Workload-Aware Materialization

Martino Ciaperoni
Aalto University
Espoo, Finland
martino.ciaperoni@aalto.fi

Aristides Gionis
KTH Royal Institute of Technology
Stockholm, Sweden
argioni@kth.se

ABSTRACT

Bayesian networks are popular probabilistic models that capture
the conditional dependencies among a set of variables. Infer-
ence in Bayesian networks is a fundamental task for answering
probabilistic queries over a subset of variables in the data. How-
ever, exact inference in Bayesian networks is NP-hard, which has
prompted the development of many practical inference methods.

In this paper, we focus on improving the performance of the
junction-tree algorithm, a well-known method for exact infer-
ence in Bayesian networks. In particular, we seek to leverage
information in the workload of probabilistic queries to obtain an
optimal workload-aware materialization of junction trees, with
the aim to accelerate the processing of inference queries. We
devise an optimal pseudo-polynomial algorithm to tackle this
problem and discuss approximation schemes. Compared to state-
of-the-art approaches for efficient processing of inference queries
via junction trees, our methods are the first to exploit the infor-
mation provided in query workloads. Our experimentation on
several real-world Bayesian networks confirms the effectiveness
of our techniques in speeding-up query processing.

1 INTRODUCTION

Bayesian networks are probabilistic graphical models that repre-
sent a set of variables and their conditional dependencies via a
directed acyclic graph. They are powerful models for answering
probabilistic queries over variables in the data, and making pre-
dictions about the likelihood of subsets of variables when other
variables are observed. Inference in Bayesian networks is a funda-
mental task with applications in a variety of domains, including
machine learning [5] and probabilistic database management [15].
However, the problem of exact inference in Bayesian networks
is NP-hard [27]. This challenge has prompted a large volume
of literature that aims to develop practical inference algorithms,
both exact [7, 8, 13, 14, 25, 28, 34] and approximate [18].

A state-of-the-art method for exact inference in Bayesian net-
works is the junction-tree algorithm [25], which enables simulta-
neous execution of a large class of inference queries. Specifically,
the main idea behind the junction-tree algorithm is to convert
the Bayesian network into a tree, called “junction tree”, and pre-
compute a collection of joint probability distributions for selected
subsets of variables, referred to as cliques of the tree. This pre-
computation allows to answer inference queries that involve vari-
ables captured by a clique, as demonstrated in Figure 1. However,

© 2022 Copyright held by the owner/author(s). Published in Proceedings of the
25th International Conference on Extending Database Technology (EDBT), 29th
March-1st April, 2022, ISBN 978-3-89318-086-8 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

Series ISSN: 2367-2005

65

O

proceedings

of Junction Trees

Cigdem Aslay
Aarhus University
Aarhus, Denmark
cigdem@cs.au.dk

Michael Mathioudakis
University of Helsinki
Helsinki, Finland
michael.mathioudakis@helsinki.fi

AN

Figure 1: Example: (a) a simple Bayesian network, and (b)
corresponding junction tree. An in-clique query g = {g, h}
can be answered via marginalization from the joint prob-
ability distribution associated with the clique node in red.

it does not allow for direct answer of queries that are not captured
by a single clique. Such out-of-clique inference queries are instead
answered via a message-passing algorithm over the junction tree,
which often demands a large amount of computations. For in-
stance, in a Bayesian network fully specified by approximately
10% parameters, it can take more than a minute to complete the
message passing procedure for some queries in our experiments.
To reduce the computational burden of out-of-clique queries,
Kanagal and Deshpande [21] proposed to materialize suitable
joint probability distributions, each corresponding to a partition
of the junction tree. In this paper, we follow the same approach
and take it one step further by considering a query workload.
As in the work of Kanagal and Deshpande, we materialize joint
probability distributions corresponding to partitions of the junc-
tion tree. Departing from their approach, however, we choose
the distributions to materialize in a workload-aware manner, and
not only based on the structure of the junction tree. Leverag-
ing the information that is available in a query workload allows
our method to be optimized for specific settings of interest: in
principle, for different query workloads, our method will choose
different distributions to materialize, leading to optimal workload
processing time. To the best of our knowledge, we are the first
to address the task of identifying the optimal workload-aware
materialization to speed-up the processing of arbitrary inference
queries over junction trees.
More concretely, we make the following contributions.

10.5441/002/edbt .2022.06

https://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2022.06

o We define the problem of workload-aware materialization of
junction trees as a novel optimization problem (Section 3).
The general problem of optimally materializing multiple short-
cut potentials given a space budget (MOSP) uses, as a subtask,
the problem of materializing a single optimal shortcut poten-
tial (SOSP). Thus, we define and solve this simpler problem
first as a special case, before discussing the general case.

e We prove that both problems are NP-hard (Section 4.1).

e We propose PEANUT (Sections 4.2-4.5), a method to optimize
query processing based on junction trees through material-
ization. The offline component of PEANUT utilizes pseudo-
polynomial dynamic-programming algorithms to find the op-
timal materialization for a given workload and under a budget
constraint. The online component of PEANUT identifies the
materialized distributions to exploit during the processing
of a query, translating to reduced message-passing cost, and
hence, improved query-answering time.

o In addition to the pseudo-polynomial algorithms, we provide
an approximate strongly-polynomial algorithm (Section 4.4)
to improve the efficiency of the offline component of PEANUT.

e Our optimal workload-aware materialization algorithm se-
lects disjoint shortcut potentials. This constraint makes the
problem tractable, but in practice, it leads to solutions that
do not fully utilize the available space. To overcome this
limitation, we also propose PEANUT+ (Section 4.6), which,
based on a simple but effective greedy heuristic, permits over-
lapping shortcut potentials to be materialized, and leads to
better utilization of the available budget. PEANUT+ is the best
performing method in practice, and the method of choice.

o We evaluate PEANUT and PEANUT+ empirically over common-
ly-used benchmarks (Section 5) and show that the proposed
materialization, for large enough budget, can save on average
between 20% and 40% of query-processing cost, while typi-
cally offering an improvement of two orders of magnitude
over the previous work of Kanagal and Deshpande [21].

2 RELATED WORK

Recent years have witnessed an increasing amount of uncer-
tain and correlated data generated in a variety of application
areas. Uncertain data are collected into probabilistic databases,
which can be efficiently represented as probabilistic graphical
models [15]. Thus, the problem of querying large probabilistic
databases can be formulated as an inference problem in proba-
bilistic graphical models. Although the junction tree algorithm
and our materialization can be used for inference on different
graphical models, such as Markov random fields, in this work we
restrict our attention to Bayesian networks, which are also useful
in a variety of tasks beyond querying probabilistic databases.
For instance, Getoor et al. [16] resort to Bayesian networks to
provide selectivity estimates for typical relational queries. Lately,
significant progress has been made towards exploring the connec-
tion between data management and graphical models. Khamis
et al. [1, 22] propose FAQ, a unifying framework for a class of
problems sharing the same algebraic structure, which encom-
passes the processing of the queries considered in our work.
Khamis et al. develop a dynamic programming algorithm for the
general FAQ problem and introduce a notion of FAQ-width to
characterize its complexity. In 2019, Schleich et al. [31] propose
LMFAQO, an in-memory optimized execution engine for multi-
ple queries over a relational database modelled as a junction

66

tree. LMFAO identifies, for each query, the direction of the mes-
sage passing which leads to the lowest computational cost. A
similar optimization will be investigated for PEANUT in future
work. Nevertheless, their work does not consider materializa-
tion of additional probability distributions not directly captured
by the junction tree structure, which is the focus of our work.
The conceptually simplest algorithm for exact inference over
Bayesian networks is variable elimination [34, 35]. In our recent
work, we have developed workload-aware materialization tech-
niques for the variable-elimination inference method [4]. Execu-
tion of variable elimination typically involves the computation of
marginal-distribution tables, which have to be re-computed every
time inference is performed. The junction-tree algorithm [19, 25],
closely intertwined with variable elimination, attempts to turn
this observation into its advantage by precomputing and mate-
rializing several distributions for different subsets of variables.
The advantage of such precomputation is that, if an inference
query involves only variables within a materialized distribution,
as it is the case for all single-variable queries, then the query can
be answered directly via marginalization from that distribution.
It should be noted that, although the junction-tree algorithm al-
lows to perform inference on arbitrary Bayesian networks, if no
restriction is posed to the tree structure, inference may become
infeasible. In particular, the feasibility of the method depends on
the junction-tree treewidth, which is defined as the maximum
number of variables in a materialized distribution minus 1. For
inference queries that cannot be directly answered from the tree
through marginalization, a message-passing algorithm needs to
be performed, which may be extremely computationally expen-
sive. To alleviate this issue, Kanagal and Deshpande [21] propose
a disk-based hierarchical index structure for the junction tree.
They also find that, by precomputing and materializing additional
joint probability distributions, it is possible to prune a consider-
able amount of computations at query time. Our approach also
relies on extending the materialization of the junction tree, but
in a workload-aware manner.

Finally, note that our approach is based on a dynamic-program-
ming optimization framework. The general idea of framing the
selection of a materialization as an optimization problem to be
tackled by means of algorithmic techniques was first introduced

by Chaudhuri et al. [6].

3 PROBLEM FORMULATION

In this section, we formally define the optimization problems we
study. To make the paper self-contained and introduce the neces-
sary notation, we begin with a brief overview of the junction-tree
algorithm in Section 3.1. For a more elaborate presentation of
the junction-tree algorithm, we refer the reader to the classic
papers of Jensen et al. [19] and Lauritzen and Spiegelhalter [25].
After describing the junction-tree algorithm, we proceed with
the formal definition of the optimization problems in Section 3.2

3.1 Background on junction trees

The junction-tree algorithm performs exact inference on Bayesian
networks using the junction tree data structure. In what follows,
we provide a brief description of Bayesian networks, the junction-
tree structure, and the junction-tree inference algorithm.

Bayesian networks. Bayesian networks are probabilistic graphi-
cal models that represent the joint distribution of a set of variables.
More formally, a Bayesian network N is a directed acyclic graph,
where nodes represent variables and directed edges represent

Figure 2: Example: message passing to answer out-of-clique query g = {b, i, f}, In (a), no materialization is used. In (b), the
subtree Ts associated with a shortcut potential S is coloured in grey. In (c), materialization of S is used.

variable dependencies. A Bayesian network allows to express
the joint probability of all variables as a product of a finite num-
ber of factors, so that each factor corresponds to the conditional
probability of a variable given the value of its parents.

In our presentation, we assume that all variables are categori-
cal. In practice, numerical variables can be handled as categorical
via discretization into categorical intervals.

Junction trees. Given a Bayesian network N over a set of vari-
ables X, a junction tree T = (V,E) is built from the Bayesian
network in five steps: (1) moralization, (2) triangulation, (3) clique-
graph formation, (4) junction-tree extraction, and (5) junction-
tree calibration. The result of this procedure is the junction tree of
the Bayesian network N. The nodes of T are referred to as clique
nodes and the edges as separators. Each clique node is assigned
a set of Bayesian network factors, and their product is used to
initialize the clique potential, which is a table mapping each con-
figuration of the associated variables to a non-negative real value.
In what follows, we will refer to the variables associated with
a clique node u or a separator (u,v) as the scope of the clique
node or the separator, and we will denote them with X, and X, o,
respectively. In the last step of the junction tree construction,
the junction tree T is calibrated via the Hugin algorithm [12]. In
short, this means that the clique potentials of the junction tree are
normalized to coincide with the joint distributions of the related
variables. By construction, a junction tree satisfies the running-
intersection property, which states that if a € X;, and a € X, for
twonodesu and v in T, then a € X,, for all nodes w that lie on the
path from u to v, which we denote by pathy(u, v). This property
is crucial for inference (described later in this section). Moreover,
one node r € V of the junction tree T is selected and marked as
pivot (root), and is the node towards which all messages are sent.
The choice of the pivot node affects the order and the size of the
set of messages sent to process an inference query. Selecting a
pivot node that is optimal for all possible queries is not possible.
For our purposes, we consider an arbitrary node to be the pivot.
For future work, however, it would be interesting to study the
problem of finding the materialization that is optimal across all
pivot selections. The junction-tree algorithm is used to answer
inference queries on the Bayesian network using the junction-
tree structure defined above. An inference query g C X is defined
by a subset of variables in X and asks for the joint or conditional
probability distribution of the variables appearing in q. In what
follows, we focus only on joint-probability queries, as conditional
probabilities can be obtained from the answer to joint-probability

67

queries. Inference queries can be separated into two types, in-
clique and out-of-clique queries. In-clique queries correspond to
cases where all the variables of the query g are associated with
the same clique node of the junction tree. The junction-tree al-
gorithm answers in-clique queries by directly marginalizing the
joint probability of the variables corresponding to the clique node.
For example, in Figure 1, the query q = {g, h} is answered by
marginalizing the calibrated potential of the clique node egh. Out-
of-clique queries correspond to cases where not all variables are
associated with the same clique node. For out-of-clique queries, a
message-passing procedure is invoked over a Steiner tree Ty, the
smallest tree that connects all the clique nodes containing the
query variables. When performing message passing, we always
consider the direction of the messages induced by the pivot r
of T. As a consequence, the pivot (root) node rq4 of Ty (i.e., the
clique node towards which all messages are sent) is defined to
be the clique node closest to the pivot r of the junction tree and
therefore, rq = r if r is contained in the Steiner tree T;. Messages
are sent towards the pivot r4 in discrete steps from one node to
the next, starting from the leaves of T;. The message sent from a
given clique node u to the next is the product of its own potential
with the messages it receives from other nodes. Once the pivot rg
has received messages from all its neighbours in Ty, it computes
the answer to the query g by summing out all the non-query
variables.! An example of the described message-passing pro-
cedure is given in Figure 2(a). The query variables ¢ = {b, i, f}
are not all included in the same clique. Thus, the Steiner tree Ty
that contains the cliques having all the query variables within
their scopes (highlighted in red), is extracted. The pivot of both
the junction tree and the Steiner tree is bc, and hence the leaves
gil and ef begin the message passing. After message mq(c, f, i)
is sent to the pivot, we have a potential corresponding to the
joint probability distribution of variables {b, c,f, i} from which
we sum out variable c to obtain the query answer, namely the
joint probability distribution of variables b, i and f.

3.2 Problem statement

At a high level, our objective is to minimize the expected running
time for queries drawn from the same distribution as of queries in

'In a practical implementation, an equivalent but more efficient approach is to
sum-out variables as soon as possible — i.e., marginalization is performed for
each message before it is sent to the next clique node, to compute the marginal
distribution only of the variables belonging to the query and the separator over
which the message is sent, since all the other variables are redundant and would
later be summed out.

a given workload. The approach we take is to materialize shortcut
potentials, i.e., additional data structures introduced by Kanagal
and Deshpande [21]. Depending on the query, shortcut potentials
may be utilized by the junction-tree algorithm to skip part of
the computations. Naturally, this approach introduces a trade-off
between the benefit in reduced running time, on one hand, and
the cost of storing the materialized data structures, on the other.
In what follows, we define shortcut potentials, we quantify the
cost and benefit of their materialization, and finally, we formally
define the optimization problems we consider.

Shortcut potentials. To speed-up out-of-clique query process-
ing in junction trees, Kanagal and Deshpande [21] propose to
store certain joint probability distributions, the so-called shortcut
potentials, which allow to substantially reduce the amount of com-
putations. A shortcut potential S is identified by a subtree Ts C T
of the junction tree with vertices V(S) and is defined as the joint
distribution of all variables in the scope of those separators that
“cut” the subtree Tg from the junction tree T. This set of separa-
tors is henceforth denoted as cut(S). Moreover, as for any other
subtree, the pivot (root) rg of Ts is defined to be the clique node
closest to the pivot r of the junction tree T— and therefore, rg = r
if r is contained in V(S). For example, in Figure 2(b), the high-
lighted shortcut potential is identified by the subtree consisting
of clique nodes egh and ce; and defined as the joint distribution
of the separator variables c, e, g. Shortcut potentials allow to
reduce the size of the Steiner tree T, extracted to compute the
answer of g, thus, decreasing the associated message-passing cost.
For example, consider the processing of query g = {b, i, f} on
the junction tree in Figure 2(a). By utilizing the shortcut potential
S that corresponds to the highlighted subtree Tg in Figure 2(b),
we perform message passing on a smaller but valid Steiner tree
and avoid the computation of my (e, i), as shown in Figure 2(c).

Cost of a shortcut potential. The cost or weight of a shortcut
potential captures the amount of storage space it takes when
materialized. Formally, we define the cost as the size p(S) of the
probability-distribution table S. This quantity is given by the
product of the cardinalities of all the variables in the shortcut-
potential scope Xs. The cost is upper bounded by the product of
the cardinalities of the variables in the separators (u,v) € cut(S).

Benefit of a shortcut potential. Intuitively, the notion of ben-
efit is meant to capture the expected savings in running time
achieved by the materialization of a shortcut potential. For a
shortcut potential to have a positive benefit, it has to be useful
(i.e., to be possible to utilize it by the junction-tree algorithm) for
some queries in the query workload. Therefore, before we quan-
tify the notion of benefit, let us define the notion of usefulness.
In plain words, a shortcut potential S is useful for a query when
replacing the nodes of V(S) with the shortcut potential S allows
the junction-tree algorithm to compute the same result for query
q but more efficiently. The precise conditions under which this is
possible depend on whether or not the shortcut potential subtree
includes the pivot of the Steiner tree, i.e., rq € V(S). On the one
hand, if 4 € V(S),we need at least a path from the leaves of T to
r that passes through a separator in cut(S). On the other hand, if
rq ¢ V(S), we need at least two separators of cut(S) in the same
path between any leaf of Ty and r. In both cases, moreover, no
query variables should be left out of T; when V(S) is replaced
with S. Formally, we have the following definition.

68

Definition 3.1 (Usefulness). Consider a query g with associated
Steiner tree Ty and a shortcut potential S. We say that S is useful
for q if one of the following conditions holds:

(i) rg ¢ V(S) and there are at least two separators {(u,v),
(w,2)} € cut(S) in the path between any leaf of Ty and
rg;

(ii) or rq € V(S) and there is at least one separator (u,v) €
cut(S) in the path between any leaf of Ty and rg;

and in addition replacing V(S) in Ty with S results in a Steiner
tree that still contains all the query variables while leading to a
lower message-passing cost. We define:

1 if S is useful for g,
5s<q)={ . E

otherwise.

To quantify the benefit of materializing a shortcut potential,
we propose a definition of shortcut-potential benefit, which re-
lies on the definition of usefulness. Intuitively, the benefit of
a shortcut potential for a query should reflect the amount of
message-passing operations in Tg that are now avoided thanks to
the shortcut potential S. Such amount can be computed based on
the size of the clique potentials and the cardinality of the query
variables. This motivates the following definition.

Definition 3.2. The benefit of a shortcut potential S with re-
spect to a query q is defined as

B(S,q)=08s(q) Y, p(o) []| a(w),

0eV(S) weXr,Ng

In the above definition, p(v) denotes the size of the clique
potential of a clique node v, a(w) denotes the cardinality of a
variable w, and X7, is union of the scopes of all the cliques in
the subtree rooted at clique v. The benefit of a shortcut potential
S with respect to a query log Q should take into account not
only the benefit with respect to individual queries, but also query
probabilities to guarantee that queries that are most likely to
occur will be assigned a higher weight in the computation of
benefit.

Definition 3.3 (Benefit). The benefit of a shortcut potential S
with respect to a query log Q is defined as

B(S,Q) =) Pro(q) B(S.9)-
qeQ

Here, Pr,(q) is the probability of query g being drawn from
the query log Q, which in practice can be estimated from the
frequency f(q) of the available queries.

Materializing a single optimal shortcut potential. We build
on the work of Kanagal and Deshpande [21] to further improve
the efficiency of query processing using junction trees. We use a
simple idea: take the anticipated query workload into account.
One may have a precise idea of the anticipated query workload
— for example when a large historical query log Q is available,
from which relative frequencies of different queries are known,
possibly indicating that some queries are far more likely than
others. Alternatively, there may be uncertainty about the antici-
pated workload. Even in the extreme case in which no historical
query log is available, one may optimize materialization for an
“uninformative” (e.g., uniform) distribution of queries. In all cases,
the available information about possible queries can guide the
selection of the shortcut potentials to materialize. Indeed, it is
expected that some regions of the junction tree will be relevant
for far more queries than others — or associated with a higher

volume of computation (i.e., larger messages in the junction-tree
algorithm). Previous work, however, is agnostic to queries. There-
fore, we introduce here the problem of choosing, for a given rg, a
shortcut potential of optimal benefit with respect to a given query
workload, under a user-specified budget constraint. Formally:

PROBLEM 1 (SOSP: SINGLE OPTIMAL SHORTCUT POTENTIAL).
Consider a junction tree T = (V,E), with pivot r, a query log Q,
and space budget K. We are asked to find a single shortcut potential
S, with pivot rs € V, such that the benefit B(S, Q) is maximized,
subject to the constraint u(S) < K.

In simple words, Problem 1 seeks the shortcut potential that
would avoid the maximum volume of message-passing operations
for query log Q, under the constraint that it can be materialized
within a given space budget.? The solution to Problem 1 is a
shortcut potential rooted at rs. Clearly, our optimization problem
relies on the simple assumption that the workload is stationary.

Materializing multiple optimal shortcut potentials. In prac-
tice, it would be desirable to materialize not just one, but any
number of shortcut potentials within a given space budget. We
consider this problem while restricting our attention to non-
overlapping shortcut potentials, i.e., node-disjoint subtrees Tg
of T. For this problem, as shown in the next section, we can
show that a dynamic-programming algorithm provides the exact
solution. More formally, we consider the following problem.

PROBLEM 2 (MOSP: MULTIPLE OPTIMAL SHORTCUT POTEN-
T1ALs). Consider a junction tree T = (V, E) with pivot r, a query
log Q, and space budget K. We are asked to find a set of node-
disjoint shortcut potentials S = {S1,S2, ..., Sk}, for somek > 1,
such that the total benefit

k
D B(SLQ)
i=1

is maximized, subject to the constraints Zle u(Si) <K and
V(Si))NV(Sj) =0 foralli# j withi,j=1,... k.

Note that the previous work of Kanagal and Deshpande [21]
considers materializing a hierarchical set of shortcut potentials
such that some shortcut potential subtrees are nested into others.
While the shortcut potentials we select are optimal only under
the assumption of exclusion of overlaps and stationarity of the
query workload distribution, the workload-aware nature of our
approach is sufficient to lead to superior empirical performance.

4 COMPLEXITY AND ALGORITHMS

In this section, we first prove that problems SOSP and MOSP, de-
fined in the previous section, are both NP-hard. We then present
PEANUT, a method to optimize inference based on junction trees.
PEANUT is composed of an offline and an online component.
The offline component tackles the SOSP and MOSP problems;
the corresponding algorithms are described in Sections 4.2 and 4.3,
respectively. Both algorithms are based on dynamic program-
ming, they run in pseudo-polynomial time, and provide an optimal
solution. Hereafter, it is convenient to consider T as rooted at
the pivot r € V. The algorithm for the MOSP problem, named

2We considered also an alternative objective function that subtracts y(S). from the
benefit B(S, q). This small correction in the objective accounts for the number of
message-passing operations performed by the junction-tree algorithm with materi-
alization. However: (i) this would make the optimization problems less tractable;
and (ii) the cost p(S) is already taken into account in the budget constraint. For
these reasons, we opted to optimize the benefit as defined in the text. Nevertheless,
in our experiments, we do compare the exact computational cost of algorithms.

69

BUDP, follows a standard bottom-up traversing scheme, while the
algorithm for the SOSP problem, named LRDP, visits the nodes
of the tree in a “left-to-right” order. Both algorithms require two
dynamic-programming passes, one to compute the benefit of the
optimal solution, and one to obtain the set of separators that
are part of the optimal solution. Additionally, in Section 4.4, we
present a strongly-polynomial algorithm that provides a trade-off
between execution time and solution quality. The online compo-
nent of PEANUT follows the standard junction-tree-based infer-
ence approach and it is described in Section 4.5. Finally, in Sec-
tion 4.6 we describe PEANUT+, a practical extension of PEANUT.

4.1 Problem complexity

We now establish the complexity of the problems defined in
Section 3.2.

All proofs are omitted due to space constraints, but are avail-
able in the extended version of the paper [10].

We start with the problem of selecting a single optimal shortcut
potential (SOSP).

THEOREM 4.1. The problem of selecting a single optimal shortcut
potential (SOSP) is NP-hard.

Theorem 4.1 is proven via a reduction from the tree-knapsack
problem (TKP).

A similar complexity result holds for the more general prob-
lem of finding multiple node-disjoint optimal shortcut potentials
(MOSP).

THEOREM 4.2. The problem of finding multiple node-disjoint
optimal shortcut potentials (MOSP) is NP-hard.

Theorem 4.2 is proven via a reduction from the 0-1 knapsack
problem (KP).

4.2 Materializing a single shortcut potential

Despite the hardness of the two problems, we now show that
they are not strongly NP-hard, and so it is possible to obtain
an optimal solution in pseudo-polynomial time. We start with
the SOSP problem. The algorithm we design follows the left-to-
right (or depth-first) dynamic programming approach [9, 20, 30],
which we appropriately name LRDP. The procedure is illustrated
in Algorithm 1. We assume that the nodes of the tree are labeled
from 0 (the pivot rs) to n in a depth-first manner and “from left
to right” Consider any node v. Let S, be the shortcut potential
such that V(S,) includes all the nodes in the path path(r,,r),
where , is the parent of v. In what follows, for simplicity of
notation, we refer to the benefit and cost of the shortcut potential
Sy as b9 (v) and c(v), respectively. The LRDP algorithm has two
building blocks: a forward and a backward step. The forward step
computes the benefit pQ (v) and the cost ¢(v), for each node v, vis-
iting nodes in a depth-first fashion. This is the only step in which
the query-log is used. The backward step is performed every time
a leaf node u of the junction tree T is reached, while there are no
nodes with larger label to visit in the forward step. Let us denote
the leaf nodes of T by leaves(T). To perform the backward step
at node v, we consider all cost values ¢ € [K]. For each value c,
we find the optimal combination of the children of 7, with label
v or lower (i.e., the children that have currently been visited by
the algorithm) that maximize the benefit under the constraint
that the total cost does not exceed c. Let I' denote the optimal
combination and b*(1,) the corresponding benefit. To complete
the backward step, we compare b*(rr,) with b9 (v) and b9 (1,).

Algorithm 1 Left-to-right dynamic programming (LRDP) for the
single optimal shortcut potential (SOSP) problem

Input: junction tree T, budget K, query log Q, pivot of S rg
1: for ¢ « 0to K do
2 I[rs,c] « 0, P[rs,c] « —c0
3. forov « 1tondo
4: P < FORWARDMOVE(v, P, K)
5 if v € leaves(T) then
6 while (v # rg) and
(there is no i € Children(v) s.t. i > v) do
7: I, P «— BACKWARDMOVE(y, I, P, K)

0 — Ty
return I, P

9: procedure FORWARDMOVE(y, P, K)

10: forc < 0to K do

11: if ¢ > ¢(v) then

12: Plo,c] « ba(a)
return P

13: procedure BACKWARDMOVE(u, I, P, K)

14: for ¢ < 0to K do
15: currChildren(my) « {u € Children(ry,) : u < v}
16: I/ ={T : T C currChildren(my) A Y chitder c(child) <
c}
17: b*(mo)[c] « maxr, er; Xcnitder, Ple(child), child]
18: T — argmaxr, er 2 childer, Plc(child), child]
19: n « max {P[v, c], P[7y, c], b*(y)[c]}
20: if 1 = P[v, c] then
21: for child € currChildren(n,) do
22: I[child,c] < 0
23: I[v,c] « 1
24: if 1 = b*(mp)[c] then
25: for child € currChildren(r,) do
26: I[child,c] « 0
27: if child € T then
28: I[child,c] « 1
29: if n = Py, c] then
30: for child € currChildren(r,) do
31: I[child,c] < 0
32: Plmy,c] <1
return [, P

Based on this comparison, we keep track of the nodes that con-
tribute to the optimal solution and of the optimal benefit value.
We tabulate the results of the computation using two matrices, P
and I. The former stores benefit values, whereas the latter acts as
an indicator and is used to reconstruct the solution. In particular,
we set I[o, c] = 1 for each node v such that the separators (v, 775)
are part of the cut(S) associated with the optimal shortcut po-
tential of cost c. We also set I[u,c] = 1 for each node u in the
path between v and r. Similarly, P[u, c] stores the current optimal
benefit for a shortcut potential when the algorithm visits node .
After the last backward step is carried out, the LRDP algorithm
has computed the optimal shortcut potential for all cost values
¢ € [K]. Once the optimal single shortcut-potential benefit has
been computed, it is rather simple to reconstruct the solution.
The reconstruction procedure is described in Algorithm 2. Two
auxiliary sets are used, currPath and toVisit. The main idea is that
all nodes that identify the optimal shortcut-potential subtree are
marked by the matrix I, as discussed above. Specifically, all nodes

70

Algorithm 2 Reconstruct solution found by LRDP algorithm

Input: junction tree T, budget K, matrix I and rg from
Algorithm 1
1: forc < 0to K do
2 toVisit «— {Children(rs)}
3 currPath «—
4 Slrs,c] < 0
5 while toVisit.size > 0 do
6 v « toVisit.pop()
7 if (v € leaves(T)) and (I[v,c] = 1) then
8 Slrs,c] « S[rs,c] VU (v,)
9 currPath <« 0
10: if (currPath.size > 0) and (I[v,c] = 0) and
(there is no child € Children(r,) s.t. child > v)

do
11: S[rs,c] « S[rs,c] U {(mo, p,)}
12: currPath < 0
13: if I[o,c] = 1 then
14: currPath < currPath U {0}
15: toVisit « toVisit U Children(v)
return S

in a path between the root rs of S and a node i for which the
separator (i, ;) is part of the set cut(S) identifying the optimal
shortcut potential are assigned value 1 in the indicator matrix.
Thus, it is necessary to retrieve the bottom-most node marked
in I with 1 for each such path. The reconstruction procedure tra-
verses the tree top-down, visiting all the nodes indicated by the
indicator matrix I in a depth-first ("left-to-right") manner. This
order is respected because the pop operation in Line 6 returns the
node with the smallest DFS label. The execution of Algorithm 2
gives the set of separators whose joint probability distribution
is the optimal shortcut potential. Algorithms 1 and 2 can be ex-
ecuted with each internal node of the tree T being considered
as root rg, so as to obtain the single optimal shortcut potential
S[rs, c] rooted at rg and of cost ¢ as well as its associated optimal
benefit P(S[rs, c]), for each rg € V and each cost value ¢ € [K].
This is used in developing the solution for the MOSP problem, as
we see shortly. Without delving into detalils, it is worth noting
that when executing the algorithm for all rs € V, it is possible to
share computations among different roots.

Time complexity. The running time of LRDP is pseudo-polyno-
mial; more precisely O(nK?). The quadratic term is due to the
computation of b*(1,) in the backward step, which is performed
once for each clique node v # r. A more fine-grained expression
of the time complexity for LRDP would include the complexity for
computing the benefit values b9 (v), but in practice this additional
complexity is dominated by the backward step.

4.3 Materializing multiple shortcut potentials

We now show how to obtain an optimal packing for MOSP, i.e., k
node-disjoint shortcut potentials. Recall that k is not specified
in the input, but rather it is optimized by the algorithm. In other
words, we find the optimal set of non-overlapping shortcut po-
tentials leading to the largest total benefit while satisfying the
budget constraint. We stress that the shortcut potentials we re-
trieve are not optimal in the general sense, but are optimal under
the constraints introduced in our problem formulation. As a pre-
processing step, we first execute Algorithms 1 and 2 with each
node of the tree being considered a root. As a result we compute

Algorithm 3 Bottom-up dynamic programming (BUDP) for the
multiple optimal shortcut potentials (MOSP) problem

Input: junction tree T, budget K, P from Algorithm 1,
S from Algorithm 2

1: for eachv € V do
2 forc «— 0to K do
3 I[v,c] <0
4: for eachv € V do
5 if v ¢ leaves(T) then
6 forc «— 0to K do > case (i)
7 T « {c(child) for all child € Children(v) s.t.
8 2 childeChildren(v) ¢(child) < c}
9 $1 < Zchilde(‘hildren(v),c(child)el"c P(S[child, c(child)])
10: H1 [Z), C] «— l’IlaXrC {glﬁl}
11: for each child € Children(v) do
12: W1 [Child, C] — argmaxc(child) {¢1}
13: for c «— 0to K do > case (ii)
14: Iy < {c(d) for all d € D(S[v,¢’]) s.t.
15: 2deD(S[oe]) €(d) <c—c'}
16: ¢2 — P(S[o,c’])+
17: 2deD(S[oc]).c(d) el . P(S[d, c(d)])
18: Ha[v,¢] « maxer, {$2}
19: Walo,0,¢] « arg maxe {p2}
20: for each d € D(S[v,c’]) do
21: Walo,d, c] « arg maXe(dyer, {¢2}
22: for c — 0to K do
23: if Hz[v,c] > Hi[v, c] then
24: I[v,c] « 1
25: Ho,c] « Hz[v,c]
26: else H[v,c] « Hi[v,c]
return [, H

Algorithm 4 Reconstruct solution found by BUDP algorithm

1: procedure RECONSTRUCT(u, ¢)
2 if I[v,c] = 1 then

3 ¢ — Wylo,0,c]

4 S «— SUS[o,]

5 for each d € D(S[v,c’]) do
6 c(d) «— Wslo,d,c]

7 return RECONSTRUCT(u, ¢(d))

8 else

9 for each child € Children(v) do

10: c(child) « Wy |child, c]

11 return RECONSTRUCT(child, c(child))

the single optimal shortcut potentials for each node rg € V and
each cost value ¢ € [K]. We proceed with a bottom-up dynamic-
programming algorithm, named BUDP and shown as Algorithm 3.
In the BUDP algorithm, each node v is visited when all its children
Children(v) have already been visited. When visiting o, if it is
not a leaf, we compute the value of the benefit of the optimal
packing in the subtree rooted at v, while considering two cases:
(i) the solution includes a shortcut potential subtree rooted at v,
and (ii) the solution does not include a shortcut potential subtree
rooted atv. In case (i), the total benefit Hy [, c] at for a given cost
c is simply obtained by combining the optimal solutions at each
node child € Children(v). In case (ii), the total benefit Hy [0, c]
at o for a given cost ¢ is the benefit of the best combination of

71

the optimal shortcut potential S rooted at v and the optimal solu-
tions at the nodes s belonging to the set D(S) of descendants of S
defined as D(S) = {s : d ¢ V(S[ov,c]) and p,, € V(S[c,v])}. For
any internal node v, we also use an indicator matrix I to store
which of the two cases provides the largest benefit, i.e., I[v,c] = 1
if Hy[v,c] > Hy[v,c], and I[o, c] = 0 otherwise. Additionally, in
order to reconstruct the optimal solution, for the optimal pack-
ing of cost ¢ in the subtree rooted at a node v, it is necessary to
store the cost allocated to each shortcut potential that is part
of the optimal packing in that subtree. For this purpose, we use
two matrices Wy and W,. The matrix Wy is 2-dimensional, while
W is 3-dimensional because a node can be a child of only one
parent but a descendant of multiple shortcut potentials. Having
computed the benefit associated with the optimal packing of k
shortcut potentials, it is necessary to reconstruct the solution. It
is convenient to address this task recursively, as shown in Algo-
rithm 4, where the nodes of tree T are traversed top-down. The
matrices I, Wy, and W, returned by BUDP are used in Algorithm 4.
Every time a node v is visited, we use the indicator matrix I to
distinguish the two cases discussed above. If case (i) is optimal
for the subtree rooted at v, we continue the recursion at nodes
u € Children(v) with weights indicated by matrix Wj. Otherwise,
if case (ii) is optimal, we continue the recursion at nodes d € D(S)
with the weights given by matrix W5. For the initial invocation of
RECONSTRUCT we pass as arguments the root of T and the budget
K. The method returns the optimal packing S of node-disjoint
shortcut potentials, i.e., the solution to the MOSP problem.

Time complexity. The running time of the BUDP algorithm is
O(nK?). Each of the internal nodes of the junction tree is visited
once, and the total benefits corresponding to cases (i) and (ii) are
evaluated. The cubic term stems from the evaluation of the total
benefit under case (ii). Accounting for the preprocessing, where
the LRDP algorithm is called O(n) times, the total complexity of
solving the MOSP problem is O(n?K? + nK3).

4.4 A strongly-polynomial algorithm

In addition to the pseudo-polynomial algorithms introduced in
the previous sections, we now present a strongly-polynomial vari-
ant for both problems SOSP and MOSP. This strongly-polynomial
algorithm is not optimal, clearly, but it performs very well in
practice as we will see in our experimental evaluation. The main
idea is to reduce the amount of admissible values for the budget.
Instead of considering all budget values ¢ € {0,...,K}, we can
work with an exponentially smaller set. In particular, for some
real value € > 1, the set {0, ..., K} is partitioned into a smaller
number of bins of increasing size | ! |, where i is the bin number.
We thus form a reduced set {0, | €], | €2], ..., K}, which is used by
agorithms LRDP and BUDP in lieu of {0, ..., K}. The parameter
€ embodies the trade-off between solution quality and running
time. Increasing the value of € makes the dynamic-programming
framework more efficient, but it decreases the quality of the solu-
tion. As a rule of thumb, a value of € close to 1.2 offers a solution
that is often found to be close to the optimal while ensuring a
substantial reduction of running time. A fully-polynomial time
approximation scheme (FPTAS) can also be designed by round-
ing and scaling the benefit values. However, such an approach
does not scale well in practice, and therefore in our experimental
evaluation we focus solely on the strongly-polynomial algorithm
discussed above, which, while being a heuristic, is empirically
found to be remarkably effective, particularly when the budget
available for materialization is large.

4.5 Putting everything together

The techniques discussed in this section are incorporated into a
comprehensive method, called PEANUT. Its structure is simple:
PEANUT is composed of an offline and an online component.

In the offline component, algorithm LRDP is executed once
for each internal node as a root, so as to obtain the optimal
shortcut potentials corresponding to each combination of root
and cost. The resulting computation is then used by algorithm
BUDP to compute an optimal packing of multiple node-disjoint
shortcut potentials, which is used by the online component of
the system to answer inference queries. PEANUT can use the
strongly-polynomial algorithm to reduce the time required to
identify the materialization.

In the online component, inference queries are processed.
First, given a query g, the associated Steiner tree Ty is extracted.
PEANUT checks whether there are materialized shortcut poten-
tials that are useful for the query g and, if there are, uses them to
reduce the size of Ty and consequently the message-passing cost
to answer q.

4.6 Relaxing the node-disjointness constraint

The algorithms presented so far find the optimal set of shortcut
potentials under the constraints that the shortcut potential sub-
trees are node-disjoint. While such a constraint is crucial to make
the problem tractable, it limits the budget that can be used for
materialization. In particular, in our experiments we observe that
PEANUT tends to under-utilize the available budget, resulting in
a smaller benefit than what could be possible if the whole budget
is used. To overcome this limitation, we propose PEANUT+, a
method that combines the ideas discussed above with a simple
greedy packing heuristic. In PEANUT+, we only run Algorithms 1
and 2 at each possible root and then, from the retrieved shortcut
potentials, we greedily select the ones with the largest ratio r of
benefit B(+) to cost u(-) until the budget is filled.

The online component of PEANUT+ is more complex than the
one of PEANUT because overlapping shortcut potentials cannot
be simultaneously used. Hence, for each query g, we assemble
a conflict graph G, in which the shortcut potentials that are
useful for q are weighted by the corresponding value of r and
are joined by an edge if they are overlapping. From G, we ex-
tract a maximum weighted independent set by using the greedy
GWMIN algorithm [29]. In practice, this extra step incurs an over-
head, which can be expected to be negligible with respect to the
execution time of the queries.

5 EXPERIMENTAL EVALUATION

We present an experimental evaluation of our methods, using
benchmark Bayesian network datasets, and comparing PEANUT
and PEANUT+ with the strong (but not workload-aware) baseline
of Kanagal and Deshpande [21], and with the recent techniques
for optimal workload-aware materialization for inference based
on variable-elimination [4]. We also study the performance of
our methods in the presence of temporally-shifted workloads.

5.1 Experimental setting

We describe in more detail the benchmark Bayesian network
datasets we use, the baseline method we compare, and the other
settings and design choices for our experimental evaluation.

Datasets. We use 8 real-world Bayesian network datasets, whose
statistics are shown in Table 1. The number of parameters in the

72

Table 1: Summary statistics of Bayesian networks.

dataset #nodes #edges #parameters max in-degree
CHILD 20 25 230 2
HEePAR II 70 123 1.4K 6
ANDES 223 338 1.1K 6
HAILFINDER 56 66 2.6K 4
TPC-H 38 39 355.5K 2
MunNIN 186 273 15.6K 3
PATHFINDER 109 195 72.1K 5
BARLEY 48 84 114K 4

Table 2: Summary statistics of junction trees.

dataset #cliques diameter treewidth
CHILD 17 10 3
HEepraARr II 58 14 6
ANDES 175 25 17
HAILFINDER 43 14 4
TPC-H 33 16 2
MunNIin 158 23 11
PATHFINDER 91 17 6
BARLEY 36 14 7

table refers to the number of probablility values required to de-
fine all probabilistic dependencies in the Bayesian network. All
datasets are available online.?> CHILD [32] is a model for congen-
ital heart-disease diagnosis in new born “blue babies” HEPAR
II [26] is a model for liver-disorder diagnosis. ANDES [11] is used
in an intelligent tutoring system for teaching Newtonian physics
to students. HAILFINDER [2] combines meteorological data and
human expertise to forecast severe weather in Northeastern
Colorado. TPC-H is a Bayesian network learned from TPC-H
benchmark data [33]. MUNIN [3] is a subnetwork of a Bayesian
network model proposed to be exploited in electromyography.
PATHFINDER [17] assists with the diagnosis of lymph-node dis-
eases. BARLEY [23] supports decision making in growing malting
barley. Table 2 shows salient characteristics of the junction trees
associated with the datasets. Due to space constraints, we show
experimental results only for a subset of datasets. Additional
results can be found in the extended version of the paper [10].

Baselines. We compare our approach against INDSEP [21], which
relies on a tree-partitioning technique [24] to build a hierarchical
index over the junction tree. The index construction hinges on
the disk block size, which provides an upper bound on the mem-
ory required by each index node. An index node I corresponds
to a connected subtree of the junction tree and is associated with
a shortcut potential given by the joint-probability distribution
of the variables in the separators adjacent to I. Queries are pro-
cessed by a recursive algorithm, and shortcut potentials prune
the recursion tree for some queries. A multi-level approximation
scheme for shortcut potentials is also implemented to deal with
the scenario in which the size of a shortcut potential exceeds the
block size. We furthermore compare PEANUT and PEANUT+ with
the optimal materialization for variable elimination that we have
developed in our previous work [4]. We refer to this method as
VE-n, where n refers to the number of materialized factors. The
time and space requirements for the construction and calibration

3See https://github.com/martinociaperoni/PEANUT for TPC-H and www.bnlearn.
com/bnrepository/ for the rest

Pearson correlation: 0.99

©70 i @1 4

g 00 - g12

= 50 £ = 1.0

on . 000.8

c 30 e c 0.4 A

3 % So2 4"
0 2 4 6 8 0

operations 1 0+6

(a) ANDES

Pearson correlation: 0.99

1234567
. +4
operations x 10

(b) HAILFINDER

Pearson correlation: 0.98

running time (s)
—_— = NN WWS
(62X &) K) @) Fan) &) Kean]

0123456738
. +6
operations x 10

(c) PATHFINDER

Figure 3: Running time against cost values for a set of queries processed with the standard junction-tree algorithm.

—— £=12.0 O -

A
_A

o
4

04 -

actual budget

e G

actual budget

104 105 10 107 108
target budget

(a) ANDES

£=6.0

102 10° 10% 10> 10¢ 107
target budget

(b) HAILFINDER

=A- £=1.2

104

103

actual budget

10* 10° 10° 107 10%
target budget

(c) PATHFINDER

Figure 4: Materialized budget against target budget in PEANUT with different levels of approximation (log-log scale).

of the junction tree (JT) and for the materialization step with
the different methods under comparison are shown in Table 4.
Note that for the TPC-H, MuNIN and BARLEY datasets, calibra-
tion of the tree did not terminate after a one-day-long execution
(asterisk and NA entries in Table 4). The calibration of the junc-
tion tree in principle represents a preliminary step for INDSEP,
PEANUT and PEANUT+ as they take as input the calibrated junc-
tion tree. However, the calibration process is only necessary to
obtain correct answers to inference queries, and it is not needed
for comparing exact query processing costs using different ma-
terialization strategies which is the goal of our experimental
evaluation. Therefore, such datasets are also considered in the
experiments. In this case, INDSEP, PEANUT and PEANUT+ take as
input the uncalibrated junction tree and, as a consequence, query
answers contain erroneous probability values. Nonetheless, the
computational burden associated with query processing is not
affected by the calibration process.

Query workloads. Since we do not have access to real query
workloads for the datasets we use in these experiments, we resort
to random sampling to construct synthetic query workloads.

In the skewed workload, variables are sampled from a distribu-
tion skewed towards the leaves of the tree, i.e., variables have
probabilities of being queried for proportional to their distance
from the pivot of the junction tree. We generate N; = 3000
queries in this way, of which 2 000 are used to estimate benefits,
and the remaining 1000 to assess the materialization.

In the uniform workload, variables are sampled uniformly at
random. This ensures fairness in the comparison between ma-
terialization of junction trees and VE-n. In this case, we use the
same Ny = 250 queries, all of which contain 1 to 5 query vari-
ables, for both optimization and evaluation. As shown in the
extended version of the paper [10], the impact of parameter Ny
on materialization performance is minor.

Cost values. The standard junction-tree method is prohibitively
time-consuming for several datasets; note “NA” entries in Table 4.

73

Table 3: Offline running times (seconds) for PEANUT and
PEANUT+ (in parenthesis) with different approximation
levels and INDSEP.

dataset €=12 €=6 € =12 INDSEP
CHILD 0.028 (0.020) 0.024 (0.022) 0.016 (0.015) 0.004
Hepar II 2.88 (2.81) 1.79 (1.75) 1.30 (1.27) 0.086
ANDES 4.7K (4.6K) 252 (238) 196 (162) 2.19
HAILFINDER 6.71 (5.89) 0.46 (0.38) 0.32(0.29) 0.039
TPC-H 16.93 (12.23) 0.44 (0.37) 0.24 (0.21) 0.025
MUNIN 8.8K (8.4K) 140 (138) 99.41 (99.03) 2.53
PATHFINDER 80.42 (73.22) 2.76 (2.71) 2.18 (2.15) 0.25
BARLEY 86.30 (78.44) 1.67 (1.63) 1.027 (1.018) 0.030

To circumvent this limitation, we measure the performance of
a materialization using the total number of operations required
to process a query workload. In more detail, given a query g,
a cost value c(v) is assigned to all nodes of the Steiner tree Ty
associated with g, which could be either cliques or shortcut po-
tentials replacing part of the original Steiner tree T;. The cost
¢(v) is the number of operations required to compute the mes-
sage sent to m,, or to compute the final answer to the query if
v coincides with the pivot of Ty. The cost of g is then the sum
of the cost values over the nodes in T;. We confirm empirically
that the assigned cost values align almost perfectly with the cor-
responding execution times, as shown in Figure 3, where we
show the running time against the cost for a set of queries, for
three datasets. In Figure 3, we additionally display the Pearson
correlation coefficient. The extremely strong correlation clearly
provides empirical support for using our cost values to assess the
performance of a materialization.

Experiment parameters. Next we discuss the choice of param-
eters for space budget K, and approximation €.

Table 4: Materialization phase statistics for the experiments comparing PEANUT, PEANUT+, INDSEP and VE-n.

Disk Space (MB)

Time (seconds)

dataset VE-5 JT INDSEP PEANUT PEANUT+ VE-5 JT INDSEP PEANUT PEANUT+
CHILD 0.025 0.005 0.002 0.002 0.044 0.0200.035 0.016 34.12 23.013
Hepar II 0.025 0.013 0.011 0.001 1.55 0.040 0.37 0.12 493.86 313.21
ANDES 0.62 70 78 55.16 17.7K 0.84 3.7K 2.55 31K 20K
HAILFINDER 0.025 0.071 0.11 0.13 8.28 0.041 0.93 0.056 199.32 78.96
TPC-H* 0.041 23.77 43.19 1.23 483.78 276 NA 0.027 320.71 57.83
MunNIN® 265 2.8K 36195 358.16 1K 253.67 NA 2.57 25.6K 16.9K
PATHFINDER 0.06 1.37 1.40 0.14 220.79 0.31 302 2.80 1K 420.32
BARLEY" 24 186.99 3K 2.2K 13.2K 11.57 NA 0.034 635.051 263.57

Budget. First we note that the two materialization methods we
evaluate, PEANUT and INDSEP, do not always make use of the
full available budget, as is typically the case with such discrete-
knapsack constraints, both because the node-disjointess con-
straint may limit the space that can be materialized and because
of the strongly-polynomial approximation, if used. We thus make
a distinction between the target budget K, i.e., the value of the
budget constraint, and the actual budget, i.e., the materialized
space used by a method. Indicatively, differences between target
and actual budget are demonstrated in Figure 4 for PEANUT, for
different values of € and a subset of datasets. It is evident that
large values of € only take up a small part of the target budget,
and, in general, the smaller the value of ¢, the closer the materi-
alization space is to the target one. Moreover, the target budget
K is expressed differently for PEANUT and INDSEP. In the case
of PEANUT, the target budget is specified directly as part of the
input. The larger the target budget, the larger the materialized
budget is expected to be. Instead, in INDSEP, the materialized
budget is determined by the block size and cannot be directly
controlled. Unlike PEANUT and INDSEP, PEANUT+ can control
the actual budget, which is greedily filled. This allows to com-
pare PEANUT+ and INDSEP at (approximately) parity budget. In
skewed workload experiments, for INDSEP we consider a large
set of possible block-sizes {10, 20, 50, 100, 150, 500, 1000, 5 X 103,
5% 10,5 % 10°,5 x 106}, and we choose the three values leading
to the minimum, maximum, and median materialization space.
For PEANUT we consider three different target budgets, namely,
{b7/10,10 b7, 10000 b}, where b7 is the total potential size of
the separator in T. In uniform workload experiments, for IND-
SEP we consider block-size 10%, and similarly for PEANUT and
PEANUT+ we consider target budget 1000 br.

Approximation. For PEANUT and PEANUT+, the user-specified
variable € that controls the trade-off between solution quality
and running time is an important parameter. Setting € = 1 gives
the optimal solution, but it will be time-consuming. We show re-
sults for € € {1.2,6,12}. Table 3 shows, for the skewed workload,
PEANUT and PEANUT+ wall-clock time for finding the optimal
materialization and INDSEP wall-clock time to build the INDSEP
data structure. Here, the budget is fixed to %bT for PEANUT,
and similarly, to the smallest budget used for INDSEP. Note that
PEANUT and PEANUT+ are usually much slower than INDSEP in
choosing the shortcut potentials to materialize. However, the of-
fline overhead of our approach is counterbalanced by its superior
performance during the online query-processing phase, which is
the focus of our work.

Implementation. Experiments are executed on a machine with
2x10 core XEoN E5 2680 v2 2.80 GHz processor and 256 GB

74

memory. All methods have been implemented in Python. Our
implementation is available online.*

5.2 Query-processing results
We first report results on the cost of processing inference queries.

Skewed workload. In Figure 5, we show the performance gains
due to materialization of shortcut potentials achieved by INDSEP
and PEANUT+ with different approximation levels when process-
ing the skewed workload of queries. The performance gains are
given by the net cost savings obtained by resorting to the short-
cut potentials, compared to the case when no shortcut potential
is used. The results confirm that PEANUT+ typically outperforms
INDSEP, even for large values of the approximation parameter €.
As expected, for PEANUT+, the lowest value of € = 1.2 typically
yields the greatest cost savings, while ¢ = 12 tends to result in
the worst performance. In general, although it is not guaranteed,
for both PEANUT and PEANUT+, increasing € tend to decrease sav-
ings. Next, we explore the relation between the net cost savings
and the diameter of the Steiner tree extracted for query answer-
ing. Figure 6 displays the average net cost savings in the skewed
workload as a function of the Steiner-tree diameter for INDSEP,
PEANUT+ and PEANUT with different values of the approximation
parameter €. Here, for each query we take the maximum savings
over the considered budgets for INDSEP, PEANUT and PEANUT+.
While the figure does not offer a fair comparison between candi-
date strategies since savings are obtained with largely varying
budgets, it reveals that savings grow quickly with the Steiner-
tree diameter simply because larger Steiner trees lead to a higher
shortcut potential hit rate. The increasing trend is common to
all datasets, although the growth rate depends heavily on the
characteristics of the materialized shortcut potentials.
Uniform workload. In Figure 7 we compare, in the uniform
workload, the total cost for inference based on the junction tree
(JT) without additional materialization, INDSEP, VE-n withn =5
materialized factors, PEANUT and PEANUT+ for fixed e = 1.2. In
addition, we analyse how the cost varies with the query size |q|.
As expected, larger queries are more computationally demand-
ing because they yield larger Steiner trees and larger messages.
Clearly, for |q| = 1, VE-n performs remarkably worse than the
other methods. PEANUT+ always leads to the best query process-
ing except for the MUuNIN dataset, in which junction-tree-based
approaches exhibit very poor performance. Similarly, PEANUT
outperforms INDSEP in all datasets and VE-5 in five datasets.
Finally, it is important to observe that the scale of savings
across different datasets is highly variable. In particular, the effec-
tiveness of materialization depends largely on the tree structure.

“https://github.com/martinociaperoni/PEANUT

m INDSEP £=12.0
102 102
g A A A g
10! 210 “ *
£ £
> >
] T 3
& b
% @ 100
S 100 S 10
0 () e Adrim =
3 3 % > >
N N N N N RN
o3 A+ o5 o F o3
¥ o " o A ¥

actual budget actual budget

CHILD ANDES

£=6.0 L} £=12
102 102
= < "
E‘\/ A A A E\\/ A
210" 210!
£ £ A
> >
I I3
3 A b
2 100 2 100
810 I:EI 810
o o
0 0
> 5 o 3 > b~
S b by 0y Ry ey
N N O 9 R N
actual budget actual budget
TPC-H PATHFINDER

Figure 5: Distribution of cost savings percentage against materialized budget for INDSEP and PEANUT+ with different ap-
proximation levels. The average of the distribution is displayed in green. The y-axis is on a logarithmic scale.

—<~ INDSEP —— PEANUT (¢ = 12.0)
6 X
10t 10
%)]05
.]
10 < 104
= S 103
& 102 210
- 1%
3 10
o101 210!
z]
100
']0() 0 o
12 3 45 6 7 8 910 5 10 15 20
diameter diameter
CHILD ANDES

(%) PEANUT (¢ =6.0)

-A- PEANUT (6=1.2) 4=} PEANUT+(e=1.2)

106
10%
104
10°
102
10!

avg cost savings

avg cost savings

10°
0

4 6 8 10 12 14 16 18
diameter

8
diameter

TPC-H

10 12 14 16

PATHFINDER

Figure 6: Average cost savings against Steiner-tree diameter for INDSEP, PEANUT+ and PEANUT with different approximation

levels. The y-axis is on a logarithmic scale.

® q[=1 ® q = laf =
N N N & &
S & & & 8
NN) AN DN AN © © e © ©
ST g RN IR RN
NOSEPA N AN S: o5 T g &
10t TR S, VN, VL A
10°
%103 R
2 o
& 210°
5
10! 102
10"
100 100
5 & RN x «
¢ Y &S & S & N &
S & SR
CHILD ANDES
Figure 7:

B [q= B [q]=
3 H H H H
S &S
o) & Q& b9+ qu- 03;,-\- (06\- \\-\-
S S S S Y . S .
+\ o @0 A +\ PRI A R N L ¥
‘\'b‘ b‘ ‘\- -
10°
10°
i = 104
L1 g
. 2!
Ed “ 102
103
10!
10! 100
, 5 & QR & «
<\ 043 \>-0/\ 95\ R\ N eo%‘(/ Y~e\) é\s&
S &
N & Q@Y‘ AN < Q%
TPC-H PATHFINDER

The y-axis shows on logarithmic scale the value of the average query processing cost by query size |g| for

different algorithms. Labels report the value of the average query processing cost aggregated over all values of |g| for each

method.

As it can be confirmed with a simple regression analysis of the av-
erage cost on characteristics of the datasets, for a fixed number of
cliques, the benefits of our methods are larger in sparser Bayesian
networks leading to junction trees with limited treewidth. Simi-
larly, the diameter of the junction tree appears to have a relevant
positive effect on the performance of PEANUT.

5.3 Robustness analysis

We carry out additional experiments to explore the robustness of
our system PEANUT with respect to drifts in the query workload

[0)

distribution. In particular, we explore the setting in which mate-
rialization is optimized with respect to a query workload Q and
then the results are evaluated on a different query workload Q’.
Both Q and Q' are of size 500. When Q is the skewed (uniform)
query workload considered in our experiments, Q” consists of
queries from the same skewed (uniform) workload in propor-
tion A and of queries from the uniform (skewed) workload in
proportion 1— A, with varying A € [0, 1]. The average cost of pro-
cessing Q” with and without materialization for different values
of A in the case that Q is the skewed and the uniform workload
are shown in Figures 8 and 9, respectively. Here, PEANUT and
PEANUT+ parameters are fixed to K = 10by and € = 1.2. The

-o- T

ANDES

CHILD

—A— PEANUT

“- PEANUT+

TPC-H PATHFINDER

Figure 8: Average cost of processing Q’ against proportion A of queries from Q for the standard junction-tree algorithm

(JT), PEANUT and PEANUT+. Here, Q is the skewed workload.

-o- T
+6
x10
x10™
g O 6. 5.0
3 Bt s Y 4.5
G-~ -
-7 ==-0 % 4.0
1% o
g6 °35
on %0 +
R 3 3.0 - +
4
25
3 2.0 *+
e EE e F :
Q N})) A Q “» \e) \e)
N Y NN
A A
CHILD ANDES

—A— PEANUT

4 PEANUT+

TPC-H

PATHFINDER

Figure 9: Average cost of processing Q’ against proportion 1 of queries from Q for the standard junction-tree algorithm
(JT), PEANUT and PEANUT+. Here, Q is the uniform workload.

cost savings in Q' are generally not drastically affected by the
value of A. Thus, the results of this experiment highlight that
PEANUT and PEANUT+ are fairly robust with respect to drifts
in the query workload distribution. Note that the average cost
tends to increase with the proportion of skewed queries. This
is not surprising since skewed queries are more likely to corre-
spond to Steiner trees of large diameter. This trend is observed
in all datasets except for HEPARII, in which, although skewed
queries are as usual associated with larger Steiner tree diameters,
they also favour query variables with smaller cardinality. Despite
the robustness of the proposed approach, it is appropriate to
recompute the materialization either periodically over time or
whenever there is sufficient evidence that the query distribution
has changed significantly.

6 CONCLUSIONS

We presented a novel technique to accelerate inference queries
over Bayesian networks using the junction-tree algorithm. Our
approach builds on the idea introduced by Kanagal and Desh-
pande [21] to materialize shortcut potentials over the junction
tree. However, unlike their work, we have framed the problem of
choosing shortcut potentials to precompute and materialize as
a workload-aware optimization problem. In particular, we have
formulated the problems of selecting a single optimal shortcut
potential and an optimal set of shortcut potentials in view of

76

evidence provided by historical query logs. We have proven hard-
ness results for these problems, and we have developed a method,
called PEANUT, consisting of a two-level dynamic-programming
framework that tackles the problems in pseudo-polynomial time.
We have additionally introduced a strongly-polynomial algorithm
that trades solution quality with speed, as well as PEANUT+, a
simple modification of PEANUT, which ensures a better utilization
of the available space budget. Extensive experimental evaluation
confirms the effectiveness of our materialization methods in re-
ducing the computational burden associated with a given query
workload and the superiority with respect to previous work. Inter-
esting avenues to explore for future work include extending our
techniques to allow for node-overlapping shortcut-potential sub-
trees in a more principled way, or studying a similar approach for
optimal materialization of intermediate computations to speed up
inference based on a different, possibly approximate, algorithm,
such as loopy belief propagation.

ACKNOWLEDGMENTS

This research is supported by the Academy of Finland projects
AIDA (317085) and MLDB (325117), the ERC Advanced Grant
REBOUND (834862), the EC H2020 RIA project SoBigData++
(871042), and the Wallenberg Al, Autonomous Systems and Soft-
ware Program (WASP) funded by the Knut and Alice Wallenberg
Foundation.

REFERENCES

(1]

(2]

[10]

(11

[12]

[13]
[14]
[15]

[16]

=
=

(18]

Mahmoud Abo Khamis, Hung Q Ngo, and Atri Rudra. 2016. FAQ: questions
asked frequently. In Proceedings of the 35th ACM SIGMOD-SIGACT-SIGAI
Symposium on Principles of Database Systems. 13-28.

Bruce Abramson, John Brown, Ward Edwards, Allan Murphy, and Robert L
Winkler. 1996. Hailfinder: A Bayesian system for forecasting severe weather.
International Journal of Forecasting 12, 1 (1996), 57-71.

Steen Andreassen, Finn V Jensen, Stig Kjeer Andersen, B Falck, U Kjeerulff, M
Woldbye, AR Serensen, A Rosenfalck, and F Jensen. 1989. MUNIN: an expert
EMG Assistant. In Computer-aided electromyography and expert systems.
Elsevier, 255-277.

Cigdem Aslay, Martino Ciaperoni, Aristides Gionis, and Michael Mathioudakis.
2021. Workload-aware materialization for efficient variable elimination on
Bayesian networks. In IEEE International Conference on Data Engineering
(ICDE). IEEE, 1152-1163.
Christopher M Bishop. 2006.
Springer.

Surajit Chaudhuri, Ravi Krishnamurthy, Spyros Potamianos, and Kyuseok
Shim. 1995. Optimizing queries with materialized views. In Proceedings of the
Eleventh International Conference on Data Engineering. IEEE, 190-200.

Mark Chavira and Adnan Darwiche. 2005. Compiling Bayesian networks with
local structure. In IJCAL Vol. 5. 1306-1312.

Mark Chavira and Adnan Darwiche. 2007. Compiling Bayesian Networks
Using Variable Elimination.. In I[JCAL 2443-2449.

Geon Cho and Dong X Shaw. 1997. A depth-first dynamic programming
algorithm for the tree knapsack problem. INFORMS Journal on Computing 9,
4(1997), 431-438.

Martino Ciaperoni, Cigdem Aslay, Aristides Gionis, and Michael Mathioudakis.
2021. Workload-Aware Materialization of Junction Trees. 2110.03475.pdf.
https://arxiv.org/pdf/

Cristina Conati, Abigail S Gertner, Kurt VanLehn, and Marek J Druzdzel.
1997. On-line student modeling for coached problem solving using Bayesian
networks. In User Modeling. Springer, 231-242.

Robert G Cowell, Philip Dawid, Steffen L Lauritzen, and David J Spiegelhalter.
2006. Probabilistic networks and expert systems: Exact computational methods
for Bayesian networks. Springer Science & Business Media.

Adnan Darwiche. 2003. A differential approach to inference in Bayesian
networks. Journal of the ACM (JACM) 50, 3 (2003), 280-305.

Rina Dechter. 1999. Bucket elimination: A unifying framework for reasoning.
Artificial Intelligence 113, 1-2 (1999), 41-85.

Amol Deshpande, Lise Getoor, and Prithviraj Sen. 2009. Graphical models for
uncertain data. Managing and Mining Uncertain Data (2009), 77-105.

Lise Getoor, Benjamin Taskar, and Daphne Koller. 2001. Selectivity estimation
using probabilistic models. In ACM SIGMOD Record, Vol. 30. 461-472.

David Earl Heckerman, Eric J Horvitz, and Bharat N Nathwani. 1990. To-
ward normative expert systems: The Pathfinder project. Knowledge Systems
Laboratory, Stanford University Stanford.

Max Henrion. 1988. Propagating uncertainty in Bayesian networks by proba-
bilistic logic sampling. In Machine Intelligence and Pattern Recognition. Vol. 5.
Elsevier, 149-163.

Pattern recognition and machine learning.

7

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

(27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

Finn V Jensen et al. 1996. An introduction to Bayesian networks. Vol. 210. UCL
press London.

David S Johnson and KA Niemi. 1983. On knapsacks, partitions, and a new
dynamic-programming technique for trees. Mathematics of Operations Re-
search 8,1 (1983), 1-14.

Bhargav Kanagal and Amol Deshpande. 2009. Indexing correlated probabilistic
databases. In Proceedings of the 2009 ACM SIGMOD International Conference
on Management of data. ACM, 455-468.

Mahmoud Abo Khamis, Hung Q Ngo, and Atri Rudra. 2017. Juggling functions
inside a database. ACM SIGMOD Record 46, 1 (2017), 6-13.

Kristian Kristensen and Ilse Rasmussen. 2002. The use of a Bayesian network
in the design of a decision support system for growing malting barley without
use of pesticides. Computers and Electronics in Agriculture 33 (03 2002), 197
217.

Sukhamay Kundu and Jayadev Misra. 1977. A linear tree partitioning algo-
rithm. SIAM J. Comput. 6, 1 (1977), 151-154.

Steffen L Lauritzen and David] Spiegelhalter. 1988. Local computations with
probabilities on graphical structures and their application to expert systems.
Journal of the Royal Statistical Society: Series B (Methodological) 50, 2 (1988),
157-194.

Agnieszka Onisko. 2003. Probabilistic causal models in medicine: Application
to diagnosis of liver disorders. In Ph. D. dissertation, Inst. Biocybern. Biomed.
Eng., Polish Academy Sci., Warsaw, Poland.

Judea Pearl. 2014. Probabilistic reasoning in intelligent systems: networks of
plausible inference. Elsevier.

Hoifung Poon and Pedro Domingos. 2011. Sum-product networks: A new
deep architecture. In 2011 IEEE International Conference on Computer Vision
Workshops (ICCV Workshops). IEEE, 689-690.

Shuichi Sakai, Mitsunori Togasaki, and Koichi Yamazaki. 2003. A note on
greedy algorithms for the maximum weighted independent set problem. Dis-
crete applied mathematics 126, 2-3 (2003), 313-322.

Natthawut Samphaiboon and Y Yamada. 2000. Heuristic and exact algorithms
for the precedence-constrained knapsack problem. Journal of optimization

theory and aéoplications 105, 3 (2000), 659-676.
Maximilian Schleich, Dan Olteanu, Mahmoud Abo Khamis, Hung Q Ngo, and

XuanLong Nguyen. 2019. A layered aggregate engine for analytics workloads.
In Proceedings of the 2019 International Conference on Management of Data.
1642-1659.

David J Spiegelhalter, A Philip Dawid, Steffen L Lauritzen, and Robert G
Cowell. 1993. Bayesian analysis in expert systems. Statistical science (1993),
219-247.

Kostas Tzoumas, Amol Deshpande, and Christian S Jensen. 2013. Efficiently
adapting graphical models for selectivity estimation. The VLDB Journal 22, 1
(2013), 3-27.

Nevin L Zhang and David Poole. 1994. A simple approach to Bayesian net-
work computations. In Proc. of the Tenth Canadian Conference on Artificial
Intelligence.

Nevin Lianwen Zhang and David Poole. 1996. Exploiting causal independence
in Bayesian network inference. Journal of Artificial Intelligence Research 5
(1996), 301-328

