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ABSTRACT
Data series are a prevalent data type that has attracted lots of
interest in recent years. Specifically, there has been an explosive
interest towards the analysis of large volumes of data series in
many different domains. This is both in businesses (e.g., in mobile
applications) and in sciences (e.g., in biology). In this tutorial, we
focus on applications that produce massive collections of data
series, and we provide the necessary background on data series
storage, retrieval and analytics. We look at systems historically
used to handle and mine data in the form of data series, as well
as at the state of the art data series management systems that
were recently proposed. Moreover, we discuss the need for fast
similarity search for supporting data mining applications, and
describe efficient similarity search techniques, indexes and query
processing algorithms. Finally, we look at the gap of modern data
series management systems in regards to support for efficient
complex analytics, and we argue in favor of the integration of
summarizations and indexes in modern data series management
systems. We conclude with the challenges and open research
problems in this domain.

1 INTRODUCTION
In various scientific and industrial domains analysts are required
to measure quantities as they fluctuate over a dimension; these
values are commonly called data series or sequences. The dimen-
sion over which data series are ordered depends on the applica-
tion domain and can have various diverse physical meanings. By
far, the most common dimension over which data are ordered
is time. In this case, we specifically talk about time series. Other
applications though, produce series ordered over position (DNA
sequences), mass (mass spectrometry) or angle (shapes). In all
cases, data have to be captured, stored and analyzed as series
rather than individual values.

Applications range from forecasting methods to correlation
analysis, summarization, representation methods, sampling, out-
lier detection and more [6–8, 35, 41]. Moreover, it is not unusual
for applications to involve numbers of sequences in the order of
hundreds of millions to billions [1, 3]. As a result, analysts are
more frequently than ever deluged by the vast amounts of data se-
ries that they have to filter, process and understand. Consider for
instance, that for several of their analysis tasks, neuroscientists
are currently reducing each of their 3,000 point long sequences
to a single number (the global average) in order to be able to
analyze their huge datasets [1]. In astronomy, there are currently
available more than 70TB of spectroscopic sequence data from
200 million sky objects, collected by the Sloan Digital Sky Sur-
vey [3], allowing scientists to study the universe. These data have
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Figure 1: DBMS category popularity change trend [2]

to be processed and analyzed, in order to identify patterns, gain
insights, and detect abnormalities.

Recent advances in domains such as cloud computing and data
centers, IoT and smart cities, self-driving cars and communica-
tions, generated a tremendous interest in developing specialized
systems able to manage and mine data series. This is evident both
by industrial [42] [17] and academic interest [5, 28], as well as
through popularity studies [2], where time series management
systems gather the most intense interest change over the last two
years, as shown in Figure 1.

Our goal is to describe the current state in data series man-
agement, including applications, query types and data types,
complex analytic algorithms, their components and their imple-
mentation in modern data systems. Further on we will explore
how modern techniques can be leveraged to speed up complex
analytical pipelines, and take a glimpse on how these techniques
can be improved by applying machine learning.

2 SEQUENCE MANAGEMENT OVERVIEW
We take a holistic look at the problem of managing and analyzing
very large collections of data series, discuss the state-of-the-art
and pinpoint the opportunities for optimizing complex query
execution.
[Introduction and Foundations] We will start by looking at
some foundational aspects of data series management. Those
include the data characteristics, the query workloads, and the spe-
cialized data structures used to index sequential data. Data series
can be categorized under many dimensions: i.e., the way that
data arrive: streaming vs static, the lengths of data series: fixed
vs variable length per series, the way that points are sampled:
fixed intervals vs variable sampling intervals, and the presence
of uncertainty in their values.

In terms ofworkloads, wewill then look at various applications
and query patterns that recur in each one of those. Specifically, we
will discussing both simple Selection-Projection-Transformation
(SPT) queries, where analysts filter based on data properties (e.g.,
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thresholds) or meta-data values, as well as complex data mining
(DM) analytics, like clustering, outlier detection and more [39].
We will look at the core component of advanced analytics, which
is similarity search, and look at the different flavors of this prob-
lem. Those include whole matching vs sub-sequence matching,
exact vs approximate similarity search, as well as various dis-
tance measures that are commonly used in practice. Finally, we
will briefly talk about the different data structure categories that
exist, and how they are used to organize and retrieve data in each
one of the aforementioned query patterns.
[Complex Analytics]We will dive in analytics like outlier de-
tection [12, 16], frequent pattern mining [51], clustering [29, 52,
54, 63], and classification [13]. Such analytics involve a series
of operations that are performed in a pre-processing step (e.g.,
sliding windows, normalization, interpolation, etc.), as well as op-
erations that are repeated in the context of an iterative algorithm
(e.g., similarity search). We will discuss these operations, and pin-
point the ones that can be optimized at the database kernel level.
Such operations include sliding windows, normalization, interpo-
lation, and various transformations such as dft that are specific
to each algorithm. During the iterative part of these analytics,
multiple similarity search operations need to be performed. This
is useful for finding series within a given radius from a centroid
in clustering, or for identifying distances from a given model in
anomaly detection and classification, but also for retrieving pat-
terns in frequent pattern mining. All of these operations can be
implemented externally, in the application side. However, since
some of them are data-intensive, pruning or incremental com-
putation can significantly improve their performance. For this
reason, performing them at the database level can provide large
improvements in terms of execution time. We will focus on simi-
larity search as such an example, being a crucial and expensive
component of most mining algorithms, and motivate a deep-dive
at its characteristics and scalable implementations.
[Systems for Data Series Management] We will then look at
current state-of-the-art systems, describing their storage layers
and data structures, as well as how they implement the aforemen-
tioned data manipulation operations. In particular, we will both
look at systems that have been specifically designed to support
sequential data, as well as systems that have been adapted to
support them.

Specialized systems either utilize custom storage layers, or
existing solutions. Common off-the-shelf storage systems are
log-structure merge tree (LSM) based engines like RocksDB and
LevelDB, and distributed systems such as HBase. Custom engines
utilize domain-specific compression, indexing and data partition-
ing to increase efficiency. They support both simple and complex
analytical queries and some of the systems offer encryption and
distributed query processing.

Beringei [42] is developed by Facebook, it has a custom
in-memory storage engine. It compresses and organizes data
in a series per series scheme. CrateDB [15] partitions data in
chunks, stores them in a distributed file system, and indexes
them using Apache Lucene. InfluxDB [27] uses Time-Structured
Merge Trees (LSM tree variant), logging data on disk as they
arrive, and periodically merge-sorting overlapping time-stamps.
Prometheus [48] is based on the Beringei ideas. QuasarDB [49]
utilizes either RocksDB or Hellium [26]. Riak TS [53] supports
both LevelDB or Bitcask, which is a custom log structured hash
table. Timescale [59] is a Postgres extension. It partitions time
series both in groups of series as well as in distinct time segments.
It then provides an abstraction of a single table. Finally, various

systems such as OpenTSDB [38], Timely [58] (concentrated on
security) and Warp10 [62] are developed on top of HBase.

All the aforementioned systems support range scans in the
positions, aggregation functions and filtering. Beringei addition-
ally supports correlation queries through a brute force imple-
mentation. Crate supports geospatial queries. InfluxDB supports
queries like moving averages, prediction, transformations, etc,
and Timescale supports gap filling.
[Advanced Techniques for Optimizing Analytics] We will
present techniques for speeding up similarity search, which plays
a central role in several algorithms related to complex data series
analytics, and discuss opportunities for integrating such tech-
niques in modern data series management systems. Previous
work on similarity search has proposed the use of spatial indexes
such as R-Trees with DFT [4, 50] and DHWT [11]. Specialized
indexes are based on domain specific summarizations. Examples
include DS-Tree [61], 𝑖SAX [40, 56], 𝑖SAX 2.0 [9], 𝑖SAX2+ [10],
ADS+ [68, 68], SFA [55], Coconut [31, 32], and ULISSE [33, 34].

In addition, we will pay particular attention to parallel and
distributed solutions for similarity search. These include meth-
ods that support both exact and approximate similarity search
query answering, and make use of modern hardware (e.g., SIMD,
multi-core, multi-socket, GPU) such as ParIS+ [43, 45], Delta-
Top-Index [47], MESSI [44], and SING [46], as well as distributed
computation (e.g., Spark) such as DPiSAX [65, 66], TARDIS [67],
KV-match [64], MVS-match [23], and L-match [22]. These meth-
ods are in a much better position than traditional single-node
techniques to address the scalability challenges of modern data
series analytics applications that have to deal with very large
data collections.

Apart from exact indexes, there are also various approximate
index structures proposed in the literature. Those include meth-
ods based on hashing [30, 57], sketches and grid indexes [14],
and kNN-Graphs [36, 37]. Recent studies [20, 21] have compared
several data series and high-dimensional similarity search meth-
ods under a common framework, revealing multiple promising
future research directions, which we will analyze.
[Challenges and Conclusions]Massive data series collections
are becoming a reality for virtually every scientific and social do-
main. This leads to the need of designing and developing general-
purpose Data Series Management Systems, able to cope with
big data series, that is, very large and fast-changing collections
of data series, which can be heterogeneous (i.e., originate from
disparate domains and thus exhibit very different characteristics),
and which can have uncertainty in their values (e.g., due to inher-
ent errors in the measurements). These systems should have data
series indexes and summarizations integrated into their engines,
so as to speedup the time-intensive operations of complex ana-
lytics pipelines, and support interactive exploration of big data
series. To this end, progressive analytics operators would also
be very useful [24, 25, 60]. At the same time, the role that deep
learning techniques can play should be studied in more detail,
especially with regards to similarity search [18, 19] and query
optimization. Finally, there is a pressing need for developing
data series specific benchmarks [69, 70] able to stress test index
structures in a principled way.
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