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ABSTRACT
We study the problem of discovering joinable datasets at scale.We
approach the problem from a learning perspective relying on pro-
files. These are succinct representations that capture the under-
lying characteristics of the schemata and data values of datasets,
which can be efficiently extracted in a distributed and parallel
fashion. Profiles are then compared, to predict the quality of a
join operation among a pair of attributes from different datasets.
In contrast to the state-of-the-art, we define a novel notion of join
quality that relies on a metric considering both the containment
and cardinality proportion between join candidate attributes. We
implement our approach in a system called NextiaJD, and present
experiments to show the predictive performance and compu-
tational efficiency of our method. Our experiments show that
NextiaJD obtains similar predictive performance to that of hash-
based methods, yet we are able to scale-up to larger volumes
of data. Also, NextiaJD generates a considerably less amount of
false positives, which is a desirable feature at scale.

1 INTRODUCTION
Data discovery requires to identify interesting or relevant datasets
that enable informed data analysis [2, 9]. Discovery and integra-
tion of datasets is nowadays a largely manual and arduous task
that consumes up to 80% of a data scientists’ time [19]. This only
gets aggravated by the proliferation of large repositories of het-
erogeneous data, such as data lakes [15] or open data-related
initiatives [14]. Due to the unprecedented web-scale volumes of
heterogeneous data sources, manual data discovery becomes an
unfeasible task that calls for automation [11]. Hence, we focus on
the very first task of data discovery: the problem of discovering
joinable attributes among structured datasets in a data lake. We
distinguish three approaches: comparison by value, comparison by
hash and comparison by profile. Table 1, overviews recent contri-
butions. Comparison by value relies on auxiliary data structures
such as inverted indices or dictionaries to minimize the lookup
cost. Alternatively, the comparison by hash approach expects
that similar values will collision in the same bucket, also employ-
ing index structures for efficient threshold index. Comparison by

Search accuracy
Exact . . . . . . . . . . . . . . . . . . . . . . . . Approximate

Comp. by value
[6, 20, 22]

Comp. by hash
[4, 10, 21, 23]

Comp. by profile
[5, 7, 8, 12]

Expensive . . . . . . . . . . . . . . . . . . . . . . . . . Efficient
Algorithmic complexity

Table 1: Overview of approaches by technique, arranged
according to accuracy and algorithmic complexity
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profile methods leverage on profiles extracted from datasets and
their attributes. These are compared to predict whether a given
pair of attributes will join.

1.1 Data discovery at scale
Unfortunately, as we experimentally show in Section 3, the state-
of-the-art in data discovery does not meet the expectations for
web-scale scenarios. Unlike traditional relational databases, these
are characterized by a) a wide heterogeneity among datasets
(e.g., large differences on the number of attributes and / or their
cardinalities); b) massive volumes of data; and c) the presence
of a variety of topics, or domains. Overall, these distinguishing
features deem current solutions ineffective due to their inability
to scale-up as well as the low precision of the results obtained.

Inability to scale-up. Solutions that yield exact results or with
a bounded error (i.e., comparison by value and hash) require the
construction and maintenance of index structures for efficient
lookup. This is a task that becomes highly demanding in terms of
computing resources on large-scale datasets. In fact, as we have
empirically observed, the available implementations fail to handle
datasets of few GBs. Furthermore, most available approaches do
not allow incremental maintenance.

Low precision. Comparison by hash solutions employ either
containment or Jaccard distance as similarity measures to decide
joinability among pairs of attributes. It has been reported, how-
ever, that the estimation of such measures is highly imprecise
when the cardinality (i.e., the number of distinct values) of an
attribute is comparatively larger than the other’s [16], which is
a common characteristic in real-world web-scale applications.
As result, the precision of current approaches is highly affected
due to the large number of false positives. To showcase this fact,
we designed an experiment collecting 138 datasets from open
repositories such as Kaggle and OpenML1. Precisely, we devised
an heterogeneous collection of datasets ranging different top-
ics, which yielded a total of 110, 378 candidate pairs of string
attributes, where 4, 404 of those have a containment higher or
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Figure 1: Distribution of relevant and irrelevant results for
different containment values on a web-scale repository

1Repository available at https://mydisk.cs.upc.edu/s/GeYwdYH7xsGqbaX
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equal than 0.1. Indeed, as shown in Figure 1, even for very high
containment values (i.e., above 0.75), the number of irrelevant re-
sults (i.e., false positives) represents 40% of the total. Such results
were obtained by manually analyzing the proposed candidate
pairs. However, this approach is unfeasible for large scenarios
and better join metrics are needed.

1.2 Profile-based methods to the rescue
The above discussion highlights the limitations of value and
hash-based data discovery over web-scale scenarios. Alterna-
tively, the comparison by profile approach suits betters for large
scale scenarios as they rely on the detection of similarities or
discrepancies between profiles. Working with summaries instead
of data values is much more efficient from a complexity point of
view. Yet, despite the clear performance benefits of profile-based
approaches, there is nowadays a large gap in the trade-off re-
garding the quality of their results mainly due to the adoption of
rather basic profiles (e.g. [8]) that do not accurately describe the
underlying data or representative profiles (e.g. [5]) that are used
to discover a binary class (e.g. joinable or non-joinable). To that
end, we propose a novel approach to data discovery which aims
to cover the gap generated by the low predictive performance
of profile-based methods, as well as the limited precision and
scalability of hash-based systems on large data lakes.

We, first, propose a novel metric to denote the quality of a join.
Opposite to the related work, mostly focused on containment
or Jaccard distance, we also consider the cardinality proportion
between attributes as an indicator of a higher join quality. This
allows us to get rid of a substantial amount of false positives,
reducing the number of pairs to analyze. This is specially rel-
evant in large-scale settings, where as shown in Figure 1, the
number of candidate pairs is too large to manually disregard false
positives. Second, we propose a novel learning-based method
based on profiles to discover joinable attributes for large-scale
data lakes. Our assumptions apply to scenarios where data is
typically denormalized and file formats embed tabular data (i.e.,
not nested). We rely on state-of-the-art relational data profil-
ing techniques [1] to compute informative profiles for datasets.
This task, which can be done offline and parallelized over dis-
tributed computing frameworks (e.g., Apache Spark), allows us
to extract and model the underlying characteristics of attributes.
Next, profiles are compared in order to predict their expected
join quality. The predictive model is based on random forest clas-
sifiers, which are highly expressive and robust to outliers and
noise [3]. Additionally, such models can be trained and evaluated
in a distributed fashion [17], thus yielding a fully distributed end-
to-end framework for data discovery. We show that our method
is generalizable and that proposes a meaningful ranking of pairs
of attributes based on the predicted join quality.

Contributions.We summarize our contributions as follows:

• We introduce a qualitative metric for join quality, which consid-
ers containment and cardinality proportion between attributes.

• We learn a model based on random forest classifiers to effi-
ciently rank candidate pairs of joinable attributes.

• We show that our approach is scalable and outperforms the cur-
rent state of the art, yielding higher predictive performance re-
sults than profile-based solutions and similar quality (𝐹1-score)
to hash-based ones. Yet, our approach yields better precision
than hash-based approaches and produce less false positives.

2 MEASURING THE QUALITY OF A JOIN
Unlike the state-of-the-art, which mainly uses containment and
Jaccard similarities to decide the degree of joinability among
pairs of attributes, we define a qualitative metric to measure the
expected join quality. We consider containment as a desirable
metric to maximize. Yet, wemake the observation that datasets on
a data lake do not relate to each other as in a relational database.
In such scenarios, it is common to find datasets with few data
values in common that, in turn, may represent different seman-
tic concepts. In order to exemplify this idea, let us consider the
datasets depicted in Table 2. In this example, the reference dataset
𝐷𝑟𝑒 𝑓 might be joined with any of the two candidate datasets 𝐷1
(at the EU level) and 𝐷2 (worldwide). Current approaches would
propose both as joinable pairs, since they yield the same contain-
ment. However, we aim at distinguishing the join quality between
them and use their cardinality proportion for that purpose. Let
us consider the following cardinalities corresponding to the city
attributes: |𝐷𝑟𝑒 𝑓 | = 8124, |𝐷1| = 54500 and |𝐷2| = 982921. We use
the cardinality proportion as a measure to infer whether their
data granularities are similar. In this sense, the third dataset is
much larger than |𝐷𝑟𝑒 𝑓 | and yield a worse proportion and there-
fore we rank it worse. Importantly, we assume these datasets
store independently generated events and such big difference
in their cardinality most probably mean they embed different
semantics or sit at different granularity levels. In general, such
situations are a source of false positives for current solutions,
specially, when considering small tables.

2.1 Join quality
We now formalize the metric for join quality as a rule-based mea-
sure combining both containment and cardinality proportion. We
define a totally-ordered set of quality classes 𝑆 = {None, Poor,
Moderate, Good, High} as indicator of the quality of the resulting
join. Indeed, we advocate not to define a binary class (i.e., either
joinable or not), since we would not be able to rank the posi-
tive ones. As experienced with the state-of-the-art, in realistic
large scenarios, a binary class yields a long list of results, which

(a) 𝐷𝑟𝑒𝑓 – Tourism income in Spain

City Seaside Amount
Barcelona Y 350M
Girona Y 110M
Lleida N 75M

Tarragona Y 83M
. . . . . . . . .

(b) 𝐷1 – EU demographic data

Unit Population Avg. salary Cost of living
Antwerp 1,120,000 44,000€ 2,896€
Barcelona 1,620,343 31,000€ 2,422€
Berlin 4,725,000 49,000€ 2,737€
Bristol 1,157,937 30,000£ 2,397£
. . . . . . . . . . . .

(c) 𝐷2 – Worldwide demographic data

Name Country Population
Barcelona Spain 1,620,343
Canberra Australia 426,704
Chicago United States 2,695,598
Curitiba Brasil 1,908,359

. . . . . . . . .

Table 2: A reference dataset (𝐷𝑟𝑒 𝑓 ) and two candidate datasets to be joined. 𝐷1 is curated with extensive data at european
level, while 𝐷2 is curated at the worldwide level with less details
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are difficult to explore and compare. Therefore, we propose the
following multi-class join quality metric.

Definition 2.1. Let 𝐴, 𝐵 be sets of values, respectively the ref-
erence and candidate attributes. The join quality among 𝐴 and 𝐵
is defined by the expression

𝑄𝑢𝑎𝑙𝑖𝑡𝑦 (𝐴, 𝐵) =



(4) High, 𝐶 (𝐴, 𝐵) ≥ 𝐶𝐻 ∧ |𝐴 |
|𝐵 | ≥ 𝐾𝐻

(3) Good, 𝐶 (𝐴, 𝐵) ≥ 𝐶𝐺 ∧ |𝐴 |
|𝐵 | ≥ 𝐾𝐺

(2) Moderate, 𝐶 (𝐴, 𝐵) ≥ 𝐶𝑀 ∧ |𝐴 |
|𝐵 | ≥ 𝐾𝑀

(1) Poor, 𝐶 (𝐴, 𝐵) ≥ 𝐶𝑃
(0) None, otherwise

The rationale behind the quality metric is to constrain the can-
didate pairs of attributes to two thresholds per class: containment
(𝐶𝑖 ) and cardinality proportion (𝐾𝑖 ). Precisely, we fix that for any
pair of classes 𝑆𝑖 , 𝑆 𝑗 ∈ 𝑆 where 𝑆𝑖 > 𝑆 𝑗 , the containment and
cardinality proportion must be higher (i.e.,𝐶𝐻 > 𝐶𝐺 > 𝐶𝑀 > 𝐶𝑃
and 𝐾𝐻 > 𝐾𝐺 > 𝐾𝑀 ). Intuitively, a larger containment and a
similar cardinality proportion guarantees that the two attributes
share common values and their cardinalities are alike. Conse-
quently, most probably, they have a semantic relationship. We
consider the values 𝐶𝐻 = 3/4 = 0.75,𝐶𝐺 = 2/4 = 0.5,𝐶𝑀 =

1/4 = 0.25,𝐶𝑃 = 0.1 for containment, and 𝐾𝐻 = 1/4 = 0.25, 𝐾𝐺 =

1/8 = 0.125, 𝐾𝑀 = 1/12 = 0.083 for cardinality proportion. These
have been empirically defined from our training set, yet, as we
show in Section 3 they are generalizable to other datasets.

To demonstrate the benefits of the proposed metric, we ran an
experiment following the same methodology as that depicted in
Section 1.1. Using the same collection of 110, 378 candidate pairs,
we evaluated their join quality. As a result, in Figure 2 we depict
the distribution of the join quality distinguishing relevant and
irrelevant results. There are two key observations to be made. On
the one hand, the number of results labeled with higher quality
classes is considerably smaller than those for high containment
values. Thus, the largest number of observations are labeled as
of Poor quality or None. On the other hand, the proportion of
relevant cases is, in general, much larger than irrelevant ones but
specially significative for higher quality classes. As expected, the
lower the quality class, the more irrelevant cases will be found.
Drilling down in the obtained results, we have manually studied
these irrelevant cases where the quality class is High. We have
observed that these situations occur when the proposed pairs do
not have a semantic relationship but they share a syntactic one
(e.g., some artists use a country name). Thus, it would only be
possible to disregard them considering semantics.
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Figure 2: Distribution of relevant and irrelevant results for
different quality classes on a web-scale repository

2.2 A learning approach to join discovery
Here, we describe our approach and present the process of build-
ing profiles and the predictive model.

Attribute profiling. Profiles are composed of meta-features that
represent the underlying characteristics of attributes. Such pro-
files are the key ingredient for high accuracy predictions, thus
we require an exhaustive summary of attributes. To this end, we
base our profiling on state-of-the-art relational data profiling
techniques [1]. We distinguish meta-features corresponding to
unary and binary profiles. We further distinguish the former
into meta-features modeling cardinalities, value distribution and
syntax. Before comparing profiles and due to the fact attribute
meta-features are represented in different magnitudes, we nor-
malize them to guarantee a meaningful comparison using the
Z-score. Finally, once meta-features have been normalized we
compute the distances among pairs of attributes. Here, we also
compute binary meta-features. The result of this stage is a set of
distance vectors 𝐷 where, for each 𝐷𝑖 , values closer to 0 denote
high similarities.

Predictive model. Once distance vectors are computed, we can
train the predictive model. Precisely, the goal is to train a model
that, for a pair of attributes𝐴, 𝐵, its prediction is highly correlated
to the true class (i.e., 𝑄𝑢𝑎𝑙𝑖𝑡𝑦 (𝐴, 𝐵)). The training process was
performed using the collection of datasets discussed in Section
1.1. The ground truth was labeled using the newly proposed qual-
ity metric (Definition 2.1), which served as training dataset for
the random forest classifiers. In order to reduce the false positive
rate, the different classifiers are connected in a classifier chain
architecture. This is an effective approach for multi-label classifi-
cation [18]. Each classifier predicting the probability of class 𝑖 is
trained with the set of distance vectors 𝐷 and the probabilities of
classes 0, . . . , 𝑖 − 1, improving the predictive accuracy of the clas-
sifier. Figure 3 depicts a high-level overview of the architecture
used for training. Then, the prediction returned by the classifier
is the one with highest probability from each 𝑅𝐹𝑖 . To assign the
predicted quality class to a candidate attribute, we assign the
label considering the highest probabilities from all classifiers.

𝐷

𝑅𝐹0

𝐷, 𝑝0

𝑅𝐹1

𝐷, 𝑝0, 𝑝1

𝑅𝐹2

𝐷, 𝑝0, 𝑝1, 𝑝2

𝑅𝐹3

𝐷, 𝑝0, 𝑝1, 𝑝2, 𝑝3

𝑅𝐹4

Figure 3: Chain of 5 random forest classifiers, each 𝑅𝐹𝑖 is
fedwith the distances vectors𝐷 and the probabilities from
the previous classifiers 𝑝0, . . . , 𝑝𝑖−1

3 EVALUATION
In this section, we present the evaluation of our approach. On the
one hand, we evaluate the ability of the model to discover quality
joins through several experiments as well as its generalizability.
On the other hand, we compare its performance with represen-
tative state-of-the-art solutions. In order to present transparent
experiments and guarantee the reproducibility of results, we
created an informative companion website2.
2https://www.essi.upc.edu/dtim/nextiajd/
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Implementation. NextiaJD is implemented as an extension of
Apache Spark. The classification model was trained using its dis-
tributed machine learning library MLlib. The runtime methods
(i.e., profiling and ranking) are implemented as new operators
over the structured data processing library SparkSQL. We lever-
age on the Catalyst optimizer to efficiently compute the profiles
and compare them. Our implementation supports two modes of
operation discovery-by-attribute and discovery-by-dataset. The
former receives as input a reference Spark dataframe (i.e., a
dataset) and one of its attributes, and generates a ranking against
a collection of dataframes (i.e., other datasets). The discovery-
by-dataset mode does not receive as input a reference attribute,
so it runs the discovery process for all attributes from the refer-
ence dataframe. Notably, implementing NextiaJD on top of Spark
brings many other benefits. Firstly, we can benefit from many
source connectors and we can easily ingest the most common
data formats (e.g., CSV, JSON, XML, Parquet, Avro, etc.). Secondly,
our extension benefits from the inherent capacity of Spark to
parallelize tasks on top of distributed data.

Test set. For evaluation purposes, we collected 139 independent
datasets from those used for the ground truth. We further divided
such datasets into 4 testbeds (extra-small, small, medium and
large) according to their file size. Table 3 shows the characteristics
of each testbed.

Testbed 𝑿𝑺 𝑺 𝑴 𝑳
File size 0 − 1 MB 1 − 100 MB 100 MB −1 GB > 1 GB
Datasets 28 46 46 19
Attributes 159 590 600 331

Table 3: Characteristics per testbed

Alternatives. We compare our approach with the following
state-of-the-art data discovery solutions representatives of, re-
spectively, hash-based and profile-based methods whose source
code is openly available: LSH Ensemble [23] and FlexMatcher [5].
No fine tuning was performed in such systems, running the code
as provided out-of-the-box. These systems differ in their mode
of operation, the former being an approach based on comparison
by hash, while the latter on comparison by profile. Note that,
for computational performance reasons, we rule out approaches
based on comparison by value. Such solutions are not comparable
to ours, since their kind of search accuracy is exact and by nature
they are not suitable for large-scale scenarios.

3.1 Predictive performance
Here we assess the classifier’s predictive performance evaluating
the ranking of candidate equi-join predicates for each testbed.

Methodology.We depict a confusion matrix to capture the rela-
tionship between the true and predicted classes. We also provide
performance metrics for the classifier such as precision, recall
and 𝐹1 score. We first discuss the experiment for all testbeds
together, and later do a fine-grained discussion for each testbed.

Results. Figure 4 and Table 4, show, respectively, the confu-
sion matrix and performance metrics for all testbeds. Overall,
we evaluated 467, 965 attributes pairs. We can validate the good
performance of the proposed approach by the fact that class 4,
denoting the highest quality joins, has the best precision. Our
method aims at proposing a ranking according to the predicted
join quality, which for the highest value it has almost no false

positives. It is also relevant to note that the prediction for class
0, denoting the no join quality, also has both high precision and
recall. This is particularly relevant to filter out irrelevant results,
and thus reduce the search space when presenting a ranking to
the user. We additionally note that, as depicted by the precision
and recall measures, predictions corresponding to classes 1 and
2 are highly inaccurate. Nevertheless, NextiaJD is prepared to be
used as an interactive tool. Thus, if we analyze these results from
the point of view of a user, most misclassifications are between
similar classes and thus irrelevant. NextiaJD shows the results in
strict order. First, classes 4 and 3, and then classes 2 and 1 on de-
mand. In this sense, a binary classification meaning likely relevant
or likely irrelevant would be a fairer way to evaluate NextiaJD.
When considering these results as a binary problem (relevant:
classes 3-4; irrelevant: classes 0-2), the evaluated metrics improve
considerably, as shown in Figure 9 and Table 5. Relevantly, we
note that NextiaJD generates very few false positives; a desirable
property for large-scale data discovery problems. We neverthe-
less highlight the relevance of distinguishing classes 1 and 2 from
0, either for advanced users or because NextiaJD could be used for
other automatic data discovery problems where such distinction
would be relevant.

Tr
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cl
as
s 4 5 2 68 299 393

3 7 7 151 348 4
2 92 17 312 98 1
1 6903 737 349 1 0
0 455084 2370 660 56 1

0 1 2 3 4
Predicted class

Figure 4: Confusion matrix for all testbeds (clearer cells
denote a closer proximity w.r.t. the true class)

Precision Recall 𝑭1 score
(0) None 0.9848 0.9933 0.9890
(1) Poor 0.2352 0.0922 0.1325

(2) Moderate 0.2025 0.6000 0.3029
(3) Good 0.4339 0.6731 0.5276
(4) High 0.9849 0.5123 0.6740

Table 4: Performance metrics per class for all testbeds

3.2 Comparison with the state-of-the-art
In this experiment we aim at comparing our approach to other
data discovery approaches. We perform such evaluation by mea-
suring and comparing their computational complexity and pre-
dictive performance.

Methodology. All systems under evaluation, including ours,
implement data discovery in two steps. The first step, which
we denote pre, builds the core data structures from the datasets.
For hash-based methods, such as LSH Ensemble, building the
index, while profile-based methods, such as FlexMatcher and
ours, create the profiles. Additionally, FlexMatcher will create
the predictive models for each new data discovery task. Then, the
second step, which we denote as query, consists of computing
the prediction leveraging on the previously built data structures.
Whenever possible, we decouple both steps and thus read the
data structures from disk. This is, however, not the case for LSH
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Ensemble, as it does not offer any resources to store the index
on disk, forcing us to maintain it in memory.

The three systems analyzed have slightly different objectives.
In order to perform a fair comparison, we analyze the results from
the user perspective. That is, the number of results provided and
its degree of relevantness. For that, we use a binary scale, which
maps to the output obtained in LSH Ensemble and FlexMatcher.
For NextiaJD, wewill reuse the relevantnessmapping discussed in
the previous experiment: we map classes {0, 1, 2} to the irrelevant
class, and classes {3, 4} to the relevant one. Applying the same
rationale, in LSH Ensemble we consider relevant those pairs with
a containment above 50% (i.e., the threshold we considered for
our class 3). Finally, FlexMatcher is not parameterizable with a
quality threshold and already provides a binary output (i.e., non-
joinable/joinable). In this case, non-joinable maps to irrelevant
and joinable to relevant.

Results. We evaluated the performance of NextiaJD, LSH En-
semble and FlexMatcher on each testbed. Both LSH Ensemble
and FlexMatcher suffered from scalability issues and were not
able to execute testbed 𝐿. Figure 6, depicts the runtime of the pre
phase for each testbed. We can observe that the runtime of all
systems is in the same orders of magnitude, however our pre is
larger than the rest. This is mainly due to the fact that, to ensure
a fair comparison, we did not set Spark on cluster mode. It is well-
known that using Spark on centralized mode adds extra overhead
of tasks when generating the required data structures, managing
partitions, etc. This is not the case for the other systems, which
are provided as standalone programs. Nevertheless, NextiaJD ben-
efits from Spark’s robustness and it is the only approach, even in
centralized mode, capable of dealing with a large-scale testbed.
Furthermore, we note that NextiaJD is the only solution able to
precompute its pre step (except for binary meta-features).
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Figure 6: Pre runtime

Regarding the computational performance of the query phase,
we distinguish the discovery-by-attribute and discovery-by-dataset
scenarios, respectively in Figures 7 and 8. Note that discovery-by-
attribute is not available in FlexMatcher. LSH Ensemble excels in
both query tasks. This is due to the fact there is no mechanism
to persist the index and this task is reduced to an in-memory
lookup. FlexMatcher also benefits from fully running in memory
but, in this case, the query step suffers from the need to compute
some on-the-fly learning models. As general observation, both
approaches are thought to compute their core structures and run
in memory, which is the main reason hindering their ability to
scale-up. Overall, NextiaJD shows a good behaviour in the query
step. Importantly, NextiaJD is not affected by the dataset cardi-
nality at query time. Indeed, the runtime is directly proportional
to the number of attributes, or profiles, to compare.

We now put the focus on comparing the predictive perfor-
mance of the three approaches. Figure 9 and Table 5, depict,
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Figure 7: Query runtime (discovery-by-dataset)
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respectively, the confusion matrices and performance metrics us-
ing the binary class mapping. Relevantly, the predictive quality of
NextiaJD and LSH Ensemble are comparable. While LSH Ensem-
ble finds more true positives, it generates much more false posi-
tives. As result, NextiaJD precision is better. Finally, and aligned
with our claim that contemporary profile-based data discovery
methods fall short in terms of quality, FlexMatcher generates an
extremely large number of false positives reducing its overall
quality and making it unfeasible for large-scale scenarios.

(a) NextiaJD

Tr
ue

cl
as
s 1 166 915

0 419119 129
0 1

Predicted class

(b) LSH Ensemble
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s 1 55 1026

0 418338 910
0 1

Predicted class

(c) FlexMatcher

Tr
ue

cl
as
s 1 572 509

0 381493 37755
0 1

Predicted class
Figure 9: Combined confusion matrices for each system
on testbeds 𝑋𝑆, 𝑆,𝑀

Precision Recall 𝑭1 score
NextiaJD 0.8764 0.8464 0.8611

LSH Ensemble 0.5299 0.9491 0.6800
FlexMatcher 0.0133 0.4708 0.0258

Table 5: Performance metrics using binary classes for
each system under evaluation on testbeds 𝑋𝑆, 𝑆,𝑀

Then, Figure 10 drills deeper into the comparison between
NextiaJD and LSH Ensemble. We assigned a quality class to LSH
Ensemble by running it several times and using a different con-
tainment threshold each time, as defined in our quality classes
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(i.e., 0.75, 0.5, 0.25 and 0.1). There, we observe relevant differences
on the predictions computed. In general, our approach is more
conservative, in the sense that we produce less false positives
at expenses of sacrificing some true positives. Overall, this im-
proves the precision of our approach by reducing the number of
false positives shown to the user. As general observation, both
approaches follow slightly different objectives and NextiaJD is
more suitable for large-scale scenarios, both for its scale-up ca-
pacity and high precision, which guarantees the user will not be
overwhelmed with large rankings including false positives.

(a) NextiaJD (𝑋𝑆, 𝑆,𝑀)

Tr
ue

cl
as
s 4 3 0 41 253 337

3 5 6 111 324 1
2 92 3 234 70 1
1 4586 640 257 1 0
0 410433 2270 604 56 1

0 1 2 3 4
Predicted class

(b) LSH Ensemble (𝑋𝑆, 𝑆,𝑀)

Tr
ue

cl
as
s 4 1 0 0 5 628

3 0 0 54 84 309
2 17 27 180 111 65
1 4606 191 185 497 5
0 412425 447 260 227 5

0 1 2 3 4
Predicted class

Figure 10: Confusion matrices using 5 quality classes for
NextiaJD and LSH Ensemble

4 CONCLUSIONS AND FUTUREWORK
We have presented a novel learning-based approach for data
discovery on large-scale repositories of heterogeneous, indepen-
dently created datasets. Our work is motivated by (i) the poor
predictive performance of current profile-based solutions, and
(ii) the inability to scale-up and low precision of hash-based ones,
which is undesirable for large-scale scenarios. In order to over-
come these limitations, we propose a scalable method yielding
good precision, and grounded on a novel qualitative definition
of join quality. We implemented our approach in a tool called
NextiaJD. We have experimentally shown that despite being a
profile-based approach, NextiaJD presents a similar predictive
performance to that of hash-based solutions, yet better adapted
for large-scale scenarios, while benefiting from linear scalability.

We do believe profile-based solutions are the right way to go
at scale. However, there are some open problems that should
be addressed in the future. First, a better join definition metric
able to discriminate semantic joins. Current metrics are based
on containment / Jaccard similarity and, as previously discussed,
these metrics have a very good recall but very low precision.
Annotating the required ground truth based on these metrics
bias the learning due to the amount of false positives. Current
annotated semantic ground truths are unfortunately too small
(e.g., Valentine [13]), or generated from approximate metrics
like ours, which smoothes the problem but still suffers from it.
Last, but not least, profile-based approaches are promising to
detect non-syntactic (i.e., with a different encoding per value)
semantic join relationships. These are pairs of attributes that

maintain the same underlying data distribution but require some
transformation in order to join. Based on such predictions, it
should be possible to propose such required transformations to
join.
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