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ABSTRACT
Currently, deep learning models have been widely used in dif-
ferent application domains due to their notable performance. Ex-
plaining the decisions made by deep learning models is important
for end-users to enable them to comprehend and diagnose the
trustworthiness of the model. Most of the current interpretability
techniques provide explanations in the form of importance score
for the input pixels or features. However, summarizing such im-
portance scores for input features to provide human-interpretable
explanations is challenging. To this end, we propose Automated
Concept-based Decision Tree Explanations (ACDTE), a novel lo-
cal explanation framework that provides human-understandable
and concept-based explanations for classification networks. Our
framework provides end users with the flexibility of customiz-
ing the explanations by allowing users to provide the dataset in
which visual human-understandable concepts are automatically
extracted. Then, such concepts are interpreted through a shallow
decision tree that includes concepts that are deemed important
to the model in predicting the decision of specific instance. In
addition, ACDTE generates counterfactual explanations, suggest-
ing the the minimum changes in the instance’s concept-based
explanation that lead to a different prediction. Our experiments
demonstrate that such a shallow decision tree is faithful to the
original neural network at low tree depth. The human inter-
pretability of the explanations provided from our framework is
evaluated through humans experiments, showing that our frame-
work generates faithful and interpretable explanations.

1 INTRODUCTION
Since deep learning (DL) models have been achieving remarkable
success over the last years in different application domains [1, 3],
gaining insights into such models’ predictions has received great
attention over the last few years and in some cases, there is also
a legal requirement to do so [7]. Among the various DL models,
convolution neural networks (CNN) achieve remarkable perfor-
mance in different computer vision tasks including self-driving
cars and medical diagnoses. A main drawback for DL models,
that prevents their wide adoption in critical domains, is their
inscrutable nature of their prediction process that makes them
black-boxes. Explaining the behaviour of DL models enables hu-
mans to understand the model behaviour, and hence, can increase
their trust in the model if the decisions made by the model appear
reasonable to humans.

There is no agreement among researchers about what would
constitute a satisfactory explanation [13]. However, recent stud-
ies over 250 papers have concluded that explanations are coun-
terfactual [12, 13]. Techniques for explaining DL models can be
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broadly partitioned into two main approaches. The first approach
is to identify the evidence that the network uses tomake a specific
prediction by creating a heatmap that identifies the main parts
of the image, which are salient to the prediction [16, 19, 21]. The
second approach focuses on providing explanations in the form
of human-understandable concepts [5, 6, 20]. Instead of assigning
an importance score for each pixel or input feature, the expla-
nation comes in the form of important human-understandable
concepts that contribute toward the prediction. Understanding
how concepts affect a particular model prediction may reveal
potential unwanted bias learned by the model.

In this paper, we describe a framework called Automated
Concept-based Decision Tree Explanations (ACDTE) to auto-
matically identify high-level human-understandable concepts
which are important for the machine learning model for pre-
dicting the decision of a specific instance by aggregating related
local image segments (concepts) across diverse data and then
decompose the evidence for a prediction for image classification
into such concepts through an interpretable shallow decision tree.
The explanation provided by the ACDTE framework is expres-
sive and provides not only succinct evidence why a particular
image has been assigned to a particular class, but also counter-
factuals suggesting what is the least number of concepts needed
to be changed are, in an instance’s explanation, to change the
predicted outcome. We summarize our contributions as follows:
1) A novel local explanation framework to provide automatically
extracted concept-based explanations for CNNs in the form of
important concepts for the prediction of specific instance pre-
sented as a shallow interpretable decision tree that is faithful to
the black-box model, 2) A counterfactual explanation, suggesting
the changes in the important concepts for the prediction of a
specific image that lead to a different outcome, 3) Evaluation of
the faithfulness of the explanations provided by ACDTE to the
black-box model and the quality of the provided explanations.
For ensuring repeatability as one of the main targets of this work,
we provide access to the source codes and the detailed results for
the experiments of our study1.

The remainder of this paper is organized as follows. In Sec-
tion 2, we present our proposed technique, ACDTE. We present
a detailed experimental evaluation for our proposed techniques
in Section 3 before we finally conclude the paper in Section 4

2 METHODS
In the following, we present ACDTE which is a local explana-
tion technique that explains the prediction of a particular image.
ACDTE takes a trained classifier, an image to be explained, and a
set of images from user-specified dataset as input. It then extracts
concepts presented in these images and interpret these concepts
through a shallow decision tree that identifies the main concepts

1https://github.com/DataSystemsGroupUT/ACDTE
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(a) Segmentation of
images similar to the
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removing outliers
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Figure 1: ACDTE pipeline (a) Extract a set of similar images to the image to be explained either from themain task dataset
or related dataset. Each image in the selected images is segmented. (b) Segments are clustered in the activation space and
outliers are removed to form coherent clusters that represent concepts. (c) Training a linear model for each concept to act
as a concept detector. (d) For each image in the activation space, use concepts detectors to form a binary feature vector. (e)
Feature vectors along with the prediction of the target network are used to train a shallow decision tree. The decision tree
provides a natural explanation for the contributing concepts for the prediction, in addition to counterfactual explanation.
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that have deemed important for the prediction of the image be-
ing explained, in addition to the minimum number of concepts
that need to be changed to alter the prediction of the image to
be explained. Figure 1 summarizes the general pipeline for the
proposed framework consists of three main phases concept ex-
traction, learning interpretable concept models and extracting
concept data, and building explanation decision tree in which
explanation based on both decision and counterfactuals, is ex-
tracted.

2.1 Phase 1: Concept Extraction
Given a pretrained image classification model𝑚, and the image
to be explained 𝐼 , our framework provides end users with the
flexibility of extracting concepts either from the dataset used in
the classification task or from a related dataset to the main task
dataset. To extract concepts, we choose the top𝑘 images similar to
𝐼 , denoted 𝑆 . Similarity between 𝐼 and the set of provided images
is defined to be the Euclidian distance between their correspond-
ing activation maps obtained from an intermediate layer from𝑚.
In this paper, we use a constant value for 𝐾 = 100, leaving the
exploration of different values to future work. To extract concept
data, each of the images in 𝑆 is segmented using semantic image
segmentation technique, see Figure 1(a). In order to automate the
process of concept extraction, a significant number of studies in
literature focused on semantic segmentation algorithms that aim
to assign a meaningful class to each pixel [9, 11, 14, 18]. ACDTE
uses DeepLabv3+ [2] segmentation technique which has been
widely used due to its superior performance on dense datasets
(after examining several segmentation techniques). To ensure
meaningfulness of the extracted concepts, we cluster segments
into a number of clusters such that segments of the same cluster
represent a particular concept. In order to automate the process
of clustering segments, we define the similarity between seg-
ments to be the euclidian distance between their corresponding
activation maps obtained from the intermediate layer of model𝑚.
Each segment was resized to the original size of𝑚. All segments
were then passed through𝑚 to obtain their layer presentations.
All segments are then clustered using K-means clustering al-
gorithm [10], see Figure 1(b). To ensure meaningfulness of the
extracted concepts, we exclude the following two types of clus-
ters: 1) Clusters that have segments that only coming from a
single image or a very few number of images. 2) Clusters with
segments less than 𝑁 segments. In this work, we use a constant
value for 𝑁 equals 0.4√𝑛𝑐 , where 𝑛𝑐 is the number of segments
in cluster 𝑐 , leaving the exploration of different values for 𝑁 to
future work. The main problem with clusters of few segments is
that the concepts they present are uncommon in the neighbor-
hood of the image being explained. For example, bed segments
are present in almost every bedroom image and therefore, are
expected to form a coherent cluster while lamp segments are
presented in very few bedroom images and hence lamp cluster
should be removed. The output of this phase is the final set of
clusters representing the learnt concepts denoted 𝐶 = {𝑐1, ...𝑐𝑛},
where 𝑛 is the number of clusters after the exclusion criteria.

2.2 Phase 2: Learning Interpretable Concept
Models and Extracting Concept Data

For each segment 𝑥 ∈ 𝑐 , the hidden layer activations 𝑎 =𝑚𝑙 (𝑥) at
layer 𝑙 are extracted and stored along its corresponding concept
label. For each candidate concept 𝑐 ∈ 𝐶 , we train a logistic binary
classifier ℎ𝑐 to detect the presence of concept 𝑐 , see Figure 1(c).

Training each concept 𝑐 is done on dataset𝐷𝑐 , which is mix of seg-
ments balancing the presence and absence of concept 𝑐 . We define
𝐷𝑐 = 𝐷+

𝑐 ∪𝐷−
𝑐 , where𝐷+

𝑐 = {(𝑚𝑙 (𝑥1), 𝑦1𝑐 ), ...., (𝑚𝑙 (𝑥 |𝑐 |), 𝑦
|𝑐 |
𝑐 ) |𝑦𝑐=1}

and 𝐷−
𝑐 = {(𝑚𝑙 (𝑥1), 𝑦1𝑐 ), ...., (𝑚𝑙 (𝑥 |𝑐 |), 𝑦

|𝑐 |
𝑐 ) |𝑦𝑐=0}, where 𝑦 ∈

{0, 1} indicates the absence or the presence of concept 𝑐 in a
segment. Negative examples 𝐷−

𝑐 for each concept 𝑐 are selected
randomly from other cluster concepts such that the number of ex-
amples in 𝐷+

𝑐 and 𝐷−
𝑐 are equal. We use these concept classifiers

for each image 𝑠 ∈ 𝑆 to create a binary vector 𝑣 = (𝑟1, 𝑟2, ..., 𝑟𝑛)
representing the presence or absence of each concept 𝑐 ∈ 𝐶 in
𝑠 , where 𝑟𝑖 = ℎ𝑐𝑖 (𝑠), 𝑟𝑖 ∈ {0, 1}. For each image 𝑠 ∈ 𝑆 , we store
its class prediction from model𝑚 along with its binary concept
vector 𝑣 for training a decision tree, see Figure 1(d).

2.3 Phase 3: Building Concept Decision Tree
Concept vector 𝑣 predicted for each image 𝑠 ∈ 𝑆 along with the
corresponding prediction𝑚(𝑠) are used to train a decision tree
𝑇 which is intended to mimic the behavior of𝑚 locally in the 𝑆
neighborhood, see Figure 1(e). We use the default implementation
of decision tree from scikit-learn [15]. The ACDTE approach
considers decision tree classifier due to its interpretable nature
that allows concept rules to be derived from a root-leaf path
in the decision tree, in addition to counterfactuals that can be
extracted by symbolic reasoning over a decision tree. Increasing
the depth of a decision tree increases the prediction accuracy
which leads to less interpretable results as the number of nodes
increases exponentially with depth. Thus, a shallow decision is
favourable as it is more comprehensible by humans. In this work,
we use a fixed depth leaving the exploration of dynamic depth
to future work. In order to guarantee fast and easy search for
counterfactuals, we consider all possible paths in the decision tree
leading to a decision that is not equal to the decision of 𝐼 . Among
all these paths, we only consider the one with the minimum
number of spilt conditions that are not satisfied by instance 𝐼 . As
an example, consider the decision tree in Figure 2 explaining the
prediction from ResNet50 pretrained on places dataset [22] of an
image as a coast. The concepts used in building the decision tree
is based on selecting the top 100 images from a random selection
of 1000 images from the ADE20k dataset [23]. The left branch of
the tree indicates the presence of a concept while the right branch
indicates the absence of that concept. The tree gives insights into
the main human-understandable concepts from ADE20K dataset
that appear important for ResNet50 in predicting the coast image.
The decision tree provides a natural explanation for each path.
It is clear from the explanation tree that the image has been
predicted as a coast because of the existence of the concepts
’mountain’ and ’sea’. As a further output, ACDTE computes a
counterfactual; we have two counterfactual paths in the decision
tree shown in Figure 2. The first one is the presence of ’mountain’,
absence of ’sea’, presence of ’tree’ that leads to the prediction
of class ’snowy mountain’, while the second is the presence of
’mountain’, absence of ’sea’, absence of ’tree’ that leads to the
prediction of class ’highway’, as shown in Figure 2. Figure 3
shows sample segments of concepts along the explanation path
of the coast image shown in Figure 2.

3 EXPERIMENTS AND RESULTS
In this section, we evaluate the meaningfulness of the explana-
tions provided by our framework. In addition, we evaluate the
faithfulness of the proposed framework to the black-box model.
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Figure 2: Shallow concept-based explanation decision tree of depth 4 explaining the prediction of coast image.

Mountain SeaTree

Figure 3: Sample segments of concepts along the explana-
tion path of the coast image shown in Figure 2. Text below
each group of images describes its original class of the ex-
tracted concepts.

3.1 Experiment Setup
As an experimental example, we use ACDTE to explain the pre-
dictions of the widely-used Resnet50 that has been pre-trained
on the places dataset. We select a subset of 30 classes out of the
365 classes from places dataset. We experimented extracting the
concepts from ADE20K dataset. More specifically, to explain the
prediction of an instance from places dataset, we randomly select
1000 images from ADE20K dataset and extract concepts from the
nearest 100 images. To evaluate the performance of the ACDTE,
we randomly select 1000 images, denoted 𝑋 , from the 30 selected
classes of the places dataset.

3.2 Are ACDTE Explanations Faithful to the
Black-box Model?

We consider the following metrics in evaluating how well the
decision tree inferred by ACDTE and the explanations returned
mimic the black-box model.

• fidelity ∈ [0, 1]: It compares the prediction of the decision
tree 𝑇 and the black-box model𝑚 on the set of images 𝑆
used to train the decision tree [4].

• hit ∈ {0, 1}: It compares the prediction of the decision
tree 𝑐 and the black-box model𝑚 on the instance to be
explained 𝐼 [8]. It returns 1 if𝑚(𝐼 ) = 𝑇 (𝐼 ), and 0 otherwise.

We measure the fidelity by F1-measure [17] and report the
aggregated values of the F1 measure across all instances in 𝑋 at
tree depth of 5, 10, 15 and 20, see Figure 4(a). We report hit by
averaging its values across the instances in 𝑋 at tree depth of 5,
10, 15 and 20, see Figure 4(b). The results show that fidelity and
hit increases as the tree depth increases, however tree depth of
10 is able to achieve reasonable fidelity of 0.87 and hit of 0.91.

3.3 Examining the Significance of the
Extracted Concepts from ACDTE

To confirm the importance of the formed concepts of ACDTE,
we run ACDTE on each of the images in 𝑋 and return the set of
clusters obtained from the concept extraction phase. We rank the
returned clusters for each image in 𝑋 according to their compact-
ness that is captured by calculating the average distance between
cluster center and each point in the same cluster. The smaller
the average distance indicates that the cluster is tightly formed
and shows a motion coherent view. The intuition behind that
ranking is that compact clusters most likely represent a concept
that is frequently present in the neighbourhood of the image to
be explained, and hence, have a significant role in forming the
decision boundary between classes. For each image in𝑋 , we build
different decision trees based on excluding the top 𝑘 concepts
obtained from the concept extraction phase, where 𝑘=0, 2, 5, 8
and 10. Figure 5 shows the prediction accuracies on the set of
images used to train the decision tree when removing the most
important 𝑘 concepts aggregated across all the instances in 𝑋 .
The results show that accuracy decreases significantly from 92.4%
to 75.3% when removing the 10 most important concepts which
reflects the variable significance of the automatically extracted
concepts.

3.4 Concept Classifier Prediction
Performance

Concept models performance vary across the different layers of
the main task model (ResNet50). In order to identify the best
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Figure 4: Fidelity and hit at different tree depth

Figure 5: Prediction accuracy of decision tree as removing
the top 𝑘 important concepts aggregated across all the in-
stances in 𝑋 .

layer to extract feature vectors used to train concept classifiers,
we compare the average accuracy of the concept models built on
vectors extracted from the major layers of Resnet50 and report
this average accuracy averaged over all instances in𝑋 . Major lay-
ers refer to the conv2 x (layer1), conv3 x (layer 2), conv4 x (layer
3), and conv5 x (layer 4) blocksections of sublayers of Resnet50.
Figure 6 shows that all layers have high average accuracy and
the deeper the extraction layer, the higher the accuracy. Figure 6
shows that the average classifiers accuracy was the highest at
the fourth layer, achieving an accuracy of 0.97.

3.5 Decision Tree Performance
Figure 7 shows how the accuracy of the decision tree obtained
from ACDTE responds to the changes in the maximum tree depth
and the layer from which deep features are extracted, to train
the concept models. We incrementally increase the depth of the
decision tree obtained from ACDTE for each instance in 𝑋 and
change the layer in which features from ResNet are extracted
to train the concept models. Then, we measure the prediction
accuracy of the instances used to train the decision tree and
report this accuracy averaged over all instances in𝑋 . Result show
that the accuracy improves significantly as more concepts are
added and then slightly flatten out as depth increases beyond 15.
The results also demonstrates that layer 4 of ResNet50 achieves
the best performance in terms of the decision tree prediction
accuracy.

Figure 6: Average accuracy of all concept classifiers
trained for the main layers of ResNet50

Figure 7: Decision tree accuracy vs. decision tree depth

3.6 Human Evaluation of the Visual
Explanations

To measure the meaningfulness of the extracted concepts, we
randomly select 50 instances from𝑋 and get the concepts used in
their explanations. We ask 30 human participants to identify that
segments belong to a concept versus a random set of segments.
The evaluation interface is shown in Figure 8. Results show that
87% of participants choose the concept segments. To measure the
significance of the important concepts extracted from the ACDTE,
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Figure 8: Human evaluation interface for identifying
meaningful concepts

Which of the images below highly contribute to 
the prediction of the image above as a street?

Which of the images below highly contribute to 
the prediction of the image above as a park?

Figure 9: Sample examples of human experiments for
choosing the most contributing concept to their predic-
tions

we ask the 30 participants to select the most meaningful concept
that contributes to a particular prediction made by ResNet50
for 30 different images. In each task, participants are shown the
image to be explained along with its prediction and four concepts
in which one of them represents the top concept identified by
ACDET for explaining this image and the other three concepts
are randomly chosen. Participants are asked to select the most
meaningful concept that contribute to the prediction. Figure 9
shows two sample images along with four different concepts in
which participants are asked to choose the most contributing
concept for the prediction of these images. On average, 85% of
the participants chose the concept obtained by ACDTE as the
most important concept.

4 CONCLUSION
We introduced ACDTE, a post-training local explanation tech-
nique that automatically extract groups of input features from
images similar to the images to be explained and group these
features into high-level human-understandable concepts.We veri-
fied the meaningfulness and coherence of these concepts through
human experiments and further validated that these concepts
carry some signals indicating to the correct prediction class for
the instance to be explained. Representing these concepts in a
shallow decision tree allows users to infer which concepts are

significant in the prediction of the image to be explained. A future
direction of automated concept-based explanation is to consider
other types of data such as texts.

ACKNOWLEDGMENT
The work of Sherif Sakr and Youssef Sherif is funded by the
European Regional Development Funds via the Mobilitas Plus
programme (grant MOBTT75). The work of Radwa Elshawi is
funded by the European Regional Development Funds via the
Mobilitas Plus programme (MOBJD341).

REFERENCES
[1] Javed Ashraf, Asim D Bakhshi, Nour Moustafa, Hasnat Khurshid, Abdullah

Javed, and Amin Beheshti. 2020. Novel Deep Learning-Enabled LSTM Au-
toencoder Architecture for Discovering Anomalous Events From Intelligent
Transportation Systems. IEEE Transactions on Intelligent Transportation Sys-
tems (2020).

[2] Liang-Chieh Chen, Yukun Zhu, George Papandreou, Florian Schroff, and
Hartwig Adam. 2018. Encoder-decoder with atrous separable convolution for
semantic image segmentation. In Proceedings of the European conference on
computer vision (ECCV). 801–818.

[3] Tobias Domhan, Jost Tobias Springenberg, and Frank Hutter. 2015. Speeding
up automatic hyperparameter optimization of deep neural networks by ex-
trapolation of learning curves. In Twenty-Fourth International Joint Conference
on Artificial Intelligence.

[4] Finale Doshi-Velez and Been Kim. 2017. Towards a rigorous science of inter-
pretable machine learning. arXiv preprint arXiv:1702.08608 (2017).

[5] Amirata Ghorbani, James Wexler, James Y Zou, and Been Kim. 2019. Towards
automatic concept-based explanations. In Advances in Neural Information
Processing Systems. 9273–9282.

[6] Abel Gonzalez-Garcia, Davide Modolo, and Vittorio Ferrari. 2018. Do semantic
parts emerge in convolutional neural networks? International Journal of
Computer Vision 126, 5 (2018), 476–494.

[7] Bryce Goodman and Seth Flaxman. 2017. European Union regulations on
algorithmic decision-making and a “right to explanation”. AI Magazine 38, 3
(2017), 50–57.

[8] Riccardo Guidotti, Anna Monreale, Salvatore Ruggieri, Dino Pedreschi, Franco
Turini, and Fosca Giannotti. 2018. Local rule-based explanations of black box
decision systems. arXiv preprint arXiv:1805.10820 (2018).

[9] Wei Liu, Andrew Rabinovich, and Alexander C Berg. 2015. Parsenet: Looking
wider to see better. arXiv preprint arXiv:1506.04579 (2015).

[10] Stuart Lloyd. 1982. Least squares quantization in PCM. IEEE transactions on
information theory 28, 2 (1982), 129–137.

[11] Jonathan Long, Evan Shelhamer, and Trevor Darrell. 2015. Fully convolutional
networks for semantic segmentation. In Proceedings of the IEEE conference on
computer vision and pattern recognition. 3431–3440.

[12] TimMiller. 2018. Contrastive explanation: A structural-model approach. arXiv
preprint arXiv:1811.03163 (2018).

[13] Tim Miller. 2019. Explanation in artificial intelligence: Insights from the social
sciences. Artificial Intelligence 267 (2019), 1–38.

[14] Hyeonwoo Noh, Seunghoon Hong, and Bohyung Han. 2015. Learning de-
convolution network for semantic segmentation. In Proceedings of the IEEE
international conference on computer vision. 1520–1528.

[15] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel,
Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron
Weiss, Vincent Dubourg, et al. 2011. Scikit-learn: Machine learning in Python.
Journal of machine learning research 12, Oct (2011), 2825–2830.

[16] Ramprasaath R Selvaraju, Abhishek Das, Ramakrishna Vedantam, Michael
Cogswell, Devi Parikh, and Dhruv Batra. 2016. Grad-CAM: Why did you say
that? arXiv preprint arXiv:1611.07450 (2016).

[17] Pang-Ning Tan, Michael Steinbach, and Vipin Kumar. 2016. Introduction to
data mining. Pearson Education India.

[18] Xing Wei, Qingxiong Yang, Yihong Gong, Narendra Ahuja, and Ming-Hsuan
Yang. 2018. Superpixel hierarchy. IEEE Transactions on Image Processing 27,
10 (2018), 4838–4849.

[19] Wencan Zhang, Mariella Dimiccoli, and Brian Y Lim. 2020. Debiased-CAM
for bias-agnostic faithful visual explanations of deep convolutional networks.
arXiv preprint arXiv:2012.05567 (2020).

[20] Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva, and Antonio Tor-
ralba. 2014. Object detectors emerge in deep scene cnns. arXiv preprint
arXiv:1412.6856 (2014).

[21] Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva, and Antonio Torralba.
2016. Learning deep features for discriminative localization. In Proceedings of
the IEEE conference on computer vision and pattern recognition. 2921–2929.

[22] Bolei Zhou, Aditya Khosla, Agata Lapedriza, Antonio Torralba, and Aude
Oliva. 2016. Places: An image database for deep scene understanding. arXiv
preprint arXiv:1610.02055 (2016).

[23] Bolei Zhou, Hang Zhao, Xavier Puig, Sanja Fidler, Adela Barriuso, and Antonio
Torralba. 2017. Scene parsing through ade20k dataset. In Proceedings of the
IEEE conference on computer vision and pattern recognition. 633–641.

384


	Towards Automated Concept-based Decision TreeExplanations for CNNsRadwa El Shawi, Youssef Sherif, Sherif Sakr

