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Heterogeneous Information Networks (HINs) provide a natural
way to represent various relationships between entities of differ-
ent types, thus they are valuable in many domains. Extracting
knowledge from HINs typically relies on the concept of metap-
aths, which are paths in the network schema denoting relations
of different semantics among entities. Moreover, real-world HINs
are often extremely large, containing millions of nodes and edges.
Thus, exploring HINs not only requires interdisciplinary exper-
tise, being able both to interpret and select appropriate metapaths
in the network, but also to run the analysis in an efficient and
scalable manner. Since there is a lack of tools to facilitate this task,
we present SciNeM, an open source, publicly available, scalable
analysis tool for metapath-based knowledge discovery in HINs.

1 INTRODUCTION

Many modern applications rely on analysing large amounts of
data that comprise multiple types of entities and relationships be-
tween them. For instance, data-driven science, which has become
a very popular and effective paradigm for scientific research, is
based on computationally exploring large heterogeneous datasets.
Also, the foundations of the Fourth Industrial Revolution heavily
rely on data science techniques for data-driven decision making
based on large heterogeneous datasets from multiple sources.
Heterogeneous Information Networks (HINs) provide a way to
represent such complex information. They are graphs comprising
multiple types of nodes and relationships between them [7]. An
example HIN is illustrated in Figure 1, representing the interac-
tions of genes (G) with a class of biomolecules called miRNAs (M)
and their relationship with particular biological processes (P) and
diseases (D)!. It contains 4 distinct node types (G, M, P, D) and 3
distinct types of (bidirectional) relationships (GM, GP, GD).
Various data science methods to analyse HINs and facilitate
knowledge discovery from them have been proposed [6, 8, 11].
These typically rely on the concept of metapaths: paths in the
HIN schema that represent types of entity relationships with
particular semantics. For instance, two interesting metapaths in
the HIN of Figure 1 are GPG and MGDGM. The former connects
genes based on the processes they are involved in (i.e., strongly
connected genes based on it may share common functionalities).

INote that some edges have been added for presentation purposes and may not
reflect real relationships.
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Figure 1: An example HIN.

The latter links miRNAs based on the diseases which relate to
the genes with which they interact.

Many HIN analysis algorithms use metapaths as input; the
metapath-based connectivity can be used to define a measure for
node similarity search [8] or similarity join [11] or to rank nodes
based on their centrality in a metapath-defined network [6]. In
the previous example, using the metapath GPG for similarity
join could reveal that genes ITGB2 and CYP1A2 are similar since
they are involved in two common processes. Moreover, to further
elaborate the analysis, it is often useful to apply constraints to a
given metapath (e.g., in the previous example, to consider only
metapath instances involving Cell adhesion).

Despite the wide applicability of HINs and the plethora of
proposed algorithms in the literature, there is still a lack of
(a) open-source, scalable implementations of these methods, and
(b) tools to facilitate their use by non-experts. Also, implementing
metapath-based analysis of HINs on top of a graph database, such
as Neo4j, requires significant programming skills and familiarity
with the system’s native query language; also, certain important
features of Neo4j, including distributed execution, are only avail-
able in the Enterprise Edition. As a first attempt to fill this gap,
we have recently developed SPHINX [2]; however, SPHINX is
mainly tailored to similarity search and does not offer parallel
and distributed execution that is required to scale to larger HINs.

In this work, we introduce SciNeM? (Data Science tool for
heterogeneous Network Mining), an open-source® tool that of-
fers a wide range of functionalities for exploring and analysing
HINs and utilises Apache Spark for scaling out through parallel
and distributed computation. SciNeM provides an intuitive, Web-
based user interface to build and execute complex constrained
metapath-based queries and to explore and visualise the cor-
responding results. Under the hood, all the supported state-of-
the-art HIN analysis types have been implemented in a scalable

Zhttp://scinem.imsi.athenarc.gr
3https://github.com/schatzopoulos/SciNeM
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manner supporting the distributed execution of analysis tasks
on computational clusters. SciNeM has a modular architecture
making it easy to extend it with additional algorithms and func-
tionalities. Currently, it supports the following operations, given
a user-specified metapath: ranking entities using a random walk
mode, retrieving the top-k most similar pairs of entities, finding
the most similar entities to a query entity, and discovering entity
communities.

2 SYSTEM OVERVIEW

2.1 Architecture & Functionalities

Figure 2 illustrates the key components of SciNeM’s architecture,
as well as the data flow between them. All (back-end) components
have been implemented on top of Apache Spark to allow scalable
execution on computational clusters. In the following paragraphs,
we elaborate on their functionality and implementation.

2.1.1  Distributed HIN Storage. This is SciNeM’s main storage
layer. It is responsible for the storage of all HIN data and it is
based on a Hadoop Distributed File System (HDFS) hosted on the
storage media of the underlying computational cluster. Each HIN
consists of a set of files including (a) a schema file, that describes
the HIN node types and the types of relationships between them
(compatible with Cytoscape’s Elements JSON format?), (b) node
files in TSV format containing data attributes for the nodes of
each type, and (c) relationship files that define the edges of the
network. User-created HINs can be uploaded to this storage layer
via the Web front-end.

2.1.2  HIN Transformation. Most metapath-based analysis ty-
pes, like those discussed in Section 2.1.3, require a common pre-
processing step that transforms the initial heterogeneous network
to a homogeneous (or bipartite) one. This network is essentially a
view of the HIN containing only the nodes of the first (or the first
and last, respectively) entity type in the metapath and having
one edge for each metapath instance connecting these entities.
Further analysis is performed on the aforementioned HIN view.

The HIN Transformation component implements this pre-
processing step. It takes as input a user-defined metapath and
a set of constraints and identifies all pairs of nodes that are
connected based on this constrained metapath. For each pair,
it also captures the number of metapath instances that connect
the corresponding nodes.

Since the calculation of the metapath-based view is a compu-
tationally intensive task, special care was taken for the efficient
implementation of this component. The core of transformation is
calculated using matrix multiplication between the adjacency ma-
trices defined by the relations of the given metapath. Specifically,
our approach is based on the work in [6] but extends it by utilising
sparse matrix representations. Since the order of multiplications
significantly affects the performance of the whole processing,
we adopt a dynamic programming approach that estimates the
optimal ordering taking into consideration the computational
cost of sparse matrix multiplications introduced in [4]. This mod-
ification offers significant speedups in many cases. In addition,
the implementation of this component utilises Apache Spark,
thus taking advantage of parallel and distributed computing.

2.1.3  Metapath-based analysis. This component implements
a range of metapath-based mining tasks for HINs. In particu-
lar, state-of-the-art methods for entity ranking, similarity join,

“https://cytoscape.org/
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Figure 2: Architecture of SciNeM.

similarity search, and community detection are implemented, as
explained below.

Given a particular constrained metapath, the Entity Ranking
component estimates the significance of entities according to a
random walk model applied to the corresponding HIN view [6].
In particular, the PageRank score of each node in the HIN view
is calculated, and the corresponding entities are ranked based
on these scores. The intuition is that this procedure brings as
top-ranked results nodes which are well-connected inside the
metapath-based view, i.e., nodes that correspond to entities which
are important according to the semantics of the selected con-
strained metapath (this is why so many other nodes connect to
them). To guarantee scalability, a high-performance Spark-based
ranking component has been developed, allowing the analysis of
very large HINs.

The Similarity Join component identifies the most similar pairs
of nodes based on the way they are linked with other nodes when
considering a particular (possibly constrained) metapath. As this
type of analysis is computationally intensive, SciNeM leverages
Locality Sensitive Hashing [3] (LSH) using Bucketed Random
Projection to prune expensive similarity calculations. For each
node, a feature vector is constructed based on its connectivity
on the metapath-based HIN view. These vectors are then hashed
into buckets, so that vectors that are similar end up in the same
bucket with high probability. A similar approach is also followed
by other relevant works (e.g., [11]).

The Similarity Search component detects nodes that are similar
to a given query node. The notion of similarity used is the same
as the one used by the Similarity Join component. In more details,
SciNeM performs an approximate nearest neighbors search us-
ing the Euclidean Distance to determine (dis)similarity between
nodes. Moreover, the same hashing technique as in Similarity
Join is used to effectively prune the search space. Furthermore,
it should be noted that, to improve scalability of the performed
analyses, the Similarity Search and Join components have been
implemented based on Apache Spark.

Finally, the Community Detection component identifies com-
munities (i.e., clusters) of interacting nodes/entities based solely
on the structural properties of the selected metapath-based HIN
view, that is produced by the HIN Transformation component
(see Section 2.1.2). The analysis is based on the Label Propagation
Algorithm (LPA) [5], which is a popular community detection ap-
proach that requires no a priori knowledge about the network’s
structure. It is based on propagating labels throughout the net-
work and forming the communities following the intuition that
labels will be trapped and become dominant in clusters of densely
connected nodes. Although this type of analysis is less intensive
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Figure 3: Screenshots from sumbitting a Ranking analy-
sis on the BIO dataset, using the MGDGM metapath with the
constraint D.name=‘Colorectal Cancer’

than other approaches (e.g., Fast-Greedy, Infomap), for large net-
works it requires significant computational power and has a very
large memory footprint. This is why the corresponding compo-
nent of SciNeM takes advantage of a Spark-based, distributed
implementation of the algorithm.

2.1.4  Web front-end. SciNeM’s Web Ul supports determining
and executing metapath-based analysis tasks. These can be ex-
ecuted on already available HINs or new ones uploaded by the
user. A visual wizard used to determine the details of the desired
analysis tasks lies at the core of this component (see also Sec-
tion 2.2). The front-end was implemented using React® JS library
assisted with Redux® state container for efficient state manage-
ment. Graph visualisations (e.g., HIN schema visualisation for the
query builder) were implemented using the Cytoscape JS library.

2.2 User Interface

Figure 3a presents a screenshot of SciNeM’s analysis task sub-
mission form. To perform a new analysis, the user first selects
an existing HIN from the corresponding drop-down menu or
uploads a new one. The latter requires uploading a single com-
pressed file that contains the files described in Section 2.1.17.
After selecting the input HIN, the user specifies the metapath
to be used for the analysis and the desired constraints. To assist
the user in selecting metapaths, an interactive version of the
schema of the HIN is displayed in the submission form. The user
can either click on the entity types (nodes) of the schema to
incrementally build the desired metapath, or add extra entity
types by selecting them from a drop-down list after clicking on
the green button located at the end of the currently selected
sequence. To select the desired constraints, the user can click on

Shttps://reactjs.org/
®https://redux.js.org/
"Details can also be found in SciNeM’s dataset upload page.
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Results

Executing Ranking for metapath MGDGM and constraint(s): Disease.name=Colorectal Cancer.

Ranking

Rank MIRNA name Ranking Score

1 hsa-miR-548¢-3p 10

2 hsa-miR-9983-3p 0859004

3 hsa-miR-3613-3p 0852244

(a) Ranking results.
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(b) Visualisations of ranking results.

Figure 4: Screenshots from the results of the analysis of
Figure 3.

the filter icon located below the involved entity type. A pop-up
window will appear on the screen (see Figure 3b). The user selects
the desired constraints and then hits the ‘Save’ button.

Finally, the user selects the types of analysis to be performed
(multiple can be selected simultaneously) and clicks on the ‘Exe-
cute analysis’ button®. A progress bar appears in the screen (see
at the bottom of Figure 3a) to monitor the status of the execution.
Moreover, a unique identifier is assigned to each analysis so that
the user can return to the analysis using the option ‘Reattach to
analysis’ from SciNeM’s navigation bar.

After the analysis is completed, the results appear in a tabular
form (see Figure 4a). The user can browse them or select to
download all or part of them. She also has the option to select
some of them to create a condition file, i.e. a special file in JSON
format that encodes them into a set of constraints that can be
used in a later analysis. In particular, after creating a condition
file the user can provide it as input in a later analysis by clicking
on the ‘Load from file’ button of the constraints pop-up window
(see Figure 3b). Essentially this creates a mechanism to use the
results of an analysis as input to a subsequent one.

Finally, apart from the tabular results, SciNeM also provides a
set of visualisations. The user can click on the ‘Visualize’ button,
located above the list of results, and select the visualization type
to display (for the cases for which more than one visualization
type is provided). Figure 4b displays examples of such visual-
isations, in particular a bar chart showing the distribution of
ranking scores in the top ranking results of Figure 4a and a graph
showing the part of the corresponding metapath-based HIN view
that contains the top-10 results (the node sizes are based on the
corresponding ranking scores).

81t should be noted that for all similarity search analysis tasks the user should also
determine the search entity before starting the execution.
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3 DEMONSTRATION

During the demonstration, the audience will have the opportunity
to become familiar with the concepts of metapath-based analysis
in HINs and to interact with SciNeM’s user interface exploring
its functionalities. The members of the audience will be able to
execute their own analysis tasks and, if needed, to upload their
own HINs. However, to facilitate examining SciNeM’s capabilities,
three datasets have been already prepared and made available:

e BIO. It contains data about the involvement of genes in
biological processes and diseases (based on GeneOntol-
ogy [1, 10] and DisGeNET?, respectively). It also contains
data about the suppression of genes by miRNAs (provided
by MR-microT!?). It includes 4 entity types (see Figure 5a),
containing a total of 61, 177 nodes and 4, 190, 808 edges.

e GDELT. It contains data for news articles and associated
entities collected by the GDELT project!!. In particular,
we have collected articles published in 2019 from BBC
and CNN. GDELT consists of 5 entity types (see Figure 5¢)
totaling 245, 950 nodes and 6, 523, 924 relationships.

o DBLP-Ext. This HIN contains bibliographic data from the
DBLP Citation Dataset of AMiner [9] enriched with eu-
ropean project data from the Cordis project!?. It contains
6 entity types with 12, 152, 816 nodes and 190, 998, 307 re-
lationships. DBLP-Ext’s schema is presented in Figure 5b.

Based on these HINs, four indicative scenarios have been pre-
pared for demonstration. Short descriptions of them follow:
Scenario 1: Important miRNAs for a disease (Ranking). Al-
though the involvement of genes in biological processes and
diseases is relatively well-studied, this is not the case for the role
of miRNAs. Yet, it is possible to reveal a miRNA’s role based on
the list of genes it suppresses. Using SciNeM on the BIO dataset,
a member of the audience can reveal miRNAs having important
role in ‘Colorectal Cancer’ by selecting to rank miRNAs based on
the MGDGM metapath using the D.name = ‘Colorectal Cancer’
condition. Highly ranked entities have large centrality in the
corresponding HIN view, thus they are highly connected through
metapath instances that satisfy the determined condition about
the disease of interest. A search in PubMed reveals that there are
various articles mentioning in their abstract and/or title both the
top retrieved miRNA (‘miR-548¢’) and disease of interest.
Scenario 2: Similar venues to a given one based on the top-
ics of their published papers (Similarity Search). A member
of the audience is interested in finding similar venues to the “Very
Large Data Bases” (VDLB) conference, according to the topics of
their recent papers. As a result, she selects to perform a similar-
ity search on the DBLP-Ext dataset using the VPTPV metapath
and the constraint P.year > 2000. The top results include very
relevant venues like the “Int’l Conference on Data Engineering”

“https://www.disgenet.org
Ohttp://diana.imis.athena-innovation.gr/DianaTools/index.php?r=mrmicrot/
https://www.gdeltproject.org

2https://cordis.europa.eu
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(ICDE) in the first position and the “Int’l Conference on Manage-
ment of Data” (SIGMOD) in the second position.

Scenario 3: Communities of organizations based on arti-
cle mentions (Community Detection). A member of the au-
dience is interested in revealing clusters of related organizations
(e.g., governmental institutions, companies) based on their men-
tions in the news articles of an international network source
like CNN. To do so, she chooses to perform community detec-
tion on the GDELT dataset using the OAO metapath with the
A.source =“cnn” constraint. The results contain various inter-
esting communities; e.g., the one with id = 111 consists of 3
institutions having an agenda related to climate change (“UN In-
tergovernmental Panel on Climate”, “European Union Copernicus
Climate Change Programme”, “World Meteorological Organiza-
tion”), whereas the one with id = 394 includes 7 institutions
involved in politics in India.

4 CONCLUSION

We demonstrated SciNeM, an open source, high-performance and
scalable online data science tool that facilitates metapath-based
analysis of HINs. Its intuitive user interface aids non-experts
to perform a variety of HIN analysis tasks such as metapath-
based ranking, similarity join, similarity search, and community
detection. Finally, SciNeM’s users may upload their own HIN
datasets to analyse, however the tool also provides pre-loaded
datasets for demonstration reasons.
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