
AutoML4Clust: Efficient AutoML for Clustering Analyses
Dennis Tschechlov, Manuel Fritz, Holger Schwarz

University of Stuttgart
Stuttgart, Germany

{dennis.tschechlov,manuel.fritz,holger.schwarz}@ipvs.uni-stuttgart.de

ABSTRACT
Data analysis is a highly iterative process. In order to achieve
valuable analysis results, analysts typically execute many config-
urations, i.e., algorithms and their hyperparameter settings, based
on their domain knowledge. While experienced analysts may be
able to define small search spaces for promising configurations,
especially novice analysts define large search spaces due to their
lack of domain knowledge. In the worst case, they perform an
exhaustive search throughout the whole search space, resulting
in infeasible runtimes. Recent advances in the research area of
AutoML address this challenge by supporting novice analysts in
the combined algorithm selection and hyperparameter optimiza-
tion (CASH) problem for supervised learning tasks. However, no
such systems exist for unsupervised learning tasks, such as the
prevalent task of clustering analysis. In this work, we present
our novel AutoML4Clust approach, which efficiently supports
novice analysts regarding CASH for clustering analyses. To the
best of our knowledge, this is the first thoroughly elaborated
approach in this area. Our comprehensive evaluation unveils
that AutoML4Clust significantly outperforms several existing
approaches, as it achieves considerable speedups for the CASH
problem, while still achieving very valuable clustering results.

1 INTRODUCTION
Data analysis is a crucial discipline to extract knowledge and
insights from data. Therefore, analysts apply data mining tech-
niques, typically machine learning algorithms, to extract patterns
from data and to gain insights about data. A fundamental primi-
tive in data mining is clustering analysis, which is an unsuper-
vised machine learning task being used in various application
domains, e.g., computer vision, document clustering, for business
purposes, or to study genome data in biology [11].

Throughout these manifold fields of application domains, ana-
lysts typically struggle with the selection of a promising cluster-
ing configuration, i.e., a clustering algorithm and its correspond-
ing hyperparameter settings, that achieves valuable clustering
results. Hence, analysts typically define a configuration space,
i.e., a search space of clustering algorithms and their hyperpa-
rameter settings, in which they expect promising configurations.
Yet, novice analysts lack in-depth domain knowledge and hence
define very large configuration spaces. In the worst case, novice
analysts cannot limit configuration spaces at all and perform an
exhaustive search throughout all possible configurations. Since
this exhaustive search is very time-consuming, novice analysts
often explore only a few configurations, e.g., randomly selected,
from the configuration space, which often leads to solely mod-
erate results. Hence, novice analysts require support to achieve
valuable clustering results in a reasonable amount of time.

© 2021 Copyright held by the owner/author(s). Published in Proceedings of the
24th International Conference on Extending Database Technology (EDBT), March
23-26, 2021, ISBN 978-3-89318-084-4 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

For supervised learning tasks, recent advances in the re-
search area of AutoML are able to support novice analysts in the
combined algorithm selection and hyperparameter optimization
(CASH) problem in an automated and efficient manner [5, 18].
These approaches greedily explore large configuration spaces by
trading off exploration and exploitation strategies, thus avoiding
a time-consuming or even infeasible exhaustive search.

In this work, we propose AutoML4Clust, an efficient AutoML
approach to support novice analysts in the CASH problem for
clustering analyses. To the best of our knowledge, this is the first
thoroughly elaborated AutoML approach for efficient clustering
analyses, capable of automatically selecting promising clustering
algorithms and their hyperparameters in combination.

Our contributions include the following:
• We introduce AutoML4Clust, our novel approach to ef-
ficiently support novice analysts in the prevalent CASH
problem for clustering analyses.
• We reveal that AutoML4Clust is generic, i.e., it can be
instantiated with different AutoML concepts, clustering
algorithms and clustering metrics.
• In our evaluation, we unveil that AutoML4Clust signif-
icantly outperforms several existing approaches, as it
achieves speedups of up to 437x for the CASH problem,
while still achieving valuable clustering results. Hence,
AutoML4Clust efficiently supports novice analysts in the
CASH problem for clustering analyses.

The remainder of this paper is structured as follows: We present
related work in this area in Section 2. In Section 3, we present
AutoML4Clust, our novel AutoML approach for clustering analy-
ses. In Section 4, we unveil the results of our evaluation. Finally,
we conclude this work in Section 5.

2 RELATEDWORK
Based on the generally accepted separation of machine learn-
ing tasks, we separate related work into support for the CASH
problem regarding supervised and unsupervised learning tasks.
We distinguish two important groups of related work to support
analysts regarding the CASH problem: (1) AutoML systems for
supervised learning, and (2) methods for unsupervised cluster-
ing analyses that either explore the algorithm selection or the
hyperparameter optimization.

We define a configuration 𝑐 as the combination of an algo-
rithm 𝑎 ∈ A and its hyperparameters ℎ ∈ H . Hence, we define
the configuration space as CS = A ×H . In the following, we
investigate related work based on the machine learning task and
its ability to explore CS.

2.1 AutoML Systems for Supervised Learning
AutoML systems arose in the area of supervised machine learning
to support novice analysts in the combined algorithm selection
and hyperparameter optimization problem [5, 18]. As class labels
are already available in the datasets, CS = A×H can be explored
automatically. The common underlying procedure of existing

Short Paper

 

 

Series ISSN: 2367-2005 343 10.5441/002/edbt.2021.32

https://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2021.32


AutoML systems is as follows: Given a budget, training data and
an optimization metric, they execute and evaluate different con-
figurations from CS, i.e., they execute classification algorithms
with the specified hyperparameter settings, and return the con-
figuration that yields the best value for the optimization metric.
In order to steer the exploration towards valuable results, several
hyperparameter optimization techniques are proposed, such as
Bayes [1], Hyperband [13], or BOHB [3]. These optimization
techniques proceed in a greedy manner, since they define a spe-
cific trade-off between exploration, i.e., exploring new regions
in the CS, and exploitation, i.e., exploiting regions in the CS,
where already executed configurations performed well.

2.2 Algorithm Selection and Hyperparameter
Optimization for Clustering Analyses

Related work that supports novice analysts regarding CASH for
clustering analyses can be divided into methods that consider
algorithm selection and methods that consider hyperparameter
optimization.

Algorithm Selection. For unsupervised learning tasks, sev-
eral approaches were developed to support novice analysts with
the selection of a promising clustering algorithm, i.e., CS = A
for certain problems [4, 16]. These methods are based on meta-
learning, i.e., they learn from past experiences in order to select
the most promising algorithm on a previously unseen dataset.

Existing approaches differ in the used (a) implementation of
the meta-learning steps, (b) clustering algorithms, and (c) metrics
for evaluating the clustering results. However, these approaches
solely focus on the clustering algorithm, yet completely ignore
the corresponding hyperparametersH .

Hyperparameter Optimization. Regarding the hyperpa-
rameter optimization, i.e., CS = H of clustering algorithms,
two types of approaches exist [7]: While exhaustive methods ex-
ecute all configurations from CS, non-exhaustive methods only
execute some configurations. However, non-exhaustive methods
are designed to optimize the hyperparameters of specific algo-
rithms, e.g., k-Means. Exhaustive methods could also be applied
for CS = A ×H , though this results in tremendous runtime as
the whole configuration space has to be explored.

Summary. Summarizing related work, existing AutoML sys-
tems only focus on supervised learning algorithms, yet can ex-
plore valuable results, where CS = A ×H . For clustering analy-
ses, there are approaches that either conduct an exploration for
valuable clustering algorithms (CS = A) or their hyperparame-
ters (CS = H ). However, they do not address the combination
of both, i.e., the CASH problem for clustering analyses, where
CS = A × H , which is a crucial problem for novice analysts.
We identified only some experimental implementations1 2 that
address this problem, however they use (a) one specific opti-
mization technique, or (b) one specific clustering metric, without
explaining, evaluating or justifying their choice regarding (a)
and (b). In addition, they miss a clear scientific elaboration and a
systematic evaluation in comparison to existing approaches in
this area.

3 AUTOML4CLUST
In this section, we introduce our generic AutoML4Clust approach
to support novice analysts regarding the CASH problem for clus-
tering analyses, where we apply concepts from existing super-
vised AutoML systems on clustering. Existing AutoML systems
1 https://git.io/JUNKu 2 https://git.io/JUNKz

solely focus on supervised learning tasks, whereas we focus on
clustering analysis, which is an unsupervised learning task. The
key difference between supervised and unsupervised learning
tasks is that the input datasets for unsupervised learning tasks do
not contain ground-truth labels. Therefore, it is not possible to
evaluate the result based on an external metric. Consequently, ex-
isting AutoML systems and their components cannot be applied
per se for clustering analyses.

Figure 1 presents the procedure of our AutoML4Clust ap-
proach. Similar to supervised AutoML systems, it draws on a
configuration space CS, which defines the set of configurations
that can be selected, executed and evaluated during the optimizer
loop, which is at the core of existing hyperparameter optimiza-
tion techniques. To this end, we rely on the configuration space
CS = A ×H . When considering different families of clustering
algorithms, e.g., 𝑘-center and density-based ones, CS has to be
defined in a hierarchical way, i.e., by defining the algorithm as
conditional root-level hyperparameter [18]. Our AutoML4Clust
procedure is structured into three parts (cf. Figure 1): The in-
puts, the optimizer loop, and return best configuration. In the
following, we present these three parts in detail and subsequently
discuss the benefits of AutoML4Clust.

3.1 Inputs
AutoML4Clust requires three inputs prior to execution. These are
a dataset D, an internal metricM, and a budget 𝑙 . Here, D does
not contain any additional information, e.g., class labels. Hence,
M is an internal metric that evaluates the internal structure of a
clustering result. In the literature, many different internal metrics
with different objectives are proposed [11, 14]. Most of themmea-
sure the compactness and the separation of clusters in different
variations. Subsequently, they consider a quotient of both. The
budget 𝑙 defines the resources that can be used by the system.
A common choice for the budget is a time constraint to limit
the runtime or the number of configurations to execute. In this
work, we use the number of optimizer loops that are performed
as budget. However, we note that choosing an appropriate kind of
budget and also an appropriate value for the budget is a difficult
task. A too large value may lead to a long runtime, whereas a too
small one can lead to solely moderate results.

3.2 Optimizer Loop
In the optimizer loop, an optimizer such as Random [1], Bayes
[18], Hyperband [13], or BOHB [3] is used to findwell-performing
configurations efficiently. Here, the optimizer performs 𝑙 loops,
where each loop consists of three steps:

i) Selection: 𝑐 ∈ CS, where the optimizer selects a configu-
ration 𝑐 from the configuration space CS. The different afore-
mentioned optimizers mostly differ in their greedy procedure,
i.e., trading off exploration and exploitation, in order to select a
configuration 𝑐 ∈ 𝐶𝑆 in each optimizer loop 𝑙𝑖 . Yet, all optimiz-
ers require the definition of a black-box function 𝑓 : CS → R,
which is subject to optimization. This function 𝑓 assigns each
configuration 𝑐 ∈ CS a metric value and is implemented with
the following steps ii) and iii).

ii) Execution: R ← 𝑐 (D). Here, the previously selected con-
figuration 𝑐 is executed on D. The result of the execution is R,
which can be any kind of clustering result, e.g., the resulting
labels or the final centroids.

344



Dataset (𝒟)

Internal Metric

(ℳ)

Budget (𝑙)

Apply on 𝒟
Choose Best 

Configuration

Selection:

𝑐 ∈ 𝒞𝒮

Execution:

ℛ ← 𝑐(𝐷)

Evaluation:
m ← ℳ (ℛ, 𝒟)

[No]

[Yes]
𝑙 exhausted?

𝒞𝒮

Inputs Optimizer Loop Return Best Configuration

Figure 1: Procedure of AutoML4Clust.

iii) Evaluation:𝑚 ←M(R,D), where the clustering result is
evaluated. This means that the metricM is calculated based on
the clustering result R and on the dataset D.

3.3 Return Best Configuration
In the third step, the best configuration from all considered con-
figurations is chosen. This is the configuration that achieves the
best metric value regardingM from all configurations that are
selected, executed and evaluated during each optimizer loop. This
configuration is applied on the dataset D to finally obtain the
best clustering result that is found by AutoML4Clust.

3.4 Discussion
Existing AutoML systems solely focus on supervised learning
tasks in order to achieve valuable results, where CS = A×H , i.e.,
CS is typically very large. In contrast, AutoML4Clust addresses
this problem for the prevalent unsupervised task of clustering
analyses, where ground-truth labels are missing. Therefore, es-
pecially novice analysts are supported, which can neither limit
A nor H to a manageable size and thus perform in the worst
case an exhaustive exploration throughout CS. Our proposed
procedure draws on the latest fundamental concepts of exist-
ing AutoML systems, yet remains generic regarding the used
clustering algorithms, metrics, and optimizers.

Regarding possible clustering algorithms, AutoML4Clust can
use any kind of clustering algorithm by defining CS in a hierar-
chical way, similar to existing AutoML systems for supervised
learning tasks. Regarding the metrics, AutoML4Clust draws on
an internal metrics to asses the internal structure of a cluster-
ing result. Furthermore, several optimizers can be used, which
follow the three steps (1) select a configuration, (2) execute the
configuration, and (3) evaluate the result of the configuration.

Especially the combination of an internal metric and the used
optimizer is of paramount importance: Since optimizers proceed
in a greedy manner by defining a trade-off between exploration

and exploitation throughout CS, it is per se not clear which in-
ternal metric supports their behavior best. Yet, as prior work in
the area of supervised learning has shown, these optimizers are
able to efficiently explore large configuration spaces, while still
achieving valuable results [3, 5, 18]. Therefore, we assume that
AutoML4Clust similarly benefits from these optimizers. That is,
we argue that AutoML4Clust is able to efficiently achieve valuable
results within a predefined budget 𝑙 . However, it is a very chal-
lenging task for novice analysts to specify such a suitable budget,
since a too small budget leads to imprecise results, whereas a
too large budget leads to long runtimes. Furthermore, it is not
clear at all, if the used metric supports the greedy behavior of
the optimizers within a reasonable budget.

4 EVALUATION
Since analysts are interested in fast and valuable results, the ques-
tion remains how well different instantiations of our approach,
i.e., combinations of optimizers and metrics, perform in order to
achieve this goal. To this end, we compare in our evaluation how
our novel AutoML4Clust approach performs (i) with different
instantiations of optimizers and metrics for clustering analyses,
and (ii) in contrast to existing approaches in this area. We first
discuss the setup of our evaluation, before we investigate the ac-
curacy of the results of different instantiations of AutoML4Clust
in contrast to existing approaches. Subsequently, we analyze
the runtime of AutoML4Clust in contrast to existing approaches.
Finally, we show the practical feasibility of AutoML4Clust on
real-world datasets regarding accuracy and runtime.

4.1 Setup
In the following, we describe the setup of our experiments. We
focus on (i) the used hard- and software, (ii) the synthetic and
real-world datasets that we use, (iii) the implementation details,
and (iv) the performed experiment with its baselines.

345



Dataset 𝑛 𝑑 𝑘𝑎𝑐𝑡

Statlog (Landsat Satellite) 6,435 35 7
ISOLET 7,797 617 26

Motion Capture Hand Postures 7,805 34 5
Avila 10,430 10 12

Pen-Based Recognition
of Handwritten Digits 10,992 16 10

Table 1: Real-world datasets with their corresponding
dataset characteristics 𝑛, 𝑑 and 𝑘𝑎𝑐𝑡 .

4.1.1 Hard- and Software. The experiments are performed
on a virtual machine, which operates on Ubuntu 18.04. It has a
6-core CPU with 2.5 GHz and 32 GB RAM. Our implementation
is based on Python 3.6 and on scikit-learn3.

4.1.2 Datasets. We draw our evaluation on synthetically gen-
erated and real-world datasets. Regarding the synthetic datasets,
we use the dataset generation tool from [7–9]. This tool generates
datasets based on these four input characteristics:

1) 𝑛, which describes the number of entities, 2) 𝑑 , which de-
notes the number of dimensions, where the values in each di-
mension lie in the interval [−10, 10], 3) 𝑘𝑎𝑐𝑡 , which is the actual
number of clusters, where each cluster contains 𝑛

𝑘𝑎𝑐𝑡
entities and

4) 𝑟 , which is the ratio of noise, i.e., 𝑟
100 · 𝑛 additional entities are

added uniformly at random to the dataset.
We generate datasets with 𝑛 ∈ [2,500; 7,500], 𝑑 ∈ [20; 40],

𝑘𝑎𝑐𝑡 ∈ [25; 75], and 𝑟 ∈ [0; 17; 50]. We generate these datasets as
a cross product of the above-mentioned characteristics, i.e., 24
synthetic datasets are used within our evaluation.

For the real-world datasets, we use 5 classification datasets
from the UCI machine learning repository4 with different dataset
characteristics regarding 𝑛, 𝑑 and 𝑘𝑎𝑐𝑡 . Here, 𝑘𝑎𝑐𝑡 describes the
number of classes in the dataset.We removed the class labels from
these datasets when applying instantiations of our AutoML4Clust
approach and solely used them to evaluate the accuracy of our
approach. In order to use these datasets for clustering, we re-
moved any non-numeric and symbolic values, IDs, timestamps,
class labels and empty values. Table 1 summarizes the datasets’
characteristics. Note, that these datasets exhibit similar or even
larger characteristics as the synthetic datasets regarding 𝑛 and 𝑑 .

4.1.3 Implementation. We evaluate AutoML4Clust with over-
all 12 instantiations, i.e., four optimizers and three internal met-
rics to unveil the best-performing combinations thereof. We pro-
vide our prototypical implementation of all AutoML4Clust in-
stantiations in Python5 with all versions of the used libraries6.

Optimizers: We use the following four frequently used op-
timizers from the area of hyperparameter optimization (cf. Sec-
tion 2.1): Random Search (RS) [1], Bayesian Optimization (BO) [1],
Hyperband (HB) [13], and the combination of Bayesian Optimiza-
tion and Hyperband (BOHB) [3]. We define the budget as number
of optimizer loops that each optimizer performs.

Clustering algorithms:We focus on 𝑘-center clustering al-
gorithms, due to their appealing runtime behavior and their pop-
ularity across researchers and practitioners [20]. We note that
other kind of clustering algorithms, e.g., density-based ones like
DBSCAN, have a runtime complexity of O(𝑛2) or even higher,
which makes them infeasible in practice for large datasets [10].
3 scikit-learn.org 4 https://archive.ics.uci.edu/ml/datasets.php
5 https://git.io/JTeix 6 https://git.io/JTeXG

Therefore, we use 𝑘-Means [15], MiniBatch 𝑘-Means [17], 𝑘-
Medoids [12], and GMM [2] as concrete instantiations of 𝑘-center
clustering algorithms. We set the maximum number of clustering
iterations for each algorithm to ten since Fritz et al. showed that
even a few iterations already lead to valuable results [6].

Internal metrics: For the evaluation of the clustering result
in each optimizer loop, we use three commonly used internal
metrics that are implemented in scikit-learn: Calinski-Harabasz
(CH), the Davies-Bouldin Index (DBI), and the Silhouettte (SIL).

4.1.4 CASH Experiment and Baselines. Based on CS = A×H ,
we define the CASH experiment analogue to related work in the
area of AutoML [18]. We set A as described in Section 4.1.3. We
set the search space H for the hyperparameter 𝑘 of 𝑘-center
clustering algorithms to H = {2, . . . , 𝑛

10 }, i.e., the maximum 𝑘

value is set in relation to the number of entities in the dataset.
Since analysts perform in the worst-case an exhaustive search
throughout CS due to the lack of more efficient approaches, we
compare AutoML4Clust to an exhaustive search.

4.2 Accuracy Evaluation
In this section, we investigate the accuracy obtained by differ-
ent instantiations of AutoML4Clust in contrast to the baselines.
Therefore, we explain how we (i) examine a suitable budget to
achieve valuable clustering results, (ii) compare the accuracy
with the baselines, and (iii) discuss the effect of noisy data.

Since the actual labels of the datasets are known in our experi-
ments, we use an external clustering metric to asses the accuracy
of the achieved clustering result, similar to the accuracy from
classification tasks. Therefore, we use the adjusted mutual infor-
mation (AMI) [19], which is limited to [0; 1], while values closer
to one indicate a better matching of the predicted labeling with
the actual labeling of the dataset.

4.2.1 Time to Accuracy. Figure 2 summarizes the accuracy re-
sults of the AutoML4Clust instantiations, i.e., the four optimizers
and the three internal metrics at each optimizer loop 𝑙𝑖 .

Budget: After about 60 optimizer loops, i.e., 𝑙𝑖 = 60 (which is
marked by the vertical line), the accuracy of AutoML4Clust does
not further improve significantly for all instantiations. Hence,
we argue that 𝑙 = 60 is a suitable budget for AutoML4Clust to
support novice analyst in achieving valuable results efficiently.

AutoML4Clust accuracy: AutoML4Clust achieves with ev-
ery optimizer very accurate results, i.e., AMI values over 90%.
Furthermore, we observe that more optimizer loops increase the
accuracy.

AutoML4Clust instantiations: The AutoML4Clust instan-
tiations with the CH metric achieve the highest accuracy. The
reason for this is that the CH metric focuses on the intra- and
inter-cluster compactness. Therefore, in contrast to DBI, it is less
sensitive to sub-clusters, i.e., two or more clusters in a dataset
that are very close to each other [14]. The most inaccurate re-
sults are obtained by instantiations with the SIL metric. This can
be explained by the calculation of the SIL, as it can be highly
influenced by the position of single entities. Due to its impre-
cise results, we do not present results for the SIL metric in the
remaining experiments.

4.2.2 Accuracy Comparison. Figure 3 unveils the accuracy
of AutoML4Clust in comparison to the respective baselines. We
present the results of the AutoML4Clust instantiations with the
four optimizers, the budget of 𝑙 = 60, and the CH and DBI metrics.

346



0 50 100 150
Optimizer Loops li

50
60
70
80
90

100

AM
I (

%
)

AutoML4Clust - RS

0 50 100 150
Optimizer Loops li

AutoML4Clust - BO

0 50 100 150
Optimizer Loops li

AutoML4Clust - HB

0 50 100 150
Optimizer Loops li

AutoML4Clust - BOHB

CH DBI SIL

0 50 100 150
Optimizer Loops li

50
60
70
80
90

100

AM
I (

%
)

AutoML4Clust - RS

0 50 100 150
Optimizer Loops li

AutoML4Clust - BO

0 50 100 150
Optimizer Loops li

AutoML4Clust - HB

0 50 100 150
Optimizer Loops li

AutoML4Clust - BOHB

CH DBI SIL

Figure 2: Accuracy of the AutoML4Clust instantiations over all synthetic datasets at each optimizer loop 𝑙𝑖 for the CASH
experiment. The vertical line at 𝑙𝑖 = 60marks where the accuracy does not further improve significantly.

RS BO HB BOHB

0

25

50

75

100

AM
I (

%
)

90
.7

86
.6 90

.2

89
.4 92

.4

92
.2 91

.6

88
.2

AutoML4Clust

CH DBI

ES (CH) ES (DBI)

91
.7 95

.4

Baselines

RS BO HB BOHB

0

25

50

75

100

AM
I (

%
)

90
.7

86
.6 90

.2

89
.4 92

.4

92
.2 91

.6

88
.2

AutoML4Clust

CH DBI

ES (CH) ES (DBI)

91
.7 95

.4

Baselines

Figure 3: Accuracy of AutoML4Clust over synthetic
datasets in contrast to exhaustive search (ES) with CH and
DBI. Median values are shown at each box plot.

RS BO HB BOHB

0

25

50

75

100

AM
I (

%
)

96
.6

78
.5

84
.6

99
.9

85
.9 86

.8

99
.8

86
.7

85
.0

10
0.

0
84

.7
84

.6

AutoML4Clust (DBI)

r=0.0 r=0.17 r=0.5

ES (CH) ES (DBI)

10
0.

0

91
.7

14
.5

10
0.

0

86
.1 93

.9

Baselines

RS BO HB BOHB

0

25

50

75

100

AM
I (

%
)

96
.6

78
.5

84
.6

99
.9

85
.9 86

.8

99
.8

86
.7

85
.0

10
0.

0
84

.7
84

.6

AutoML4Clust (DBI)

r=0.0 r=0.17 r=0.5

ES (CH) ES (DBI)

10
0.

0

91
.7

14
.5

10
0.

0

86
.1 93

.9

Baselines

Figure 4: Comparison of the impact of noise (𝑟 ) for Au-
toML4Clust and the baselines regarding the AMI results.
Median values are shown at each box plot.

AutoML4Clust achieves similarly accurate results as the ex-
haustive search (ES), i.e., HB with CH achieve higher accuracy
than ES (CH) and only deviates 3% from ES (DBI). Hence, the best
result of AutoML4Clust deviates only 3% from the best result of
ES. Therefore, AutoML4Clust supports novice analysts nearly as
good as an exhaustive search, while being more efficient since
it does not execute all configurations in CS. Furthermore, we
emphasize that AutoML4Clust achieves higher accuracy when
using the CH metric. Regarding optimizers, we observe that Au-
toML4Clust achieves in most cases the best results with the HB
optimizer and the CH metric. One possible reason is that BO and
BOHB are more effective in higher dimensional configuration
spaces. Yet, it achieves higher accuracy than RS since it discards
poorly performing configurations early on [3].

4.2.3 Effect of Noisy Data. Throughout our experiments, we
observed that noisy data have a significant impact on the base-
lines. However, noisy data are prevalent in real-world scenarios
and should therefore be considered specifically. Figure 4 unveils
the results for three different noise ratios 𝑟 ∈ [0; 0.17; 0.5]. It can
be seen that AutoML4Clust is robust against noise, i.e., it achieves
AMI values typically over 85% even for 𝑟 = 0.5 and can therefore
almost compete with a time-consuming exhaustive search, which
achieves an AMI value of 93.9% for DBI. The ES (CH) achieves
accurate results for 𝑟 = 0 and 𝑟 = 0.17, while it performs poorly
for 𝑟 = 0.5. Hence, it is most affected by noise for 𝑟 = 0.5. We
observe a similar behaviour for the AutoML4Clust instantiations
with the CH metric. The reason for the bad performance is that
the calculation of the CH metric is essentially based on the com-
pactness. Therefore, it is less robust against noise than the DBI
metric [14]. However, we note that the results of AutoML4Clust
with the CH metric (cf. Section 4.2.2) are still very accurate for
𝑟 ∈ [0; 0.17] and are only imprecise for 𝑟 = 0.5, i.e., for highly
noisy datasets.

4.3 Runtime Evaluation
Besides an accurate clustering result, the runtime is also crucial
for analysts. Figure 5 summarizes the runtime results for all
investigated AutoML4Clust instantiations for 𝑙 = 60 and the
corresponding baselines.

AutoML4Clust exhibits the highest runtimes with the SIL met-
ric, since this metric has a runtime complexity of𝑂 (𝑛2) [14]. The
runtimes of the CH and DBI metrics differ only marginally, while
the CH metric has the lower runtime in most cases. Regarding
the optimizers, AutoML4Clust achieves faster results with the HB
and BOHB optimizers than with the RS and BO optimizers. The
reason is that HB and BOHB execute optimizer loops in parallel,
while RS and BO execute them sequentially [3].

The results clearly show that AutoML4Clust is orders of mag-
nitude faster than the time-consuming ES. It achieves the fastest
results in 57 seconds, while the fastest results for the ES require
roughly 6 hours. In comparison to ES (DBI), we even observe
speedups of more than 437×. Hence, AutoML4Clust provides an
efficient support for novice analysts regarding the CASH problem
for clustering analyses.

4.4 Results on Real-World Datasets
In order to assess the practical feasibility of AutoML4Clust, we
perform the same experiments as for the synthetic datasets, yet
use real-world datasets. We focus on the CH and the DBI metric
for these experiments, since the results on the synthetic datasets
clearly showed that the SIL metric does not achieve valuable

347



RS BO HB BOHB

20,000

40,000

60,000

80,000

R
un

tim
e 

(s
)

15
2

28
1

32
4

14
5

15
3

18
4

12
5

79 18
6

74 75 12
6

AutoML4Clust

CH DBI SIL

ES (CH)ES (DBI)ES (SIL)

21
,2

94

21
,7

41

29
,6

33

Baselines

Figure 5: Runtime results of AutoML4Clust with all in-
stantiations in contrast to the respective baselines. Me-
dian values are shown at each box plot.

Approach Optimizer Metric AMI (%) Runtime (s)

AutoML4Clust

RS CH 45.4 781
DBI 28.5 791

BO CH 22.5 879
DBI 33.6 1,305

HB CH 38.5 420
DBI 33.9 604

BOHB CH 22.0 276
DBI 33.7 598

Baseline ES CH 13.8 76,211
ES DBI 33.5 77,196

Table 2: Median results on real-world datasets regarding
AMI and the runtimes. We indicate the top-3 results for
AMI and runtime in bold.

results and furthermore exhibits high runtimes. Table 2 summa-
rizes the results on the real-world datasets, which are mostly
very similar to the results on the synthetic datasets. We indicate
the top three results for AMI and runtime in bold.

AutoML4Clust achieves higher accuracy than an exhaustive
search, while also significantly outperforming it regarding run-
time. The fastest results of AutoML4Clust requires less than 5
minutes, while the ES required with both metrics roughly 21
hours, i.e., AutoML4Clust achieves speedups of up to 276×. Fur-
thermore, AutoML4Clust achieves with HB and CH up to 5%
higher AMI values than the ES. The reason that AutoML4Clust
can be more accurate than ES is that both optimize the inter-
nal metric value of CH or DBI and do not directly address the
external metric AMI. Therefore, both approaches return the con-
figuration with the best metric value, but not necessarily with
the best accuracy, i.e., AMI value. We argue that HB and CH
is a well-performing instantiation of AutoML4Clust, since it is
the only instantiation that achieves one of the top-3 results with
both, AMI and runtime.

Combining these observations with the results from synthetic
datasets, we can state that the instantiation of the HB optimizer
and the CH metric achieves in most cases the best results regard-
ing accuracy and runtime.

5 CONCLUSION
In this work, we propose AutoML4Clust, an AutoML approach to
support novice analysts efficiently with the combined algorithm
selection and hyperparameter optimization (CASH) problem for
clustering analyses. To the best of our knowledge, this is the first
thoroughly elaborated AutoML approach for clustering analy-
ses. AutoML4Clust remains generic, i.e., it can be instantiated
with different optimizers and internal metrics. However, the con-
crete instantiation is crucial for an efficient exploration of large
configuration spaces. Our evaluation reveals that specific instan-
tiations of AutoML4Clust achieve similar or even more accurate
results, while tremendously outperforming existing approaches
regarding runtime on synthetic and real-world datasets.

Future work will address how clustering ensembles can be
exploited to achieve even more valuable clustering results.

REFERENCES
[1] James Bergstra and Yoshua Bengio. 2012. Random Search for Hyper-parameter

Optimization. Journal of Machine Learning Research 13, 1 (2012).
[2] Christopher M. Bishop. 2006. Pattern Recognition and Machine Learning (In-

formation Science and Statistics). Springer-Verlag, Berlin, Heidelberg.
[3] Stefan Falkner, Aaron Klein, and Frank Hutter. 2018. BOHB: Robust and

Efficient Hyperparameter Optimization at Scale. In Proceedings of the 35th
International Conference on Machine Learning.

[4] Daniel G Ferrari and Leandro Nune de Castro. 2015. Clustering algorithm
selection by meta-learning systems: A new distance-based problem character-
ization and ranking combination methods. Information Sciences (2015).

[5] Matthias Feurer, Aaron Klein, Katharina Eggensperger, Jost Springenberg,
Manuel Blum, and Frank Hutter. 2015. Efficient and robust automated machine
learning. In Advances in neural information processing systems.

[6] Manuel Fritz, Michael Behringer, and Holger Schwarz. 2019. Quality-driven
early stopping for explorative cluster analysis for big data. SICS Software-
Intensive Cyber-Physical Systems (2019).

[7] Manuel Fritz, Michael Behringer, and Holger Schwarz. 2020. LOG-Means:
Efficiently Estimating the Number of Clusters in Large Datasets. Proc. VLDB
Endow. 13, 12 (July 2020).

[8] Manuel Fritz and Holger Schwarz. 2019. Initializing k-Means Efficiently:
Benefits for Exploratory Cluster Analysis. In On the Move to Meaningful
Internet Systems: OTM 2019 Conferences.

[9] Manuel Fritz, Dennis Tschechlov, and Holger Schwarz. 2020. Learning from
Past Observations: Meta-Learning for Efficient Clustering Analyses. In Big
Data Analytics and Knowledge Discovery, Min Song, Il-Yeol Song, Gabriele
Kotsis, A Min Tjoa, and Ismail Khalil (Eds.). Springer International Publishing,
Cham, 364–379.

[10] Junhao Gan and Yufei Tao. 2015. DBSCAN revisited: Mis-claim, un-fixability,
and approximation. In Proceedings of the 2015 ACM SIGMOD international
conference on management of data.

[11] Anil K Jain. 2010. Data clustering: 50 years beyond K-means. Pattern recogni-
tion letters 8 (2010).

[12] L. Kaufman and P.J. Rousseeuw. 1987. Clustering by means of Medoids. In
Statistical Data Analysis Based on the L1–Norm and Related Methods.

[13] Lisha Li, Kevin Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and Ameet
Talwalkar. 2017. Hyperband: a novel bandit-based approach to hyperparameter
optimization. The Journal of Machine Learning Research 1 (2017).

[14] Yanchi Liu, Zhongmou Li, Hui Xiong, Xuedong Gao, Junjie Wu, and Sen
Wu. 2013. Understanding and enhancement of internal clustering validation
measures. IEEE Transactions on Cybernetics 3 (6 2013).

[15] J MacQueen. 1967. Somemethods for classification and analysis of multivariate
observations. In Proceedings of the fifth Berkeley Symposium on Mathematical
Statistics and Probability.

[16] Bruno Almeida Pimentel and André C.P.L.F. de Carvalho. 2019. A new data
characterization for selecting clustering algorithms using meta-learning. In-
formation Sciences (3 2019).

[17] D. Sculley. 2010. Web-scale k-means clustering. In Proceedings of the 19th
International Conference on World Wide Web, WWW ’10.

[18] Chris Thornton, Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown.
2013. Auto-WEKA: combined selection and hyperparameter optimization of
classification algorithms. In Proceedings of the 19th ACM SIGKDD international
conference on Knowledge discovery and data mining - KDD ’13. ACM Press.

[19] Nguyen Xuan Vinh, Julien Epps, and James Bailey. 2010. Information theoretic
measures for clusterings comparison: Variants, properties, normalization and
correction for chance. Journal of Machine Learning Research (2010).

[20] Xindong Wu, Vipin Kumar, J Ross Quinlan, Joydeep Ghosh, Qiang Yang,
Hiroshi Motoda, Geoffrey J McLachlan, Angus Ng, Bing Liu, S Yu Philip, et al.
2008. Top 10 algorithms in data mining. Knowledge and information systems
14, 1 (2008).

348


	AutoML4Clust: Efficient AutoML for Clustering AnalysesDennis Tschechlov, Manuel Fritz, Holger Schwarz

