
Efficient Discovery of Approximate Order Dependencies
Reza Karegar

University of Waterloo, CA

mkaregar@uwaterloo.ca

Parke Godfrey

York University, CA

godfrey@yorku.ca

Lukasz Golab

University of Waterloo, CA

lgolab@uwaterloo.ca

Mehdi Kargar

Ryerson University, CA

kargar@ryerson.ca

Divesh Srivastava

AT&T Chief Data Office, US

divesh@att.com

Jaroslaw Szlichta

Ontario Tech Univ, CA

jarek@ontariotechu.ca

ABSTRACT
Order dependencies (ODs) capture relationships between ordered
domains of attributes. Approximate ODs (AODs) capture such re-

lationships even when there exist exceptions in the data. During

automated discovery of dependencies, validation is the process

of verifying whether a dependency holds. We present an algo-

rithm for validating AODs with significantly improved runtime

performance over existing methods, and prove that it is mini-
mal and has optimal runtime. By replacing the validation step

in a recent algorithm for AOD discovery with ours, we achieve

orders-of-magnitude improvements in performance.

1 INTRODUCTION
1.1 Motivation
Functional dependencies (FDs) specify that the values of given

attributes functionally determine the value of a target attribute.
Order dependencies extend FDs to state that, additionally, the order
of tuples with respect to the values from the domains of given

attributes determines the order of the values from the domain

of the target attribute. Table 1 shows a dataset with employee

salaries. In this table, the OD that sal orders taxGrp holds. If one

sorts the table by sal, it is sorted by taxGrp as well.

An OD implies the corresponding FD; e.g., that sal orders
taxGrp implies that sal functionally determines taxGrp. Order
compatibility (OC) captures the co-ordering aspect of an OD
without the corresponding FD. Two lists of attributes are order
compatible if there exists an arrangement for the tuples in the

table in which the tuples are sorted according to both. Any OD
can thus be equivalently represented by a pair of an OC and an

FD [13]. In Table 1, that taxGrp is order compatible with sal holds.
Note that taxGrp does not order sal, as an FD does not hold.

There has been recent work to automate the discovery of ODs
from data [1, 4, 6, 10, 11]. In practice, however, constraints rarely

hold perfectly in the data. Real data are dirty, containing wrong

and inconsistent values that may violate semantically valid de-

pendencies. This motivates the need for discovering approximate
ODs (AODs), ODs that hold in the data but with exceptions. Dis-
covered ODs deemed semantically valid can be used for data

cleaning, to detect erroneous tuples, where measures are then

taken to repair the errors [8]. AODs are useful even when the data
are not dirty, as there can be exceptions to general rules. AODs
help avoid overfitting by discovering more general dependencies.

In Table 1, tax is a fixed percentage of salary in each tax group;

i.e., one, three, or eight percent. However, perc includes a con-
catenated zero in some rows due to data entry errors (e.g., 10%

© 2021 Copyright held by the owner/author(s). Published in Proceedings of the

24th International Conference on Extending Database Technology (EDBT), March

23-26, 2021, ISBN 978-3-89318-084-4 on OpenProceedings.org.

Distribution of this paper is permitted under the terms of the Creative Commons

license CC-by-nc-nd 4.0.

Table 1: Employee salaries
pos exp sal taxGrp perc tax bonus
t1 sec 1 20K A 10% 2K 1K

t2 sec 3 25K A 10% 2.5K 1K

t3 dev 1 30K A 1% 0.3K 3K

t4 sec 5 40K B 30% 12K 2K

t5 dev 3 50K B 3% 1.5K 4K

t6 dev 5 55K B 30% 16.5K 4K

t7 dev 5 60K B 3% 1.8K 4K

t8 dev -1 90K C 8% 7.2K 7K

t9 dir 8 200K C 8% 16K 10K

instead of 1% in t1). Because of this, the OC that salary is order

compatible with tax does not hold, even though this OC is in-

tended. Similarly, the FD that pos, exp functionally determines

sal does not hold, due to the exception of tuples t6 and t7, two
employees with the same position and years of experience but

having different salaries. With approximate ODs, we can still

discover such concise and meaningful rules in these instances.

Approximate ODs were introduced in [10]. Their definition

of AODs, as is ours herein, is based on the concept of “tuple

removal.” Given a table and an OD, a removal set is a set of tuples
which, if removed from the table, results in the OD holding. A

minimal removal set is one with the smallest cardinality. An

approximation factor can be defined with respect to a table and

an OD, as the ratio of the size of a minimal removal set over the

size of the table. For instance, for Table 1 and theOC that pos, exp
is order compatible with pos, sal, the minimal removal set and

the approximation factor are {t8} and 1/9 ≈ 0.11, respectively.

Given a table r and an approximation threshold 0 ≤ 𝜖 ≤ 1, the

discovery problem for AODs is to find the complete set of minimal

valid AODs in r w.r.t. 𝜖 . Exact ODs are a special case of AODs
with an approximation factor of zero. Given a table r, an OD 𝜑 ,

and a threshold 𝜖 , the problem of validating the candidate OD as

an AOD involves verifying whether the approximation factor of

𝜑 , denoted by 𝑒 (𝜑), is less than or equal to 𝜖 .

1.2 Contributions
The extension for AOD discovery in [10, 11], however, is impracti-

cal due to its performance. While the approximate FD component

can be validated in linear time [3, 10], to validate the approximate

OC (AOC) component in the search, they iteratively remove the

tuple—or one of the tuples, in the case of a tie—that causes the

largest number of violations. This has two weaknesses: the run-

time is quadratic in the number of tuples, and it is not guaranteed

to find a minimal removal set.

That it is quadratic makes it prohibitively expensive to run

on larger datasets. (The validation step for a candidate exact

OD has a linear runtime in the number of tuples.) So while the

OD discovery algorithm in [10, 11] is shown to scale to datasets

with millions of tuples, it is infeasible to run their adapted AOC
discovery algorithm over even moderately sized datasets. During

Short Paper

Series ISSN: 2367-2005 427 10.5441/002/edbt.2021.46

https://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2021.46

benchmarking, we found in some discovery runs that more than

99% of the running time is spent on validating AOC candidates.

That it deliberately does not guarantee finding a minimal

removal set means that the algorithm may overestimate the ap-

proximation factor of an AOC candidate. Thus, true AOCs with
respect to the approximation threshold can be eliminated (while

the exact OD discovery algorithm is complete).

In this paper, we resolve this major bottleneck in AOD dis-

covery via an algorithm with optimal runtime and guaranteed

minimal removal set for validating AOC candidates. This brings

performance of AOD discovery on par with that of OD discovery,

while making the AOD discovery complete.

The paper is structured as follows, with the following key con-

tributions. In Sec. 2, we provide background and discuss related

work. In Sec. 3.1, we illustrate the established OD and AOD dis-

covery framework—which we then adapt herein—and, in Sec. 3.2,

the iterative validation algorithm [10, 11] it employs. In Sec. 3.3,

we contribute a minimal and optimal validation algorithm based

on longest increasing subsequences that decreases the runtime

from quadratic to log-linear. In Sec. 4, we present our experimen-

tal results, with the following contributions. We demonstrate that

AOD discovery using our validation algorithm scales to datasets

with millions of tuples and tens of attributes (Exp-1 and Exp-2).

We compare our adapted AOC discovery against the previous

approach and demonstrate that ours is orders of magnitude faster

(Exp-3). As discovering AODs enables the application of pruning

rules earlier than for discoveringODs, AOD discovery can be just

as efficient, if not more so. Our AOD discovery algorithm gains

up to 76% improvement in runtime compared against the (exact)

OD discovery algorithm (Exp-5). Given our AOD discovery al-

gorithm is complete, we discover more AODs, and semantically
more general AODs (thus, of higher quality). We show that we

find more AODs, both due to our better scalability and the mini-

mality of our removal sets (Exp-4 and Exp-6). Finally, in Section

5, we conclude with suggestions for future work.

2 PRELIMINARIES AND RELATED WORK
2.1 Definitions and Notation
R denotes a relational schema, r represents a table instance, and
s and t denote tuples. A and B denote individual attributes and

X and Y sets of attributes. Lists of attributes are presented using

X and Y; [] denotes the empty list and [A | T] denotes a list with
head attribute A and tail list T. Tuples tA and tX denote the

projections of tuple t on A and X, respectively. Wherever a set

is expected but a list appears, the list is cast to a set; e.g., tX is

equivalent to tX . X′
represents an arbitrary permutation of the

values of a list X or set X.

Definition 2.1. (nested order) Let X be a list of attributes where

X ∈ R. Given two tuples, s and t, s ⪯X t iff
• X = []; or
• X = [A | T] and sA < tA; or
• X = [A | T], sA = tA, and s ⪯T t.

Let s ≺X t iff s ⪯X t but t ⪯̸X s.

Next, we define order dependencies [1, 4, 6, 10, 11, 13].

Definition 2.2. (order dependency) Let X and Y be lists of at-

tributes where X,Y ⊆ R. X ↦→ Y denotes an order dependency,
read as X orders Y. Table r satisfies X ↦→ Y (r |= X ↦→ Y) iff, for
all s, t ∈ r, s ⪯X t implies s ⪯Y t. X and Y are order equivalent
(denoted as X ↔ Y), iff X ↦→ Y and Y ↦→ X.

Definition 2.3. (order compatibility) Let X and Y be lists of

attributes whereX,Y ⊆ R.X andY are order compatible, denoted
as X ∼ Y, iff XY ↔ YX.

The order dependencyX ↦→ Ymeans thatY’s values are mono-

tonically non-decreasing with respect to X’s values. Therefore, if
one orders the tuples by X, they are also ordered by Y. The order
compatibility (OC) X ∼ Y means that there exists a total order of

the tuples in which they are ordered according to both X and Y.

Example 2.4. In Table 1, the OD sal ↦→ taxGrp holds. The OC
taxGrp ∼ sal holds, even though the OD taxGrp ↦→ sal does not.

ODs have a strong correspondence withOCs and FDs. AnOD
X ↦→ Y holds iff X ∼ Y (OC) and X → Y (FD) hold. This gives
two sources of violations for ODs: swaps and splits [13].

Definition 2.5. (swap) A swap with respect to OC X ∼ Y is a

pair of tuples s and t such that s ≺X t but t ≺Y s.

Definition 2.6. (split) A split with respect to FD X → Y is a

pair of tuples s and t such that sX = tX but sY ≠ tY

Example 2.7. In Table 1, given the OD pos, exp ↦→ pos, sal,
tuples t7 and t8 constitute a swap (the OC pos, exp ∼ pos, sal),
and tuples t6 and t7 constitute a split (the FD pos, exp → pos, sal).

Definition 2.8. tuples s and t are equivalent w.r.t. set of at-
tributes X iff sX = tX . An attribute set X partitions tuples into

equivalence classes [3]. The equivalence class of tuple t ∈ r w.r.t.
X is denoted by E(tX); i.e., E(tX) = {s ∈ r | sX = tX}. Given a

set of attributes X, a partition of the table with respect to X is

the set of all equivalence classes; i.e., ΠX = {E(tX) | t ∈ r}.
Example 2.9. In Table 1, E(t1 {pos}) = E(t2 {pos}) = E(t4 {pos})

= {t1, t2, t4}, and Πpos = {{t1, t2, t4}, {t3, t5, t6, t7, t8}, {t9}}.

2.2 A Canonical Mapping
A natural representation of ODs relies on lists of attributes, as in

the ORDER BY statement in SQL, where the order of attributes in

the list matters; e.g., the OD pos, sal ↦→ pos, exp is different than

the OD pos, sal ↦→ exp, pos. This is unlike FDs, where the order
of attributes does not matter, as with the GROUP BY statement in

SQL. Working within this list-based representation, however, has

led to discovery frameworks with factorial worst-case runtimes

in the number of attributes [6]. Fortunately, lists are not inher-
ently necessary to express ODs. In [10, 11], the authors rely on

a polynomial mapping of list-based ODs into a logically equiva-
lent collection of set-based canonical ODs to devise a discovery

framework with exponential worst-case runtime in the number

of attributes and linear in the number of tuples.

Definition 2.10. (canonical order compatibility) Given a set of

attributes X, X′A ∼ X′B is the OC that states that attributes A
and B are order compatible within each equivalence class of X.

We write this as X: A ∼ B in the canonical notation, factoring

out the common prefix, and refer to this as a canonical OC.

Definition 2.11. (order functional dependency) Given a set of at-

tributesX, the FD that states that an attributeA is constant within
each equivalence class of X is equivalent to the list-based OD
X′ ↦→ X′A. We write this as X: [] ↦→ A in the canonical notation,

and refer to this as an order functional dependency (OFD).

Given a canonical OC of X: A ∼ B or an OFD of X: [] ↦→ A,
the set X is referred to as the context of the respective canonical
OC or OFD. Intuitively, the context is the common prefix on the

left- and right-side of the corresponding list-based OC or OD.

428

Canonical OCs and OFDs constitute the canonical ODs; i.e.,
OD ≡ OC +OFD. The OD of X′A ↦→ X′B is logically equivalent

to the canonical OC of X: A ∼ B and OFD of XA: [] ↦→ B. This
is X: A ↦→ B written in the canonical form.

Example 2.12. In Table 1, sal and bonus are order compatible

w.r.t. the context pos; i.e., {pos}: sal ∼ bonus. In the same table,

bonus is constant w.r.t. the context pos, sal; i.e., {pos, sal}: [] ↦→
bonus. Therefore, sal orders bonus w.r.t. the context pos; i.e.,
{pos}: sal ↦→ bonus.

This mapping generalizes: an OD X ↦→ Y holds iff X ↦→
XY and X ∼ Y. These can be encoded into an equivalent set

of canonical OFDs and OCs as follows. In the context of X, all

attributes in Y must be constants. In the context of all prefixes

of X and of Y, the trailing attributes must be order compatible:

R |= X ↦→ XY iff ∀A ∈ Y. R |= X : [] ↦→ A and

R |= X ∼ Y iff ∀𝑖, 𝑗 . R |= [X1, . . . , Xi−1] [Y1, . . . , Yj−1] : Xi ∼ Yj.

Thus, list-based ODs can be polynomially mapped to a set of

equivalent canonical ODs; i.e., canonical OCs and OFDs [10, 11].
In this work, we refer to canonical OCs simply as OCs.

Example 2.13. TheOD [A,B] ↦→ [C,D] is equivalent to the fol-
lowing canonical ODs: {A,B}: [] ↦→ C, {A,B}: [] ↦→ D, {}: A ∼
C, {A}: B ∼ C, {C}: A ∼ D, and {A,C}: B ∼ D.

While various algorithms have been proposed for discovering

ODs, most are not complete. The algorithm described in [6] relies

on the list-based definition and employs aggressive pruning rules

to compensate for its factorial time complexity, but which make

it deliberately incomplete. The authors in [4] claim completeness

but their algorithm misses ODs in which the same attributes are

repeated on the left- and right-hand side. A similar completeness

claim has been made in [1], which was shown to be incorrect

in [12]. The set-based OD discovery algorithm proposed in [10]

does offer a sound and complete discovery of ODs. Thus, we
build our algorithm atop the framework introduced in [10].

2.3 Definition of Approximate ODs
We refer to canonical AOCs and approximate OFDs (AOFDs)
collectively as AODs. We define AODs based on the fewest tu-

ples that must be removed from a table for an OD to hold. This

definition was used for AODs in [10]; their AOC validation step

(for the only currently existing AOD discovery algorithm) has a

quadratic runtime. For AOFDs, validation takes linear time [3].

Definition 2.14. Given a table r and anOD 𝜑 , a set of tuples s is
a removal set w.r.t. 𝜑 iff r\ s |= 𝜑 . Let |r| denote the cardinality of

r, the number of tuples in r. A removal set s is aminimal removal

set iff it has the smallest cardinality over all removal sets; i.e.,

|s| = min({|s| | s ⊆ r, r \ s |= 𝜑}). Given s, the approximation
factor 𝑒 (𝜑) is defined as |s|/|r|.

Example 2.15. Consider Table 1 and the OC of sal ∼ tax. Here,
s = {t1, t2, t4, t6} and 𝑒 (sal ∼ tax) = 4/9 ≈ 0.44, as r \ s =

{t3, t5, t7, t8, t9} does not contain any swaps with respect to sal ∼
tax and no smaller set s′ exists such that r \ s′ |= sal ∼ tax.

Given a table r and an approximation threshold 𝜖 , 0 ≤ 𝜖 ≤ 1,

the problem of discovering AODs involves finding all minimal

(non-redundant that follow from others) ODs 𝜑 such that 𝑒 (𝜑) ≤
𝜖 . In this work, we focus on the problem of validating AODs; i.e.,
verifying whether the approximation factor of a given AOD is

less than or equal to a provided threshold. We present an optimal

Discovered
AODs

Dataset

Generate
AOD

Candidates

Pruning
based on
Axioms

Ranking by
Interestingness Score

AOD
Validation

1 2

Approx. Threshold

Discovery
Algorithm

Verified
AODs

Error Repair /
Outlier Detection

5

3

46

Figure 1: System framework.

algorithm for doing so and incorporate it into an existing OD
discovery framework.

As discussed in Sec. 2.2, OCs and OFDs constitute canonical
ODs; i.e., OD ≡ OC + OFD. There already exists an efficient

linear-time algorithm for validating AOFDs, as described in [3].

In this work, we present an optimal validation algorithm for

AOCs. Note that when discovering approximate OCs and OFDs
given an approximation threshold 𝜖 , AOD ≡ AOC + AOFD does

not necessarily hold. If AOC X: A ∼ B and AOFD XA: [] ↦→ B
hold with approximation factors 𝑒1, 𝑒2 ≤ 𝜖 , respectively, it is not
guaranteed for the corresponding AOD of X: A ↦→ B to also hold

with respect to 𝜖 . As to be discussed in Sec. 3.3, however, our

validation algorithm can easily be extended to validate list-based

approximate ODs as well.

3 DISCOVERING APPROXIMATE OD’S
In Sec. 3.1, we describe our framework to discover set-based

canonical AODs. In Sec. 3.2, we describe the iterative validation

algorithm proposed in [10, 11], analyze its runtime, and provide

an example of it failing to find a minimal removal set and thus

overestimating the number of tuples that must be removed. In

Sec. 3.3, we present our efficient validation algorithm, based on

the longest increasing subsequence (LIS) problem, analyze its

runtime, and prove its minimality and optimality.

3.1 Discovery Framework
The algorithm starts the search from singleton sets of attributes

and proceeds to traverse the set-based attribute lattice in a level-

wise manner [10, 11]. At each level, and when processing the

attribute set X, the algorithm verifies AOCs of the form X \
{A,B}: A ∼ B for which A,B ∈ X and A ≠ B, and AOFDs of the
form X \ {A}: [] ↦→ A for which A ∈ X.

Figure 1 illustrates the framework. Candidate AODs are gener-
ated based on the attribute sets at the current level of the lattice.

Using the dependencies found in previous levels of the lattice,

these candidates are then pruned by axioms to avoid redundant

dependencies that follow from already discovered ones [10]. Our

algorithm validates whether each candidate dependency holds

approximately, given the approximation threshold as input. Valid

AODs are then scored and ranked, using the measure of interest-

ingness introduced in [10]. These discovered AODs can then be

manually verified by domain experts, to be then used for tasks

such as error repair or outlier detection, which is an easier task

than manual specification.

3.2 The Iterative Validation Algorithm
We first discuss the algorithm described in [10, 11] to validate

an AOC given a threshold 𝜖 . To validate an AOC, the authors
compute a removal set s by iteratively removing a tuple with the

largest number of swaps, which does not guarantee to produce

the minimal removal set. This is repeated until either the OC

429

Algorithm 1 Approx-OC-iterative

Input: Table r, OC X: A ∼ B, and approximation threshold 𝜖 .

Output: Approximation factor 𝑒 and removal set s, or “INVALID”

1: s = {}
2: for all E ∈ ΠX do
3: t = order E by [A ASC, B ASC]
4: tswapCnt = countInversions(tB)
5: order t by swapCnt ASC
6: while t is not empty do
7: t = t.dropLast()
8: if tswapCnt == 0 then break
9: for all s ∈ t do
10: if sA,B and tA,B are swapped then sswapCnt −= 1

11: end for
12: order t by swapCnt ASC
13: add t to s
14: if |s | > 𝜖 |r | then return “INVALID”

15: end while
16: end for
17: return |s |/ |r |, s

holds or the number of removed tuples crosses the threshold 𝜖 |r|,
in which case the AOC candidate is considered invalid. Note that

after removing each tuple, the number of swaps for the remaining

tuples must be updated.

Algorithm 1 validates a candidate using the iterative approach.

The steps in Lines 3 to 15 are repeated on tuples within each

equivalence class with respect to the context. Line 4 uses a variant

of merge sort to count the number of inversions in the projection

of sorted tuples over B, which is equivalent to the number of

swaps for each tuple. Line 7 removes a tuple with the most swaps

and Lines 9 to 11 update the number of swaps for the remaining

tuples. Line 14 exits if the approximation threshold is crossed.

Example 3.1. Consider Table 1 and the OC sal ∼ tax. Tuple t7
has swaps with tuples t1, t2, t4, and t6, which is more than any

tuple in the table, and is thus removed. In following steps, tuples

t5, t3, t6, and t4 are removed. Therefore, s = {t3, t4, t5, t6, t7} is
reported as a removal set for this AOC, and the approximation

factor is computed as 5/9 ≈ 0.56. This is larger than the actual

approximation factor for this AOC; i.e., 0.44.

Let 𝑚 denote the number of tuples in an equivalence class.

Lines 3 to 5 have runtime O(𝑚 log𝑚). Lines 7 to 14 inside the

loop take O(𝑚) time. Note that since the value of swapCnt for
each tuple is bounded by𝑚, sorting the tuples in Line 12 (as well

as Line 5) can be done in O(𝑚) time using counting sort. In the

worst case, this loop is repeated 𝜖𝑛 times, where 𝜖 and 𝑛 denote

the approximation threshold and the number of tuples in the

table, respectively. Therefore, in the worst case, where𝑚 = 𝑛,

the runtime of this algorithm is O(𝑛 log𝑛 + 𝜖𝑛2).

3.3 Our Optimal Validation Algorithm
We now present Algorithm 2 based on the longest increasing sub-
sequence (LIS) problem to validate an AOC candidate. Lines 3 to 5

are repeated for the tuples in each equivalence class with respect

to the context. Line 3 orders the tuples by [A,B] in ascending

order. Next, Line 4 finds a longest non-decreasing subsequence

(LNDS) of the projection of tuples over B. (AsOCs are symmetric,

we can also sort by [B,A] and find a LNDS of projections over

A.) Line 5 adds the tuples that are not in the LNDS to the removal

set. Finally, Line 7 checks whether the OC holds approximately

with respect to the threshold, and returns the appropriate output.

Algorithm 2 Approx-OC-optimal

Input: Table r, OC X: A ∼ B, and approximation threshold 𝜖 .

Output: Approximation factor 𝑒 and removal set s, or “INVALID”

1: s = {}
2: for all E ∈ ΠX do
3: t = order E by [A ASC, B ASC]
4: 𝐿 = computeLNDS(tB)
5: s = s ∪ (tB \ 𝐿)
6: end for
7: if |s | ≤ 𝜖 |r | then return |s |/ |r |, s else return “INVALID”

Example 3.2. Consider Table 1 and the OD sal ∼ tax. After
ordering the tuples according to sal and breaking ties by tax, the
projection of the tuples over tax is the list [2𝐾, 2.5𝐾, 0.3𝐾, 12𝐾,
1.5𝐾, 16.5𝐾, 1.8𝐾, 7.2𝐾, 16𝐾]. The LNDS of this list is [0.3𝐾, 1.5𝐾,
1.8𝐾, 7.2𝐾, 16𝐾] and thus, the removal set is s = {t1, t2, t4, t6}.
Thus, the approximation factor is 4/9 ≈ 0.44.

Again, let𝑚 denote the number of tuples in an equivalence

class. Sorting the tuples in each equivalence class takesO(𝑚 log𝑚)
time (Line 3). To compute a LNDS of a list with length𝑚, a dy-

namic programming algorithm from [2] with small modifications

and with runtime O(𝑚 log𝑚) is employed (Line 4). In Line 5,

since 𝐿 is a subsequence of tB, tB \ 𝐿 can be computed in O(𝑚)
time by traversing both lists once. Therefore, the worst case run-

time of this algorithm, which occurs when𝑚 = 𝑛, is O(𝑛 log𝑛).
We now prove minimality and optimality of our algorithm.

1

Theorem 3.3. The set s generated using Algorithm 2 is a mini-
mal removal set with respect to the given AOC.

Theorem 3.4. Algorithm 2 has the optimal runtime for validat-
ing an AOC candidate.

Our validation algorithm easily extends to AODs of the form
X: A ↦→ B. We again use Algorithm 2, but in Line 3, tuples are

ordered according to the ascending order over A, but ties are
broken according to the descending order over B. Intuitively, this
forces the solution to the LNDS problem in Algorithm 2 to remove

all splits in the table (removal of swaps is already ensured similar

to Algorithm 2 for AOCs).2

4 EXPERIMENTS
We implemented our approximate OC validation algorithm on

top of a Java implementation of the set-basedOD discovery frame-

work from [10]. We implemented our new LIS-based algorithm

as well as the iterative algorithm using the same technologies

to ensure that the improvements in runtime are not due to im-

plementation differences. Unless mentioned otherwise, we set

the approximation threshold to 10% and use ten attributes. We

run our experiments on a machine with Xeon CPU 2.4GHz with

64GB RAM, and use datasets from the Bureau of Transportation

Statistics and the North Carolina State Board of Elections:

(1) flight contains information such as date, origin, destina-

tion, and airline about flights in the United States and has

1M tuples and 35 attributes (https://www.bts.gov).

(2) ncvoter contains information such as registration number,

age, and address about voters in North Carolina and has

5M tuples and 30 attributes (https://www.ncsbe.gov).

1
Due to space limits, proofs of theorems can be found in the technical report [5].

2
This idea can be extended to list-based AODs of the form X ↦→ Y, by ordering

tuples in ascending order of X and breaking ties using the descending order over Y.

430

OD AOD (optimal) AOD (iterative) TANE FASTOD ORDER old LIS old greedy

200K 209.00 228.00 72832.00 29 387 387 266 0.8571429 41947.25 44155

400K 553.00 686.00 291328.00 19 329 700 0.98

600K 938.00 1126.00 655488.00 13 301 1180 0.9542373

800K 1497.00 1768.00 1165312.00 23 307 1822 0.9703622

1M 1989.00 2379.00 1820800.00 18 288 2410 0.9871369

old LIS old greedy

100K 141 123 34,935 18 129 129 123 129 0.778481 24454.5 158 11165

1M 3,261 2,554 40 145 2554 145 0.779134 3278

2M 7,924 5,586 50 150 5586 150 0.692537 8066

3M 12,076 8,817 81 276 8817.9 ?276 0.7 12597

4M 17,552 12,058 68 281 12058.2 ?281 0.7 17226

5M 29,249 19,020 70 284 19020 284 0.649258 29295

flight-10

ncvoter

29
19 13 23 18

387 329 301 307 288
387

0

500,000

1,000,000

1,500,000

2,000,000

200K 400K 600K 800K 1M

ti
m

e
(s

)

of tuples

OD

AOD (optimal)

AOD (iterative)

flight

18 40
50

81
68

70

129 145 150 276 281
284

129

0

20,000

40,000

60,000

80,000

100K 1M 2M 3M 4M 5M

ti
m

e
(s

)

of tuples

OD

AOD (optimal)

AOD (iterative)

ncvoter

* 24h

Figure 2: Scalability in |r|.

old LIS old greedy

99 169 1.076087

408 2254 0.931507

2053 11559 0.785687

6053 38310 0.572442

16395 108343 0.605831

150800 874973 0.709607

593408 3334646 0.61235

#DIV/0!

#DIV/0!

#DIV/0!

#DIV/0!

LIS Greedy old LIS old greedy #DIV/0!

127 281 123 183 1.123894

828 3943 914 2838 0.901961

4755 22969 6851 25387 0.632566

60934 350209 130275 522374 0.363924

600346 3489948 1644662 6613714 0.256885

7018096 0.230522

0
113

2,639
21,279

48,170

88,522
221,460

0
345

4,548
19,528 38,849

54,879
115,949

0

346
4,538

19,486
38,752

54,651
115,774

1

100

10,000

1,000,000

5 10 15 20 25 30 35

ti
m

e
(m

s)

of attributes

OD

AOD (optimal)

AOD (iterative)

flight

0
65

482
6,272

55,030

675,676

5
105

654
10,130

102,894

1,398,967

5

107
636

10,034

102,014

1,386,322

10

1,000

100,000

10,000,000

5 10 15 20 25 30

ti
m

e
(m

s)

of attributes

OD

AOD (optimal)

AOD (iterative)

ncvoter

Figure 3: Scalability in |R|.

4.1 Scalability
Exp-1: Scalability in |r|. We measure the runtime (in seconds)

of the AOD discovery framework that uses our validation algo-

rithm by varying the number of tuples in our datasets, as reported

in Figure 2. For now, ignore the curves labeled “OD” and “AOD (it-

erative)”, as well as the numbers next to the datapoints. The AOD
discovery framework implemented using our optimal algorithm

scales up to millions of tuples.

Exp-2: Scalability in |R|. Next, we measure the runtime of the

discovery framework in milliseconds, by varying the number

of attributes in our datasets, as illustrated in Figure 3. We use

1K tuples of our datasets (to allow experiments with a large

number of attributes in reasonable time) and vary the number

of attributes in multiples of five. In this experiment, the runtime

has an exponential growth (the Y-axis in Figure 3 is in log scale).

This is expected since the number ofODs increases exponentially
with the number of attributes.

4.2 Comparison with the Iterative Algorithm
Exp-3: Runtime comparison with the iterative algorithm.
As discussed in Section 3, our AOC validation algorithm has time

complexity O(𝑛 log𝑛), while the iterative algorithm proposed in

[10, 11] has time complexity O(𝑛 log𝑛 + 𝜖𝑛2). Figures 2, 3, and
4 illustrate the running times of the AOD discovery framework

when using these two validation algorithms.

OD AOD (optimal) AOD (iterative) TANE FASTOD ORDER

0 9.50 20.90 78 78

5 4.90 113.10 455 456

10 4.40 157.80 501 502

15 4.30 186.00 488 488

20 4.40 213.10 492 492

25 4.40 234.50 471 471

30 3.90 231.00 370 368

0 10 41 25 25

5 8 163 103 103

10 7 249 120 119

15 6 320 114 114

20 6 384 122 122

25 5 394 127 129

30 5 425 126 131

flight-10

ncvoter

78
455 501 488 492 471

78

456 502

488
492

471

0

50

100

150

200

250

0 5 10 15 20 25

ti
m

e
(s

)

approximation threshold (%)

AOD (optimal)

AOD (iterative)

flight

25
103 120 114 122 127

25

103

119

114

122 129

0

100

200

300

400

500

0 5 10 15 20 25

ti
m

e
(s

)

approximation threshold (%)

AOD (optimal)

AOD (iterative)

ncvoter

Figure 4: The effect of the approximation threshold.

As shown in Figure 2, while when using our algorithm, the

framework can discover AOCs in datasets with up to millions of

tuples, when using the iterative algorithm, it does not terminate

within 24 hours on 400K and 1M tuples of the flight and ncvoter
datasets, respectively (the running times for the flight dataset
have been projected with dashed lines for better comparison). In

cases where the framework equipped with the iterative algorithm

terminates within the time limit, it is orders of magnitude slower.

In Figure 3, while the differences are not as pronounced (as the

number of tuples is too small), using our validation algorithm

still makes the framework almost an order of magnitude faster.

We next experiment with the approximation threshold, by

using 10K tuples from our datasets and setting the approximation

threshold to 0, 5, 10, 15, 20, and 25 percent. As Figure 4 illustrates,

while a larger approximation threshold does not increase the

runtime of our algorithm, (the runtime decreases in some cases

due to better pruning opportunities), it increases the runtime of

the iterative approach at an almost linear rate. This aligns with

the time complexity of these algorithms, as analyzed in Section 3.

As mentioned in Section 1, validating AOCs becomes the bot-

tleneck of theAOD discovery frameworkwhen using the iterative

algorithm. This is verified in our experiments, as up to 99.6% of

the total runtime is spent on validation. Using our LIS-based

validation algorithm, we reduce the time spent on validating

AOCs by up to 99.8%, which results in the orders-of-magnitude

improvement in runtime discussed before.

Exp-4: Removal sets and validating AOCs using the iter-
ative algorithm. While our validation algorithm guarantees

finding a minimal removal set for a given OC (as is proved in

Section 3.3), the iterative algorithm may overestimate the size of
a minimal removal set. This results in removal sets which are on

average around 1% larger than the true minimal removal set.

Overestimating the approximation factor may result in miss-

ing valid AOCs if the true approximation factor is close to the

input threshold. In Fig. 2, 3, and 4, the numbers inside the plots

indicate the number of OCs or AOCs found by an algorithm. We

have not listed the number of AOFDs since this work focuses on

discovering AOCs. (Wherever the plots for our algorithm and

the algorithm for exact ODs overlap, the numbers on the bottom

correspond to our approach.) The iterative approach misses up

to 2% of the valid AOCs found using our optimal approach.

Missing these AOCs could have potentially severe consequen-

ces. For instance, in the flight dataset, the AOC of arrivalDelay ∼
lateAircraftDelay holds with an approximation factor of 9.5%.

431

Level FASTOD Time (ms) #set-based ODs (#FDs + #OCDs)

1 9/.81

2 20/.78

3 21/.51

4 5 5/.20

5 31 4/.00

6 25 0/NA

7 6 0/NA

8 2

9 1

1 9/.94

2 3 8/.82

3 64 2/.21

4 101 3/.14

5 87 2/.007

6 23 2/.00

7 6 0/NA

8 0 0/NA

9 0 0/NA

flight dataset 1,000

rows 40 columns

ncv dataset 1,000

rows 40 columns

1

10

100

1,000

2 3 4 5 6 7 8 9

#
 o

f
O

C
s/

A
O

C
s

lattice level

OCs

AOCs

ncvoter-5M-10

Figure 5: Number of discovered OCs/AOCs in each level.

This AOC points out that generally, delays in arrival are due to

the aircraft and not other causes; e.g., security or weather delays.

However, the iterative algorithm overestimates the approxima-

tion factor as 10.5%. This results in the framework missing this

valid AOC when using an approximation threshold of 10%. Note

that missing some AOCs results in different pruning opportuni-

ties, and, as a result, the set of discovered AOCs, which explains

why the iterative algorithm discovers more AOCs in some cases.

Furthermore, as has been discussed for Exp-3, the running

time of the iterative algorithm on larger datasets is prohibitively

long. On such datasets, using the iterative algorithm results in

missing all valid AOCs. For instance, in the ncvoter dataset with
5M tuples and with the approximation threshold set to 20%, the

AOC of municipalityAbbrv ∼ municipalityDesc is discovered,

which points to exceptions in creating abbreviations for munici-

palities; e.g., “Raleigh” is abbreviated as “RAL”, while “Charlotte”

is abbreviated as “CLT”. However, this AOC does not hold in our

100K sample of tuples when using this threshold. Therefore, this

dependency would have been missed by using the iterative vali-

dation algorithm, as it exceeds the time limit on the full dataset.

4.3 Comparison with Exact OD Discovery
Exp-5: Lattice level of AOCs and runtime improvements.
AOCs tend to reside in lower levels of the lattice (with smaller

contexts). In our scalability experiments in the number of tuples

(Exp-1), the AOCs are on average 1.2 levels lower on the lattice.

Similarly, in experiments in the number of attributes (Exp-2),

the AOCs are on average 0.5 levels lower on the lattice. Figure 5

shows the number of OCs or AOCs found at each level of the

lattice, when using 5M tuples and 10 attributes of the ncvoter
dataset. On this dataset, the average lattice level of the discovered

dependencies drops from 5.6 to 4.3 when using our approximate

algorithm. As discussed in [10, 11], dependencies found in lower

levels of the lattice are likely to be more interesting.

Furthermore, as discussed in Section 3.1, our discovery frame-

work first validates candidates on lower levels of the lattice, and

then applies pruning rules to generate the candidates on higher

levels of the lattice (step 3 in Figure 1). Therefore, by finding

AOCs in lower levels, the algorithm can use pruning rules more

effectively earlier in the discovery process, resulting in pruning

some candidates on higher levels of the lattice and validating

fewer candidates in total. The effects of such pruning opportuni-

ties are not noticed when using the iterative validation algorithm,

due to its prohibitively long running time. However, we optimally

reduce the runtime of the validation step, resulting in runtime

improvements for the discovery framework.

Figures 2 and 3 show the running times of the algorithms

for discovering exact and approximate ODs. Even though val-

idation of AOCs has a worse runtime compared to exact OCs,
i.e., O(𝑛 log𝑛), as opposed to O(𝑛), due to the extra pruning

opportunities described above, the total runtime of the discov-

ery framework for AODs can even be lower than the discovery

framework for exact ODs; i.e., up to 34% and 76% faster in exper-

iments in the number of tuples and attributes, respectively. The

pronounced effect in the experiments in the number of attributes

is due to having a smaller number of tuples.

Exp-6: Discovered AOCs compared to OCs. The exact algo-
rithm fails to discover meaningful OCs in presence of anomalies,

or even if a single value is erroneous. However, valid AOCs may

hold in such instances. Other than the AOCs discussed in Exp-4,

in the flight dataset, we discovered the AOC city ∼ airportName
with a 27% approximation factor, which indicates that the names

of airports usually begin with the name of the corresponding

cities. Furthermore, the AOC streetAddress ∼ mailAddress holds
in the ncvoter dataset with an approximation factor of 18%. These

AOCs can point to anomalies and data quality issues, e.g., wrong

address formats, misaligned mailing and residence addresses, and

non-standard / erroneous airport names.

As shown in Figures 2 and 3, by discovering AOCs, we can
find more dependencies in the data. Even if there are fewer AOCs
than OCs (e.g., the flight dataset in Exp-2), the discovered de-

pendencies are on lower levels of the lattice, as shown in Exp-5,

which makes them more interesting [10, 11]. If the number of

discovered dependencies is too large, the interestingness measure

proposed in [11] can be used to rank the AOCs. In fact, the exam-

ple AOCs that we have identified in Exp-4 and in this experiment,

were all ranked as the most interesting AOCs.

5 CONCLUSIONS
We proposed a new validation algorithm for approximate ODs
and proved its minimality and runtime optimality. We then im-

plemented our approach in an existing canonical OD discovery

framework and demonstrated significant gains compared to ex-

isting frameworks for discovering exact and approximate ODs.
In future work, we will study new approaches for discovering ap-

proximate ODs, such as hybrid sampling, as done in [7] for FDs.
We will also extend our approximate OD discovery framework

to distributed settings, similar to the work in [9].

REFERENCES
[1] C. Consonni, P. Sottovia, A. Montresor, and Y. Velegrakis. 2019. Discovering

order dependencies through order compatibility. EDBT (2019), 409–420.

[2] M. Fredman. 1975. On computing the length of longest increasing subse-

quences. Discrete Mathematics 11, 1 (1975), 29 – 35.

[3] Y. Huhtala, J. Kärkkäinen, P. Porkka, and H. Toivonen. 1999. TANE: An Effi-

cient Algorithm for Discovering Functional and Approximate Dependencies.

Computer J. 42 (1999), 100–111.
[4] Yifeng Jin, L. Zhu, and Zijing Tan. 2020. Efficient Bidirectional Order Depen-

dency Discovery. ICDE (2020), 61–72.

[5] Reza Karegar, Parke Godfrey, Lukasz Golab, Mehdi Kargar, Divesh Srivas-

tava, and Jaroslaw Szlichta. 2021. Efficient Discovery of Approximate Order

Dependencies. Technical report, 7 pages, http://arxiv.org/abs/2101.02174 (2021).
[6] P. Langer and F. Naumann. 2016. Efficient Order Dependency Detection. The

VLDB Journal 25, 2 (2016), 223–241.
[7] T. Papenbrock and F. Naumann. 2016. A Hybrid Approach to Functional

Dependency Discovery. SIGMOD (2016), 821–833.

[8] Y. Qiu, Tan, K. Z., Yang, X. Yang, and N. Guo. 2018. Repairing data violations

with order dependencies. DASFAA (2018), 283–300.

[9] H. Saxena, L. Golab, and I. Ilyas. 2019. Distributed Implementations of Depen-

dency Discovery Algorithms. PVLDB 12, 11 (2019), 1624–1636.

[10] J. Szlichta, P. Godfrey, L. Golab, M. Kargar, and D. Srivastava. 2017. Effective

and complete discovery of order dependencies via set-based axiomatization.

PVLDB 10, 7 (2017), 721–732.

[11] J. Szlichta, P. Godfrey, L. Golab, M. Kargar, and D. Srivastava. 2018. Effective

and Complete Discovery of Bidirectional Order Dependencies via Set-Based

Axioms. The VLDB Journal 27, 4 (2018), 573–591.
[12] J. Szlichta, P. Godfrey, L. Golab, M. Kargar, and D. Srivastava. 2020. Erratum

for discovering order dependencies through order compatibility. EDBT (2020),

659–663.

[13] J. Szlichta, P. Godfrey, and J. Gryz. 2012. Fundamentals of Order Dependencies.

PVLDB 5, 11 (2012), 1220–1231.

432

	Efficient Discovery of Approximate Order DependenciesReza Karegar, Parke Godfrey, Lukasz Golab, Mehdi Kargar, Divesh Srivastava, Jaroslaw Szlichta

