit its ultimate effect to eliminate the signed error, and does

not have more latency compared to using smaller𝑀 values.

An advantage of Shift-Table is that the learned model does

not need to be very accurate, as a correction will be applied

anyway. Therefore, a more relaxed measure can be used instead

of least-square error. In this paper, however, we do not learn the

model w.r.t. the Shift-Table layer, for the sake of simplicity and

to keep the Shift-Table layer detacheable (optional), preserving

the assumption that the Shift-Table layer can be disabled to free

up memory space on run-time while the model can still be used.

The accuracy of the learned model also determines the size of

the entries of the Shift-Table layer. Each mapping entry should

at most fit a Δ value of Δ𝑀𝐴𝑋 , which is the maximum error of

the model. If, for example, the error is smaller than 2
1
6/2, then a

16-bit integer (short type) can be used.

4 EVALUATION
In this section, we compare the performance of our proposed

method with the SOSD benchmark
1
, which is a recent bench-

mark for search on sorted data. The benchmark includes learned

indexes, classical indexes, and no-index search algorithms.

Experimental Setup. The algorithms are implemented in C++

and compiled with GCC 9.1. The experiments are performed on

a system with 16 GB of memory and Intel Core i7-6700 (Skylake),

which has four cores and is running at 3.4 GHz with 32 KB L1,

256 KB L2, and 8 MB L3 caches. The operating system is Ubuntu

18.04 with kernel version 4.15.0-65. In our setup, the LLC miss

1
https://github.com/learnedsystems/SOSD/tree/mlforsys19
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penalty measured by Intel Memory Latency Checker
2
is 36 ns,

which is the minimum lookup time of an ideal index.

Note that all data resides in main memory. The range index

finds the first indexed key that is equal to or bigger than the

lookup key. Also, the keys on the physical layout are sorted

(i.e., it is a clustered index), so that the entire result set of the

range query can be returned once the first key is found. Similar

to [22, 25], we only report the lookup time for the first result

and do not include the scan times in our experiments because all

indexes use the same layout for the data records.

Datasets. For the sake of reproducibility, we used the same

datasets as in the SOSD benchmark, which contains four datasets

synthetically generated from known distributions and four real-

world ones. The synthetic data are generated from different distri-

butions, namely logn: lognormal distribution (0, 2), norm: normal

distribution, uden: uniformly-generated dense integers, and uspr :
uniformly-generated sparse integers. The real-world datasets

are face: Facebook user IDs [42], amzn: book sale popularity

from Amazon sales rank data
3
, osmc: uniform sample of Open-

StreetMap locations
4
, and wiki: timestamps of edit actions on

Wikipedia articles
5
. All datasets contain 200M unsigned integers.

Implementation details. Our experiments are based on the

SOSD benchmark [22]. The baseline includes two learned indexes,

namely RadixSpline [33] (RS), which uses linear splines; and Re-

cursive Model Index (RMI), which uses a hierarchy of models.

Note that RMI has a choice of different models and SOSD [22]

specifically handpicked the best models for each of the datasets

in the benchmark
6
. SOSD also includes no-index search algo-

rithms such as binary search (BS), linear interpolation search (IS),

and the recently suggested non-linear triple-point interpolation

(TIP) [42]. We also compare against algorithmic index structures

such as ART: Adaptive Radix Tree [26], FAST [21], RBS (Radix

Binary Search): a two-stage algorithm in which a radix struc-

ture that maps a fixed-length key prefix to the range of all keys

having that prefix and then a binary search is performed on the

range [22], and STX implementation of B+tree [1]. Finally, we

included four On-the-fly search algorithms, namely BS: Binary

search (STL implementation), TIP: three-point interpolation [42],

Interpolation search, which is similar to binary search but uses

interpolated positions in each iteration, and IM: Interpolation as
a Model: a dummy model that interpolates the key between the

minimum and maximum value of the keys and then performs

exponential search around the predicted key.

The experiments use either 32- or 64-bit unsigned integer

IDs for the key (depending on the dataset), and 64-bytes for the

payload.

4.1 The SOSD benchmark
To test the effectiveness of the suggested layers compared to

learned indexes, we use a simple interpolation model (IM), i.e.,

𝐹𝜃 (𝑥) = (𝑥−𝑚𝑖𝑛𝑉𝑎𝑙)/(𝑚𝑎𝑥𝑉𝑎𝑙−𝑚𝑖𝑛𝑉𝑎𝑙). Such a dummymodel

is deliberately chosen to purely delegate the burden of data mod-

elling to the correction layers.

2
https://software.intel.com/en-us/articles/intelr-memory-latency-checker

3
https://www.kaggle.com/ucffool/amazon-sales-rank-data-for-print-and-kindle-books

4
https://aws.amazon.com/public-datasets/osm

5
https://dumps.wikimedia.org

6
The architectures and parameters of the RMI models used for each dataset is spec-

ified at https://github.com/learnedsystems/SOSD/blob/mlforsys19/scripts/build_

rmis.sh

The Shift-Table layer has the same number of entries as the

actual data, i.e., 𝑀 = 𝑁 . We followed the tuning procedure dis-

cussed in section 3.9: we start from the model (IM and RS) and

consequently evaluate IM+Shift-Table and RS+Shift-Table. The

cost of running the Shift-Table layer is around 40ns, which pays

off by reducing the prediction error and thus lookup time. There-

fore, based on the cost model of the Shift-Table layer (Section 3.7)

and the error-to-latency micro-benchmark (Figure 2a), we should

not add the Shift-Table layer if the error before adding the con-

figuration is less than a threshold (10 records), or 2) the error of

the index after adding the Shift-Table layer does not decrease

by a factor of 10 (roughly equivalent to the 50-nanoseconds

latency the additional layer, according to the error-to-latency

micro-benchmark).

Table 2 compares the lookup times (nanoseconds per lookup)

of the baseline algorithms with our dummy interpolation model

(IM), and the two corrected versions, i.e., IM+Shift-Table and

RS+Shift-Table. Note that ART does not support data with dupli-

cate keys, and FAST does not support 64-bit keys. Also, interpo-

lation search (IS) takes too much time on some datasets, because

the execution time of interpolation search highly depends on the

uniformity of data distribution, varying from O(loglogN) + O(1)

iterations on uniform distributions, to O(N) iterations for very

skew ones [42].

For the synthetic datasets, the difficulty of the datasets for

our dummy linear interpolation model varies from very easy

(uden64) to extremely hard (logn64). While the Shift-Table layer

significantly improves a dummy layer on non-uniform data dis-

tributions, it cannot outperform the learned index models. This

is not surprising, as all synthetic datasets (uniform, lognormal,

and uniform) have a pattern derived from continuously differ-

entiable density functions, hence the distribution is similar to

a straight line on smaller sub-ranges as we "zoom in" the data

distribution (e.g., see Figure 3c). Therefore, a learned index struc-

ture composed of linears at the bottom (including both RMI and

RS) can effectively model the distribution using a very compact

representation.

For the real-world data, however, the fluctuations in data se-

verely affect both RMI and RS learned indexes. The Shift-Table

layer, effectively corrects a highly inaccurate dummy IM model,

such that it outperforms the RMI learned index by 1.5X to 2X on

all datasets, while RS falls behind both. Keep in mind that RMI

requires to be tuned with the best architecture and parameters,

while Shift-Table does not require a manual training process and

can even work with a simple model such as IM that is not trained,

and yet deliver a lower latency.

Figure 7 shows the average build times of the indexes, along

with the standard deviation bars indicating how the build time

varies for different distributions. Please note that the RMI imple-

mentation used in the SOSD benchmark needs to be compiled for

faster retrievals, however we did not include RMI’s extra over-

head for compiling the code and only reported the build time.

IM+Shift-Table, the winner method latency-wise, also takes ei-

ther the same or even less build time than the competing learned

indexes.

4.2 Explaining the performance
The latencies reported in Table 2 present the fastest configuration

for each learned index. In this section, we present the details of the

tuning process to see the optimum performance of each learned

index.
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Table 2: Comparison of lookup times (nanoseconds per lookup) with the SOSD benchmark. The red box indicates the base
model (IM) and the enhanced versions.

Dataset ART FAST RBS B+tree BS TIP IS IM IM
+ Shift-Table

RMI RS RS
+ Shift-Table

logn32 N/A 230 385 375 624 551 N/A 1384 166 73.9 83.9 143.5

norm32 173 197 267 390 655 671 N/A 1479 88.2 51.5 60.3 96.4

uden32 99.4 196 235 389 654 126 32.3 38.6 67.5 38.1 47.8 72.3

uspr32 N/A 198 230 390 654 298 321 425 89.7 141 166 153.5

logn64 238 N/A 622 427 674 377 N/A 1075 376 132 109 151.0

norm64 214 N/A 317 427 672 705 N/A 1615 88.6 51.7 61.8 93.2

uden64 104 N/A 255 428 670 142 34.8 40.4 67.4 39.8 47.9 71.8

uspr64 216 N/A 244 427 673 329 338 472 92.8 145 182 154.6

amzn32 N/A 208 243 393 658 569 3228 1524 99.5 185 236 110.8

face32 179 203 238 388 654 717 792 861 103 213 310 142.8

amzn64 N/A N/A 284 428 676 578 3510 1575 105 189 238 119.3

face64 290 N/A 257 427 671 925 1257 918 149 247 344 204.1

osmc64 N/A N/A 410 428 675 4617 N/A 1462 194 297 339 177.2

wiki64 N/A N/A 271 437 686 767 5867 1687 94.2 172 191 124.1
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Figure 7: Build times (average time for all datasets)

For those indexes that have a parameter affecting the index

size (such as the branching factor in B+tree, and the number of

radix bits in ART, RS, and RBS), the performance can be tuned

by evaluating the latency for different index sizes.

Figure 8 shows the latencies of the indexes for the face64 and

osmc64 datasets, along with the average Log2 error, CPU instruc-

tions, and L1/LLC cache misses. IM+Shift-Table and RS+Shift-

Table achieve faster lookup times on both datasets. For most in-

dexes, except RMI and RBS, the latency does not improve beyond

a certain optimum index size, after which the latency increases

again. RBS has a much larger latency than both [IM/RS]-Shift-

Table indexes of the same size, and extrapolating the RMI laten-

cies also suggest that if we could extend RMI size to 1400MB

(equal to Shift-Table’s size), it could not achieve a game-changing

performance on either of the datasets. Note that we could not run

RMI with larger models because RMI embeds the parameters into

the code, and the compile times for models larger than 400MB

were astonishingly high.

Average Log2 errors indicate the average number of iterations

in binary search for the last-mile search stage. Larger models

result in lower Log2 errors in all indexes and lead to faster last-

mile search, however, once themodel exceeds the LLC cache sizes,

cache-miss rate increases (when running the model), and hence

the prediction time worsens. For RS, ART, and B+tree, the cache

misses and extra overhead of running the models increases either

the number of instruction, the cache misses, or both, enough

to prevent the index from improving latency by increasing the

footprint.

4.3 Layer size
As discussed in section 3.4, the Shift-Table layer can be com-

pressed by merging multiple entries, hence reducing its footprint.

Figure 9 shows the effect of the Shift-Table layer size on lookup

time and prediction error. Shift-Table can operate in two modes:

R-1: a full layer containing <Δ𝑀
𝑘
,𝐶𝑀
𝑘
> pairs similar to Figure 5

that indicates the exact range for local search (hence enabling

binary search); and S-X: a compressed single-entry map similar

to Table 1 containing one Δ̄𝑀
𝑘

entry per 𝑋 records. Thus, S-X

contains 𝑀 = 𝑁 /𝑋 entries; and the memory footprint of S-1 is

half the size of R-1.

The error of the S-1 Shift-Table is slightly more than that of

R-1. This is due to the fact that S-1 is designed to draw boundaries

for binary search; hence it always points to the first record of

each partition; while R-1 always points to the middle of the parti-

tion and almost half the error of S-1. Performance-wise, however,

S-1 always has the lowest latency, because its boundaries for the

last-mile search operation do not need to be discovered using

additional boundary-detection algorithms such as exponential

search. As expected, compressing the Shift-Table by allocating

one entry per 𝑋 records increases the error and hence degrades
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Figure 8: Analysis of the effect of index size on performance
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Figure 9: Analysis of the effect of Shift-Table layer size

the performance. This is due to the fact that with higher com-

pression ratios, the ability of Shift-Table to "memorize" the fine-

grained details of the data distribution degrades due to the loss

of information after merging.

5 RELATEDWORK
On-the-fly search on sorted dataA fundamental problem that

is studied for decades is how to find a key among a sorted list

of items. The classic approach is binary search and numerous

extensions have been suggested to improve it for special cases,

most notably interpolation search [35] and exponential search [3].

For data distributions that are close to uniform, interpolation-

search is shown to be very effective [13, 36, 42]. Due to the

growing gap between CPU power andmemory latency in the past

decade, more advanced interpolation techniques such as three-

point interpolation are becoming viable onmodern hardware [42].

Exponential search enables binary search over an unbounded list.

Exponential search is also extensively used in learned indexes

when the key is more likely to be near a "guessed" location, but

a guaranteed boundary around the guessed point that contains

the data is not known [7, 25, 32].

Range indexes An alternative to on-the-fly binary search

over sorted data is to keep the data in an index structure. Nonethe-

less, indexes that are built to answer range queries (such as B-

trees) are similar to the binary search in that they need to keep

the data sorted internally. Common index structures for range

index include skiplists, B+trees, and radix-trees. The B+-tree is

cache-efficient, but requires pointer chasing, which incurs multi-

ple cachemisses [14]. There has been a tremendous effort to make

binary search trees and B+-trees efficient on modern hardware.

For example, FAST [21] organizes tree elements efficiently to ex-

ploit modern hardware features such as the cache line and SIMD.

Another common solution is to use compression techniques on

the indexed keys, most notably as a radix-tree. Modern radix

trees exploit hardware-efficient heuristics for fitting a distribu-

tion in memory (usually by building a heuristically-optimized

compressed trie), such as adaptive radix index (ART) [5, 26], and

Succinct Range Filter (SuRF) [44]. Skiplist is specifically efficient

for concurrent updates workloads [41, 43].

Learned index structures Learned range indexes [7, 12, 25,

29, 33] have recently been suggested as an alternative to range

indexes. In this approach, a model is trained from the data with

the intent of capturing the data distribution and processing the

queries more efficiently. We refer to the paper by Kraska et

al. [25], which introduced the idea of the learned index. In a

learned index, the CDF of the key distribution is learned by fit-

ting a model, and the learned model is subsequently used as a

replacement of the index (B+-trees or similar) for finding the lo-

cation of the query results on the storage medium. Index learning

frameworks such as the RMI model [25, 30] can learn arbitrary

models [30], although a further theoretical study [9] as well as

a recent experimental benchmark [22] have shown that simple
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model like linear splines are very effective for datasets. Spline-

based learned indexes include Piecewise Geometric Model index

(PGM-index) [11], Fiting-tree [12], Model-Assisted B-tree (MAB-

tree) [19], Radix-Spline [23], Interpolation-friendly B-tree (IF-

Btree) [18] and some others [29, 40]. We refer to [10] for an exten-

sive comparison of learned indexes. Recently, there has been nu-

merous theoretical works [4, 27, 38, 39] on learned indexes. Also,

numerous efforts have been made to handle practical challenges

around using a learned index, including update-handling [7, 17]

and designing a learned DBMS [24]. The idea of using a model

of the data to boost an existing algorithmic index has been the

center of focus in the past few years [14, 17, 19, 37]. In the multi-

variate area, learning from a sample workload has also shown

interesting results [8, 20, 28, 32]. Aside from the main trend in

learned indexes, which is on range indexing, machine learning

has also inspired other indexing and retrieval tasks. This includes

bloom filters [6, 31], multidimensional indexing on datasets with

correlated attributes [15], and other applications [2, 16, 34].

6 CONCLUSION AND FUTUREWORK
Learning and modeling data distributions via machine learn-

ing approaches is a great idea for managing and analyzing data

management systems. However, the approaches and objective

functions that are common in machine learning problems are

not necessarily optimal choices when the ultimate target is per-

formance improvement. Instead of pushing machine learning

model algorithm to its limits for highly accurate modeling of

data distributions, it is more efficient if we only use ML models

to approximate the high-level, generalizable "patterns" in data

distribution (the holistic shape), and handle the fluctuations and

fine-grained details of the distribution using a more hardware-

efficient approach, outperforms learned models as well as algo-

rithmic index structures even if a simple or somewhat dummy

model such as min/max linear interpolation is used. The Shift-

Table layer is effective in learning almost all distributions even

without using models that require training from data, and takes

only a single pass over the data points to build the layer. Our

results show that even a simple linear model equipped with the

Shift-Table enhancement layer outperforms trained and tuned

learned indexes by 1.5X to 2X on real-world datasets.

Our current work only considers read-only workloads. We

leave it as future work to adapt Shift-Table with workloads having

updates. One idea is to capture the drifts in data distribution using

update-tracking segments [17], and use Fenwick trees to estimate

and correct the drifts in both the model and the Shift-Table.
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