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ABSTRACT
Query evaluation in tuple-independent probabilistic
databases is the problem of computing the probability of
an answer to a query given independent probabilities of
the individual tuples in a database instance. There are
two main approaches to this problem: (1) in grounded
inference one first obtains the lineage for the query and
database instance as a Boolean formula, then performs
weighted model counting on the lineage (i.e., computes
the probability of the lineage given probabilities of its
independent Boolean variables); (2) in methods known
as lifted inference or extensional query evaluation, one
exploits the high-level structure of the query as a first-order
formula. Although it is widely believed that lifted inference
is strictly more powerful than grounded inference on the
lineage alone, no formal separation has previously been
shown for query evaluation. In this paper we show such a
formal separation for the first time.

We exhibit a class of queries for which model counting can
be done in polynomial time using extensional query evalu-
ation, whereas the algorithms used in state-of-the-art exact
model counters on their lineages provably require exponen-
tial time. Our lower bounds on the running times of these
exact model counters follow from new exponential size lower
bounds on the kinds of d-DNNF representations of the lin-
eages that these model counters (either explicitly or implic-
itly) produce. Though some of these queries have been stud-
ied before, no non-trivial lower bounds on the sizes of these
representations for these queries were previously known.
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1. INTRODUCTION
Model counting is the problem of computing the num-

ber, #Φ, of satisfying assignments of a Boolean formula
Φ. In this paper we are concerned with the weighted ver-
sion of model counting, which is the same as the probability
computation problem on independent random variables. Al-
though model counting is #P-hard in general (even for for-
mulas where satisfiability is easy to check) [25], there have
been major advances in practical algorithms that compute
exact, weighted model counts for many relatively complex
formulas. Exact model counting for propositional formulas
(see [12] for a survey) are based on extensions of backtrack-
ing search using the DPLL family of algorithms [11, 10] that
were originally designed for satisfiability search.

We are motivated by probabilistic databases [23], where
the query evaluation problem is the following: given a (fixed)
Boolean query Q, and a database D where each tuple is
an independent random variable (the tuple may be present
or not, with a known probability), compute Pr[Q(D)], the
probability that Q is true on a random instance of D. This
is still the weighted model counting problem, with the only
difference that the propositional formula Φ is obtained as the
grounding of a first-order formula Q on a database D. Φ is
called the lineage or the grounding of Q. An obvious way
to compute Pr[Q(D)] is to first compute the lineage Φ, then
perform model counting on Φ. We call this the grounded
inference approach. In general, however, grounded inference
is inefficient, because Φ is a large propositional formula that
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depends on many tuples in the database, while the first-order
query Q is much smaller.

The mismatch between the high level representation as a
first-order formula and the low level of propositional infer-
ence was noted early on, and has given rise to various tech-
niques that operate at the first-order level, which are collec-
tively called lifted inference in statistical relational models
(see [15] for an extensive discussion), or extensional query
evaluation in probabilistic databases [23]. These methods
exploit the high level structure of the first-order formula in
order to guide the probabilistic inference.

It is widely believed that lifted inference, or extensional
query evaluation, is strictly more powerful than grounded
inference. While there have been examples in other contexts
where provable separations have been shown (e.g., [20]), no
formal separation has previously been shown in the context
of query evaluation. We show such a formal separation for
the first time.

We describe a family of queries for which we prove
formally that grounded inference by current propositional
model counting algorithms requires exponential time on any
member in the class. We also show that model counting for
each query in this class can be done in polynomial time in
the size of the domain using a form of lifted inference. This
proves that current propositional model counting techniques
are strictly weaker than their lifted counterparts, for every
query in this family.

Our result on the limitation of inference at the proposi-
tional level assumes certain properties of the inference algo-
rithm. To explain these, we first review the state of the art
for exact propositional model counting algorithms. These
algorithms are based on the DPLL family of algorithms [11,
10], and include several extensions: caching the results of
solved sub-problems [18], dynamically decomposing resid-
ual formulas into components (Relsat [2]) and caching their
counts ([1]), and applying dynamic component caching to-
gether with conflict-directed clause learning (CDCL) to fur-
ther prune the search (Cachet [21] and sharpSAT [24]). In
addition to DPLL-style algorithms that compute the counts
on the fly, model counting has been addressed through a
complementary approach, known as knowledge compilation,
which converts the input formula into a representation of the
Boolean function that the formula defines and from which
the model count can be computed efficiently in the size of
the representation [7, 8, 14, 19]. Efficiency for knowledge
compilation depends both on the size of the representation
and the time required to construct it. These two approaches
are quite related. As noted in c2d [14] (based on component
caching) and Dsharp [19] (based on sharpSAT), the traces
of all the DPLL-style methods yield knowledge compilation
algorithms that can produce what are known as decision-
DNNF representations [13, 14], a syntactic subclass of d-
DNNF representations [8, 9];

Thus, the key property we assume about propositional
model counting algorithms is that they can be converted
to produce a decision-DNNF representation of the propo-
sitional formula. Indeed, all the methods for exact model
counting surveyed in [12] (and all others of which we are
aware) can be converted to knowledge compilation algo-
rithms that produce decision-DNNF representations, with-
out any significant increase in their running time. A
decision-DNNF is a rooted DAG where each node either
tests a Boolean variable Z and has two outgoing edges

corresponding to Z = 0 or Z = 1, or is an AND-node
with two sub-DAGs that do not test any variable in com-
mon. These naturally correspond to the two types of oper-
ations in any modern DPLL-style algorithm: Shannon ex-
pansion on a variable1 Z, or partitioning the formula into
two disconnected components2. We will refer to the DPLL-
style algorithms and knowledge compilation methods used in
the state-of-the-art model counters as decision-DNNF-based
model counting algorithms.

The lower bounds that we prove in this paper are on the
size of the decision-DNNF; based on our discussion, these
lower bounds also apply to the running time of all decision-
DNNF-based algorithm, which includes all modern exact al-
gorithms. Specifically, we prove that, for every query in the
class we define, any decision-DNNF for the lineage of that
query is exponentially large in the size of the domain. We
explain next our lower bounds on the size of the decision-
DNNF.

Our Contributions. Our first lower bounds are for a
family of queries, called hk, k ≥ 1, [23], for which weighted
model counting is not in polynomial time: in fact, proba-
bilistic inference for hk was shown to be #P-hard [6]. These
queries have a very simple lineage, which is a 2-DNF for-

mula. We prove exponential lower bounds of the form 2Ω(
√
n)

on the sizes of decision-DNNF representations of these lin-
eages, which is the first non-trivial decision-DNNF lower
bound for hk (Theorem 3.1).

We obtain these lower bounds by first proving lower
bounds on the size of FBDDs: an FBDD, or Free Binary
Decision Diagram, also known as Read-Once Branching Pro-
gram, is a restricted subclass of decision-DNNFs without any
AND-nodes (see Section 2). We prove that any FBDD for
the Boolean formula representing the lineage of hk requires
at least 2n−1/n size for a domain of size n. We have shown
recently [3] that every decision-DNNF of size N can be con-

verted into an FBDD of size at most N2log2 N . Together,

these two results imply our lower bound of 2Ω(
√
n) on the

sizes of decision-DNNF. We note that a lower bound on the
size of the FBDD for hk was known previously [17], but that

bound, 2Ω(log2 n), is insufficient to yield any decision-DNNF
lower bound using our translation.

Our lower bounds for hk in Theorem 3.1 do not yet prove
the separation between lifted and grounded probabilistic in-
ference, because weighted model counting for hk is #P-hard.
To obtain that separation, we extend substantially the class
of queries for which the same lower bounds on the size of
FBDDs holds, and, therefore, the same bounds on the size
of the decision-DNNFs. Each query hk is a disjunction of
k + 1 queries, hk = hk0 ∨ hk1 ∨ . . . ∨ hkk. We prove that for
any Boolean combination of these k + 1 queries, the lower
bound on the size of the FBDDs continues to apply. Thus,
one may take the disjunction of these k + 1 queries (and
obtain hk), or their conjunction, or any other combination:
for any such query the lower bound on the size of the FBDD
continues to hold. The only restriction on the Boolean com-
bination is that it has to depend on all k + 1 queries: this
is necessary, otherwise the lineage of the query is known to
admit an OBDD3 of linear size in the active domain [16].

1Pr[Φ] = Pr[Φ[Z = 0]] · (1− Pr[Z]) + Pr[Φ[Z = 1]] · Pr[Z].
2Pr[Φ1 ∧ Φ2] = Pr[Φ1] · Pr[Φ2].
3An OBDD is an FBDD where every path from the root to
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Our lower bound is based on showing that, every FBDD for
such a Boolean combination can, with a small increase in
size, be converted into an FBDD that simultaneously rep-
resents the lineages of all of its constituent queries hk0, . . . ,
hkk; from here one immediately obtains an FBDD for their
disjunction, which is hk, and for which the previous lower
bounds hold.

What makes our result surprising is the fact that, for
some Boolean combinations of hk0, . . . , hkk, weighted model
counting can be done in polynomial time, by using the in-
clusion/exclusion formula. This is a form of lifted inference,
because the inclusion/exclusion formula is applied to the
First Order expression, namely to the Boolean combination
of the FO expressions hk0, . . . , hkk. Inclusion/exclusion may
be exponential in k, but this depends only on the query, not
the data, and lifted inference takes only polynomial time
in the size of the active domain. In contrast, if one were
to apply naively inclusion/exclusion to the grounding of the
query, the complexity would be exponential in the size of the
active domain, and for that reason, current model count-
ing algorithm on propositional formulas do not use inclu-
sion/exclusion. Our lower bounds prove that this limitation
is significant, by showing that their runtime is exponential
in the active domain. In other words, lifted inference gains
extra power by using the First Order expression to guide the
application of inclusion/exclusion, and this ability cannot be
recovered at the propositional level by any decision-DNNF-
based algorithm.

This proves our separation result between grounded and
lifted probabilistic inference. More precisely, we use the gen-
eral characterization given in [6] for Union of Conjunctive
Queries (UCQ), which gives a specific property (entirely)
based on the structure of Q that allows exact model counting
in time polynomial in the size of the database. This yields a

2Ω(
√
n) versus nO(1) separation between these propositional

and lifted methods for weighted model counting for a wide
variety of such queries Q (Theorem 3.7).

As we explained, our lower bounds on the running time
of weighted model counting algorithm apply to decision-
DNNF-based model counting algorithms. Their input is a
CNF, and their component rule writes a residual formula as
Φ = Φ1 ∧ Φ2 where Φ1, Φ2 are sets of clauses with no com-
mon variables. On the other hand, queries in probabilistic
databases have lineage expressions that are DNF formulas,
were a more natural decomposition would be Φ = Φ1 ∨ Φ2,
where Φ1,Φ2 are formulas with no common variables. A
natural question is whether a simple extension of a model
counting algorithm with this kind of decomposition could
significantly improve their power. We answer this in the
negative. More precisely, we strengthen (Theorem 2.1) the
conversion from decision-DNNF to FBDD in [3] to one with
the same complexity that applies to a new, more general
class of representations than decision-DNNFs, which we call
decomposable logic decision diagrams (DLDDs). A DLDD is
a DAG where every node either tests a Boolean variable Z
(like in a decision-DNNF), or applies a binary Boolean op-
erator to its two children, f(Φ1,Φ2), where the two children
Φ1 and Φ2 have no common Boolean variables. We prove
that every decision-DNNF with N nodes can be converted

into an equivalent FBDD with at most N2log2 N nodes, thus

a leaf tests the Boolean variables in the same order.

matching the result in [3] for decision-DNNF. Therefore, our
lower bounds extend to algorithms that use more general de-
compositions, with any unary or binary operators, including
independent AND, independent OR, and negation.

Roadmap. We discuss some useful knowledge compilation
representations in Section 2. In Section 3, we describe our
main results which are proved in the following Sections 4
and 5. We discuss related issues in Section 6.

2. BACKGROUND
In this section we review the knowledge compilation rep-

resentations used in the rest of the paper.

FBDDs. An FBDD 4 is a rooted directed acyclic
graph (DAG) F that computes m Boolean functions Φ =
(Φ1, . . . ,Φm). F has two kinds of nodes: decision nodes,
which are labeled by a Boolean variable X and have two
outgoing edges labeled 0 and 1; and sink nodes labeled
with an element from {0, 1}m. Every path from the root
to some sink node may test a Boolean variable X at most
once. For each assignment θ on all the Boolean variables,
Φ[θ] = (Φ1[θ], . . . ,Φm[θ]) = L, where L is the label of the
unique sink node reachable by following the path defined
by θ. The size of the FBDD F is the number nodes in F .
Typically m = 1, but we will also consider FBDDs F with
m > 1 and call F a multi-output FBDD.

For every node u, the sub-DAG of F rooted at u, denoted
Fu, computes m Boolean functions Φu defined as follows. If
u is a decision node labeled with X and has children u0, u1

for 0- and 1-edge respectively, then Φu = (¬X)Φu0 ∨XΦu1 ;
if u is a sink node labeled L ∈ {0, 1}m, then Φu = L. F
computes Φ = Φr where r is the root. The probability
of each of the m functions can be computed in time linear
in the size of the FBDD using a simple dynamic program:
Pr[Φu] = (1− p(X)) Pr[Φu0 ] + p(X) Pr[Φu1 ].

For our purposes, it will also be useful to consider FBDDs
with no-op nodes. A no-op node is not labeled by any vari-
able, and has a single child; the meaning is that we do not
test any variable, but simply continue to its unique child.
Every FBDD with no-op nodes can be transformed into an
equivalent FBDD without no-op nodes, by simply skipping
over the no-op node.

Decision-DNNFs. A decision-DNNF5 D generalizes
an FBDD allowing decomposable AND-nodes in addition to
decision-nodes, i.e., any AND-node u must satisfy the re-
striction that, for its two children u1, u2, the sub-DAGS
Du1 and Du2 do not mention any common Boolean vari-
ables. The function Φu is defined as Φu = Φu1 ∧Φu2 , and
its probability is computed as Pr[Φu] = Pr[Φu1 ] · Pr[Φu2 ].
In a decision-DNNF, similar to FBDDs, any Boolean vari-
able can be tested at most once along any path from the
root to any sink.

DLDDs. In this paper we introduce Decomposable

4FBDDs are also known as a Read Once Branching Pro-
grams.
5A decision-DNNFis a special case of both an AND-FBDD
(which has no restriction on AND nodes) [26] and a d-DNNF
[8], which is a restricted kind of circuit used for knowledge
compilation; see [3] for a discussion.
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Decision Logic Diagrams or DLDDs by further generaliz-
ing decision-DNNFs. A DLDD can also have NOT-nodes
u having a unique child u1, and decomposable OR-, XOR-
, and EQUIV-nodes similar to decomposable AND-nodes6:
(i) for a NOT-node, Φu = ¬Φu1 , and Pr[Φu] = 1−Pr[Φu1 ];
(ii) for an OR-node, Φu = Φu1 ∨ Φu2 , and Pr[Φu] =
1 − (1 − Pr[Φu1 ]) · (1 − Pr[Φu2 ]); (iii) for an XOR-node,
Φu = Φu1 · ¬Φu2 ∨ ¬Φu1 · Φu2 , and (iv) for an EQUIV-
node, Φu = Φu1 · Φu2 ∨ ¬Φu1 · ¬Φu2 (again Pr[Φu] can
easily be computed from Pr[Φu1 ],Pr[Φu2 ]). Hence the prob-
ability of the formula can still be computed in time linear in
D.

Conversion of a DLDD into an equivalent FBDD.
The trace of any DPLL-based algorithm with caching and
components is a decision-DNNF. Therefore any lower bound
on the size of decision-DNNFs represents a lower bound
on the running time of modern model counting algorithms.
We have proven recently the first lower bounds on decision-
DNNFs [3]. However, model counting algorithms were de-
signed for CNF expressions: for example, the component
analysis partitions the clauses into two disconnected com-
ponents (without common variables), then computes the
probability as Pr[Φ1 ∧ Φ2] = Pr[Φ1] Pr[Φ2]. In order to run
such an algorithm on a DNF expression (which are more
related to lineages in databases) one would naturally first
apply a negation, which transforms the formulas into CNF.
This suggest a simple extension of such algorithms: allow
the application of the negation operator at any step. The
trace now also has NOT-nodes and therefore is a special
case of DLDDs. But we prove our first result in the paper
for general DLDDs:

Theorem 2.1. For any DLDD D with N nodes there ex-
ists an equivalent FBDD F computing the same formula as

D, with at most N2log2 N nodes (at most quasi-polynomial
increase in size).

In [3] we have proven a similar result with the same bound
for decision-DNNFs; now we strengthen it to DLDDs; the
extension is rather simple and appears in the full version of
the paper [4].

3. MAIN RESULTS
Here we formally state our main results and discuss their

implications, and defer the proofs to the following sections.
We start by introducing some elementary queries that work
as building blocks for the class of queries considered in these
results [6, 17]:

Let [n] denote the set {1, . . . , n}. Fix k > 0 and con-
sider the following set of k + 1 Boolean queries hk =
(hk0, · · · , hkk), where

hk0 = ∃x0∃y0 R(x0) ∧ S1(x0, y0)

hk` = ∃x`∃y` S`(x`, y`) ∧ S`+1(x`, y`) ∀` ∈ [k − 1]

hkk = ∃xk∃yk Sk(xk, yk) ∧ T (yk)

Fix a domain size n > 0; for each i, j ∈ [n], let R(i),
S1(i, j), . . . , Sk(i, j), T (j) be Boolean variables representing
potential tuples in the database. Then the corresponding

6These four nodes along with NOT-nodes can capture all
possible non-constant functions on two Boolean variables

lineages, the associated Boolean expressions for these queries
are 7:

Hk0 =
_

i,j∈[n]

R(i)S1(i, j), Hkk =
_

i,j∈[n]

Sk(i, j)T (j),

Hk` =
_

i,j∈[n]

S`(i, j)S`+1(i, j) ∀` ∈ [k − 1]

We define Hk = (Hk0, . . . , Hkk). Two well-studied queries
[6] that we will consider in this section are given below:

Query hk: hk is a disjunction on the queries in hk: hk =
hk0 ∨ hk1 ∨ · · · ∨ hkk. The lineage Hk of hk is given by
Hk = Hk0 ∨Hk1 ∨ · · · ∨Hkk.

Query h0: Also we define h0 that uses a single rela-
tion symbol S in addition to R and T : h0 = ∃x∃y R(x) ∧
S(x, y) ∧ T (y). S is defined on Boolean variables S(i, j),
i, j ∈ [n], and therefore the lineage H0 of h0 is H0 =W
i,j∈[n] R(i)S(i, j)T (j).

Lower bounds on FBDDs for queries h0, hk

Jha and Suciu [17] previously showed that every FBDD for

the lineage H1 of h1 has size 2Ω(log2 n). Our first result
improves this to an exponential lower bound, not just for
H1 but also for H0 and all Hk for k > 1:

Theorem 3.1. For every n > 0, any FBDD for H0 or
Hk for k ≥ 1 has ≥ 2(n−1)/n nodes.

It is known that weighted model counting for both H0

and Hk is #P-hard [6]. However, the lower bounds we show
on these FBDD sizes are absolute (independent of any com-
plexity theoretic assumption) and do not rely on the #P-
hardness of the associated weighted model counting prob-
lems. We give the proof in Section 4. This improved bound
is critical for proving the overall lower bound result in this
paper (Theorem 3.4).

While we do not need h0 and H0 in the rest of the paper,
we include it in Theorem 3.1 because it is obtained in a
fashion similar to that for Hk and substantially improves

on a 2Ω(
√
n) lower bound for H0 from our previous work [3]

which was based on a result by of Bollig and Wegener [5]8.
Our new lower bound improves this to the nearly optimal
2n−1/n.

We also note that our stronger lower bounds for H1 give
instances of bipartite 2-DNF formulas that are simpler to
describe than those of [5] but yield as good a lower bound
on FBDD sizes in terms of their number of variables and
even better bounds as a function of their number of terms9.

7For simplicity, conjunctions in Boolean formulas are repre-
sented as products.
8Bollig and Wegener defined a set En ⊆ [n] × [n] for
which any FBDD for the formula

W
(i,j)∈En

R(i)T (j) re-

quires size 2Ω(
√
n) which obviously implies the same lower

bound for H0. The set En is given as follows: Assume
that n = p2 where p is a prime number. Each num-
ber 0 ≤ i < n can be uniquely written as i = a + bp
where 0 ≤ a, b < p. Then: En = {(i+ 1, j + 1) |
i = a+ bp, j = c+ dp, c ≡ (a+ bd) mod p}.
9In the formulas of [5], p is analogous to n in our formulas
and theirs have p3 terms, versus only 2n2 for our formulas.
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Lower bounds for FBDDs for queries over hk

Theorem 3.1 gives a lower bound on hk, which is simply
the logical OR of the queries in hk. Theorem 3.3 below
generalizes this result by allowing queries that are arbitrary
functions of queries in hk.

Let f(X) = f(X0, X1, · · · , Xk) be an arbitrary Boolean
function on k+ 1 Boolean variables X = (X0, · · · , Xk), and
Q the Boolean query Q = f(hk0, hk1, · · · , hkk). Clearly, the
lineage of Q is f(Hk) = f(Hk0, Hk1, · · · , Hkk).

Example 3.2. If f(X0, X1, · · · , Xk) =
Wk
`=0 X`, we get

query hk =
Wk
`=0 hk`; its lineage is Hk =

Wk
`=0 Hk`.

The function f depends on a variable X`, ` ∈ {0, . . . , k}, if
there is an assignment µ` on the rest of the variables X\{X`}
such that f [µ`] = X` or ¬X`.

Theorem 3.3. If f depends on all k+1 variables X0, · · · ,
Xk, then any FBDD F with N nodes for the lineage of Q =
f(hk0, · · · , hkk) can be converted into a multi-output FBDD
for (Hk0, · · · , Hkk) with O(k2kn3N) nodes. In particular,

for k ≤ αn for any constant α < 1, F requires at least 2Ω(n)

nodes.

We prove the theorem in Section 5. The condition that f
depends on all variables is necessary (see Sections 4 and 5):
if Q does not depend on any one of the queries in hk, then its
lineage has an FBDD of size linear in the number of Boolean
variables.

Theorem 3.3 extends prior work in several ways. First,
it is the first result showing exponential lower bounds on
FBDDs for a large class of queries. Prior to Theorem 3.3
the only known lower bound was the quasipolynomial lower
bound for h1 [17]. Second, although a conversion of an
FBDD for a specific query QW (described later in this sec-
tion) into one for h1 was given in [17], this conversion did
not extend to other queries. While we were inspired by that
proof, the techniques we use in Theorem 3.3 are considerably
more powerful, and use new ideas which can be of indepen-
dent interest to show lower bounds on the size of FBDDs in
general.

We also extend the lower bound in Theorem 3.3 by prov-
ing a dichotomy theorem for a slightly more general class of
queries: any query in this class either has a polynomial-time
model counting algorithm, or all existing decision-DNNF-
based model counting algorithms require exponential time.
The details of the dichotomy theorem appear in the full ver-
sion of the paper [4].

Lower Bounds for Model Counting Algorithms
for Queries over hk

Theorems 2.1, 3.1, and 3.3 together prove the following lower
bound result:

Theorem 3.4. If Q is a Boolean combination of the
queries in hk that depends on all k + 1 queries in hk, then
any DLDD (and therefore any decision-DNNF) for the lin-

eage Θ of Q has size 2Ω(
√
n). Further, this size is 2Ω(n/k) if

Q is monotone in the queries in hk.

Proof. Let N be the size of a DLDD for Q. By Theo-

rem 2.1, Q has an FBDD of size N2log2 N . By Theorem 3.3,

H1 has an FBDD for size 2O(log2 N), which has to be 2Ω(n)

X0, X2 X0, X3 X1, X3 

X0, X1, X2, X3 
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1 

Figure 1: The lattices for (a) fW , (b) f9.

by Theorem 3.1, implying that N is 2Ω(
√
n). Further, by

Theorem 3.1, the lower bound is 2Ω(n/k) if Q is monotone in
the queries in hk since a monotone function on k + 1 vari-
ables is a monotone (k + 1)-DNF and thus the lineage of Q
is given by a monotone 2(k + 1)-DNF in its inputs.

Since, as we discussed previously, current propositional
exact weighted model counting algorithms (extended with
negation to handle DNFs) without loss of generality yield
DLDDs of size at most their running time, we immediately
obtain:

Corollary 3.5. All current propositional exact model

counting algorithms require running time 2Ω(
√
n) to perform

weighted model counting for any query Q that is a Boolean
combination of the queries in hk and depends on all k + 1
queries in hk.

Propositional versus Lifted Model Counting
Theorem 3.4 when applied to query hk, k ≥ 1, is not surpris-
ing: #P-hardness of hk makes it unlikely to have an efficient
model counting algorithm. However, there are many other
query combinations over hk for which lifted methods taking
advantage of the high-level structure yield polynomial-time
model counting and therefore outperform current proposi-
tional techniques.

Consider the case when Q = f(hk) and f is a monotone
Boolean formula f(X0, · · · , Xk), and thus Q is a UCQ query.
Here the cases when weighted model counting for Q can
be done in polynomial time are entirely determined by the
structure of the query expression10 f , and we review it here
briefly following [23].

To check if weighted model counting for Q is computable
in polynomial time, write f as a CNF formula, f =

V
i Ci,

where each (positive) clause Ci is a set of propositional vari-
ables Ci ⊆ {X0, · · · , Xk}. Define the lattice (L,≤), where
L contains all subsets u ⊆ X that are a union of clauses
Ci, and the order relation is given by u ≤ v if u ⊇ v. The
maximal element of the lattice is ∅, (we denote it 1̂), while
the minimal element is X (we denote it 0̂). The Möbius
function on the lattice L, µ : L × L → R, is defined as
µ(u, u) = 1 and µ(u, v) = −

P
u<w≤v µ(w, v) [22]. The fol-

lowing holds [23]: if µ(0̂, 1̂) = 0, then weighted model count-
ing for Q can be done in time polynomial in n (using in the
inclusion/exclusion formula on the CNF); if µ(0̂, 1̂) 6= 0, then
the weighted model counting problem for Q is #P-hard.

10The propositional formula f describes the query expres-
sion Q, and should not be confused with the propo-
sitional grounding of Q on the instance R(i), S1(i, j),
· · · , Sk(i, j), T (j); ` ∈ [1, k − 1], i, j ∈ [n].
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Example 3.6. Here we give examples of easy and hard
queries:

• For a trivial example, hk = hk0 ∨ · · ·∨hkk has a single
clause, hence its lattice has exactly two elements 0̂ and
1̂, and µ(0̂, 1̂) = −1, hence hk is #P-hard.

• Two more interesting examples for k = 3:

fW = (X0 ∨X2) ∧ (X0 ∨X3) ∧ (X1 ∨X3)

f9 = (X0 ∨X3) ∧ (X1 ∨X3) ∧ (X2 ∨X3)

∧ (X0 ∧X1 ∧X2)

Their lattices, shown in Figure 1, satisfy µ(0̂, 1̂) = 0.
Therefore, for the queries QW = fW (h30, h31, h32, h33)
and Q9 = f9(h30, h31, h32, h33), weighted model count-
ing can be done in polynomial time. For example,
to compute the probability of QW we apply the inclu-
sion/exclusion formula on the query expression and get
Pr[QW ] =

Pr[h30∨h32] + Pr[h30∨h33] + Pr[h31∨h33]

− Pr[h30∨h32∨h33]− Pr[h30∨h31∨h33]

− Pr[h30∨h31∨h32∨h33] + Pr[h30∨h31∨h32∨h33]

While computing Pr[h30 ∨ h31 ∨ h32 ∨ h33] is #P-hard
(because this query is h3), the two occurrences of this
term cancel out, and for all remaining terms one can
compute the probability in polynomial time in n (since
each misses at least one term h30, h31, h32, h33). Thus,
weighted model counting can be done in polynomial
time for QW (similarly for Q9), at the query expres-
sion level.

On the other hand, Theorem 3.4 proves that, if we ground
QW orQ9 first, then any decision-DNNF-based model count-
ing algorithm will take exponential time on the lineage. This
leads to the main separation result of this paper:

Theorem 3.7 (Main Result). Let Q be any mono-
tone, Boolean combination of the queries in hk that depends
on all k + 1 queries in hk such that µ(0̂, 1̂) = 0. Then
weighted model counting for Q can be done in time polyno-
mial in n, whereas all existing decision-DNNF-based propo-
sitional algorithms for model counting require exponential
time on the lineage.

4. EXPONENTIAL LOWER BOUNDS FOR
ALL HK

In this section we prove Theorem 3.1 which gives lower
bounds on the sizes of FBDDs computing all Hk. We find it
convenient to prove these bounds assuming a natural prop-
erty of FBDDs. We show that we can ensure this prop-
erty with only minimal change in FBDD size, yielding our
claimed lower bounds.

Let Φ be a Boolean formula. A prime implicant (or
minterm) of Φ is a term T such that T ⇒ Φ and no proper
subterm of T implies Φ. If T involves k variables then
we call it a k-prime implicant. 1-prime implicants are also
known as unit variables. For example, X and W are unit in
X ∨ Y Z ∨ Y U ∨W .

The following definition is motivated by the unit clause
rule in DPLL algorithms which are primarily designed for
satisfiability of CNF formulas. If there is any clause consist-
ing of a single variable or its negation (a unit clause), then

DPLL immediately sets such variables, one after another,
since their value is forced.

Definition 4.1. Let F be an FBDD for a Boolean func-
tion Φ. Call a node u in F a unit node if Φu has a unit,
and a decision node otherwise. We say that F follows the
unit rule if for every unit node u the variable tested at u is
a unit.

In the special case that Φ is a monotone formula, we can
apply a transformation in order to convert any FBDD F for
Φ into one that follows the unit rule and is not much larger
than F .

For a variable X of Φ, define the degree of X in Φ to be
the maximum over all partial assignments θ of the number
of unit of Φ[θ∪{X=1}] that are not units of Φ[θ]. (If Φ is a
DNF formula then the degree of X is at most the number of
distinct variables to co-occur in terms with X.) Write ∆(Φ)
for the maximum degree of any variable in Φ. In section 4.1
we prove the following:

Lemma 4.2. If Φ is a monotone formula with FBDD F
of size N , then Φ has an FBDD of size at most ∆(Φ) · N
that follows the unit rule.

Since Hk obviously has degree at most n (for variables
R(i) and T (j)), we obtain the following corollary.

Corollary 4.3. If Hk has an FBDD of size N , then Hk
has an FBDD of size at most nN that follows the unit rule.

Now Theorem 3.1 is an immediate consequence of Corol-
lary 4.3 together with the following lemma.

Lemma 4.4. Every FBDD F for Hk that follows the unit
rule has size ≥ 2(n−1).

The proof of Lemma 4.4 follows using a general technique
in which one defines a notion of admissible paths in F . We
will give such a definition and show that no two admissible
paths in F can lead to the same node of F since they must
correspond to different subfunctions of Hk. We will further
show that every admissible path branches off from other
admissible paths at least n − 1 times, guaranteeing that F
must contain a complete binary tree of distinct nodes of
depth n − 1 (in which edges may have been stretched to
partial paths).

For the remainder of this section we fix some FBDD F
for Hk that follows the unit rule. Given a path P in F ,
let Row(P ) be the set of i ∈ [n] so that P tests R(i) at a
decision node or there are ` and j so that P tests S`(i, j) at
a decision node; similarly, let Col(P ) be the set of j ∈ [n]
which P tests T (j) at a decision node or there is some `
and i so that P tests S`(i, j) at a decision node. Let P be
the set of partial paths P starting at the root and ending at
a (non-leaf) decision node so that both |Row(P )| < n and
|Col(P )| < n but any extension of P has either |Row(P )| =
n or |Col(P )| = n.

The following is an easy observation.

Lemma 4.5. For all k ≥ 0, if P1, P2 ∈ P with Hk[P1] =
Hk[P2] then the two paths test the same set of R and T
variables and must assign those tested the same values.
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R(i) S1(i, j) S2(i, j) S3(i, j) S4(i, j) S5(i, j) T (j)
0 1 0 1 0 1 0
1 0 1 0 1 0 1
0 0 1 0 1 0 1
1 0 1 0 1 0 0

Table 1: The patterns for admissible paths for k = 5.

Proof. Suppose that there is some R(i) such that P1

assigns R(i) value b ∈ {0, 1} that P2 does not. Hk[P2] =
Hk[P1] does not depend on R(i) so we can assume without
loss of generality that P2 assigns R(i) value 1− b. Suppose
without loss of generality that P1 sets R(i) to 1 and P2 sets
R(i) to 0.

First consider the case k = 0. Let j1 ∈ [n] − Col(P1).
Since P2 sets R(i) to 0, H0[P2] does not depend on S(i, j1)
but H0[P1] sets neither T (j1) nor S(i′, j1) for any i′, so it
does depend on S(i, j1), a contradiction.

Now suppose that k ≥ 1. Let j2 ∈ [n] − Col(P2). As F
follows the unit rule, this implies that P1 sets S1(i, j) = 0
for all j, which in particular implies that Hk[P1], and thus
Hk[P2], does not depend on S1(i, j2). However, since j2 /∈
Col(P2), all terms of Hk` for ` ∈ [k] involving indices (i′, j2)
are unset for every i′, which implies that Hk[P2] depends on
S1(i, j2), a contradiction. The case when the difference is
T (j) is analogous.

We will first prove Lemma 4.4 for k = 2m + 1 odd. The
cases when k > 0 is even as well as when k = 0 use al-
most identical techniques and their proofs appear in the full
version of this paper [4].

Definition 4.6. Let P be a partial path through F start-
ing at the root. It is admissible if for all i, j, it is consistent
with one of the four following assignments:

1. R(i) = T (j) = 0 and S`(i, j) = 0 for all ` odd and
S`(i, j) = 1 for all ` even,

2. R(i) = T (j) = 1 and S`(i, j) = 1 for all ` even and
S`(i, j) = 0 for all ` odd,

3. R(i) = 0, T (j) = 1 and S`(i, j) = 1 for all ` even and
S`(i, j) = 0 for all ` odd, or

4. R(i) = 1, T (j) = 0 and S`(i, j) = 1 for all ` even and
S`(i, j) = 0 for all ` odd.

P is forbidden if it is not admissible. Let A ⊂ P be the set
of admissible paths in P. (See Table 1 for the case k = 5).

Lemma 4.7. If P1, P2 ∈ A are distinct then Hk[P1] 6=
Hk[P2].

Proof. Suppose P1, P2 ∈ A are distinct with Hk[P1] =
Hk[P2] = F . Let u be the first node at which P1 and P2

diverge, and assume without loss of generality that P1 takes
the 0-edge and P2 takes the 1-edge. Notice that u must be
a decision node. By Lemma 4.5, the node u cannot test a
R(i) or T (j) variable so it must test S`(i, j) for some i, j.
Assume that ` is even (the case when ` is odd is symmet-
rical; switch the roles of P1 and P2). Then F does not
contain the prime implicant S`(i, j)S`+1(i, j) and does not
contain any units, but along P2 the variable S`(i, j) = 1 , so
S`+1(i, j) = 0 along P2. This implies that F does not contain
the prime implicant S`+1(i, j)S`+2(i, j) but since P1 cannot

set S`+1(i, j) = 0 as otherwise it would be forbidden, this
implies that P1 sets S`+2(i, j) = 0. Inductively, we conclude
that S`+2p(i, j) is set to zero on P1 and S`+1+2p(i, j) is set
to zero on P2 for all non-negative integers p ≤ (k− `− 1)/2.
In particular, Sk(i, j) = 0 along P2, so the prime implicant
Sk(i, j)T (j) does not appear in F ; as F has no units, T (j)
must be set to zero in P1, as otherwise it would be forbid-
den. Doing the same procedure but inducting downwards,
we also conclude that R(i) = 0 in P1 and S1(i, j) = 0 in P2.
However, by Lemma 4.5, this implies that R(i) = T (j) = 0
in P2, and since S1(i, j) = Sk(i, j) = 0 we conclude that P2

is forbidden, which is a contradiction.

Proof of Lemma 4.4. By Lemma 4.7, it suffices to
count how many paths are in A, because each such path
must correspond to a unique node in the FBDD. We show
that there are at least 2n−1 such paths. For any path P ∈ A,
call an assignment at a decision node u along P forced if
taking the opposite assignment would have resulted in a for-
bidden path, and call the assignment unforced otherwise.
We claim that there are at least n− 1 unforced assignments
along any path P ∈ P. Since some extension of P either sets
some variable in all rows or in all columns, P itself must have
either |Row(P )| = n− 1 or |Col(P )| = n− 1. Without loss
of generality assume that |Row(P )| = n− 1. Then the pat-
terns of admissible paths ensure that, for each i ∈ Row(P ),
the first decision node u along P testing a variable either of
the form R(i) or S`(i, j) for some ` and j must be unforced
(see Table 1). So there must be at least n − 1 unforced
assignments.

We now define an injection from {0, 1}n−1 toA, as follows:
map each sequence of bits (a1, . . . , an−1) to the unique path
P ∈ A that at its i-th unforced decision takes the ai-edge
for i ≤ n−1, takes the 1-edge at all unforced decisions after
its first n− 1 unforced decisions, makes all forced decisions
as required, and at each unit node takes the 0 branch. The
existence of such an injection implies that |A| ≥ 2n−1, as
claimed.

4.1 Proof of Lemma 4.2
We begin with a simple property of monotone functions.

For a formula Φ let U(Φ) denote the set of units in Φ. The
following proposition will be useful because it implies that
for monotone formulas, setting units cannot create addi-
tional units.

Proposition 4.8. If Φ is a monotone function and W is
a variable in Φ, then U(Φ[W=0]) ⊆ U(Φ).

Let F = (V,E) be an FBDD for a monotone formula Φ,
where V and E, respectively, denote the nodes and edges of
F . For every edge e = (u, v) ∈ E, define U(e) = U(Φv) −
U(Φu). Observe that by Proposition 4.8, any edge e for
which U(e) is non-empty must be labeled 1 in F .

Fix some canonical ordering π on the variables of Φ. De-
fine the following transformation on F to produce an FBDD
F ′ for Φ that follows the unit rule: The set of nodes V ′ of
F ′ is given by:

V ′ =V ∪ {(e, i) | e = (u, v) ∈ E, u ∈ V, 1 ≤ i ≤ |U(e)|}

The other details of F ′ are given as follows:

• For e = (u, v) ∈ E, the new vertices
(e, 1), . . . , (e, |U(e)|) will appear in sequence on a
path from u to v that replaces the edge e. (If U(e) is
empty then the original edge e remains.)
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• Edge (u, (e, 1)) in F ′ will have label 1, which is the
label that e has in F .

• The variable labeling each new vertex (e, i) in V ′ will
be the i-th element of U(e) under the ordering π; we
denote this variable by Ze,i.

• The 1-edge out of each new vertex (e, i) will lead to
the 1-sink. The 0-edge will lead to the next vertex on
the newly created path.

• For a vertex w ∈ V labeled by a variable W , if W
appears in U(e) for any edge e = (u, v) such that there
is a path in F from v to w then the node w becomes
a no-op node in F ′, namely its labeling variable W is
removed, its 1-outedge is removed, and its 0-outedge is
retained with no label. Otherwise, w keeps the variable
label W as in F and its outedges remain the same in
F ′.

The size bound required for Lemma 4.2 is immediate by
construction since the degree of a variable upper-bounds the
number of new units that setting it can create. However, in
order for this construction to be well-defined we need to
ensure that the conversion to no-op nodes does not conflict
with the conversion of edges to paths of units.

Proposition 4.9. If the variable W labeling w is in U(e)
for some edge e = (u, v) for which there is a path from v to
w, then the outedges e′ of w have U(e′) = ∅.

Proof. The assumption implies that W is a unit of some
Φv. Therefore Φv = W ∨ Φ′v for some Φ′v. Since F is an
FBDD and W labels w, W is not set on the path from v
to w, hence Φw = W ∨ Φ′′ for some formula Φ′′. A 0-
outedge e0 from w always has U(e0) = ∅ and the 1-outedge
e1 = (w,w′) of w sets W to 1 and hence Φw′ = 1, which
implies that U(e1) is also empty.

The following simple proposition is useful in reasoning
about the correctness of our construction.

Proposition 4.10. If there is a path from u to v in F
and X ∈ U(Φu) then either X ∈ U(Φv), or Φv = 1, or X
is queried on the path from u to v and hence Φv does not
depend on X.

Proof. X ∈ U(Φu) implies that Φu = X ∨ F for some
monotone formula F . If X is set on the path from u to v
then Φv does not depend on X; otherwise Φv = X ∨ F ′ for
some monotone formula F ′ and either X is a prime implicant
or F ′ is the constant 1 and hence Φv = 1.

Taken together with the size bound for our construction,
the following lemma immediately implies Lemma 4.2.

Lemma 4.11. Let Φ be monotone and computed by FBDD
F . Then F ′ is an FBDD for Φ that follows the unit rule.

Proof. We first show that F ′ is an FBDD, namely, every
root-leaf path P in F ′ queries each variable at most once.
P contains old nodes u ∈ V and new nodes (e, i). Suppose
that a variable X is tested twice along a path. Clearly the
two tests cannot be done by old nodes since F is an FBDD.
It cannot be tested by an old node u and later by a new node
(e, i), because once tested by u, for any descendent node v,
the formula Φv no longer depends on X, hence X 6∈ U(e).
It cannot be first tested by a new node (e, i) and then later

by an old node u since the test at the old node would have
been removed and converted to a no-op by the last item in
the construction of F ′. Finally, suppose that the two tests
are done by two new nodes (e1, i), and (e2, j) on P , where
we write e1 = (u1, v1) and e2 = (u2, v2). then we must have
X ∈ U(v1) and X 6∈ U(u2) where there is a path from v1

to u2 in F . By Proposition 4.10, this implies that Φu2 does
not depend on X which contradicts the requirement that
X ∈ U(v2) since v2 is a child of u2.

By construction, F ′ obviously follows the unit rule. It
remains to prove that F ′ computes Φ. We show some-
thing slightly stronger: For any function F , define F− to
be F [U(F )=0], in which all variables in U(F ) are set to 0.
We claim by induction that for all nodes of v ∈ V , if θ′

labels a path in F ′ from the root to v, then Ψ[θ′] = Φ−v .
and θ′ = θ ∪ {U(Φv) = 0} for some θ that labels a path in
F from the root to v. This trivially is true for the root. If
it is true for the output nodes, then F ′ correctly computes
Ψ since constant functions have no units. Let v ∈ V and
suppose that this is true for all vertices u such that there is
some path θ′ from the root to v in F ′ for which u is the last
vertex in V on θ′. By the construction, for each such u there
must be an edge e = (u, v) ∈ E. Suppose that the variable
tested at u in F is W . We have 3 cases: If e = (u, v) ∈ E is
a 1-edge then Φv = Φu[W=1]. Every path θ′ from the root
to v through u is of the form θ′ = θ ∪ {W=1} ∪ {U(e)=0}
for some θ that labels a path from the root to u in F ′. (This
is true even if U(e) is empty.) By induction, Ψ[θ] = Φ−u =
Φu[U(Φu)=0] and by definition U(Φv) = U(Φu) ∪ U(e) so
Ψ[θ′] = Φu[W=1∪{U(Φv)=0}] = Φv[U(Φv)=0] as required.
If e = (u, v) ∈ E is a 0-edge of F then Φv = Φu[W=0]. If u
became a no-op vertex in F ′ then there was some ancestor
w of u at which W became a unit of Φw. Since F is an
FBDD, it does not query W between that ancestor and u.
By Proposition 4.10, either W ∈ U(Φu) or Φu = 1. In the
latter subcase, Φv = Φu = 1 and the correctness for u im-
plies that for v. In the former case, U(Φu) = U(Φv) ∪ {W}
and Φ−u = Φ−v and again the correctness for Φ−u implies that
for Φ−v . In the case that u does not become a no-op vertex,
W is not a unit of Φu so U(Φu) = U(Φv) and the fact that
all paths to u yield Φu[U(Φu)=0] = Φu[U(Φv)=0] for all
paths to v that pass through u as the previous vertex in V ,
The last edge to v adds the extra W=0 constraint. Adding
this constraint to Φu[U(Φv)=0] yields Φv[U(Φv)=0] = Φ−v
as required. Therefore the statements holds for all possible
paths from the root to v.

5. LOWER BOUNDS FOR BOOLEAN
COMBINATIONS OVER Hk

In this section we prove Theorem 3.3. Throughout this
section we fix f(X) = f(X0, . . . , Xk), a Boolean function
that depends on all variables X, and a domain size n > 0. To
prove Theorem 3.3, we first prove that any FBDD for the lin-
eage of the query Q = f(hk0, . . . , hkk) can be converted into
a multi-output FBDD for all of Hk = (Hk0, Hk1, . . . , Hkk)
with at most an O(k2kn3) increase in size. The proof is
constructive. Theorem 3.3 then follows immediately using
Theorem 3.1 since any FBDD for Hk yields an FBDD for
Hk of the same size.

Recall that Hk` denotes the lineage of hk` and let Ψ =
f(Hk) = f(Hk0, . . . , Hkk) be the lineage of Q.

If F is an FBDD for Ψ = f(Hk), we will let Φu denote
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the Boolean function computed at the node u; thus Ψ = Φr,
where r is the root node of F . By the correctness of F , all
paths P leading to u have the property that Ψ[P ] = Φu.

In order to produce the FBDD F ′ for Hk from F comput-
ing Ψ = f(Hk), we would like to ensure that every internal
node v of F ′ has the property that all paths P leading to
v not only are consistent with the same residual function
Φv = Ψ[P ], but they also all agree on the residual values

of Hk`(v)
def
= Hk`[P ] for all `. Since we will not easily be

able to characterize its paths we find it convenient to define
this property not only with respect to paths of F ′ but for
formulas Φv with respect to arbitrary partial assignments θ.
We use the term transparent to describe the property that
the value of Φv automatically also reveals the values for all
Hk`(v). Call a formula Φ a restriction of Ψ if Φ = Ψ[θ] for
some partial assignment θ.

Definition 5.1. Fix Ψ = f(Hk0, . . . , Hkk). A formula
Φ that is a restriction of Ψ is called transparent if there
exist k + 1 formulas ϕ0, . . . , ϕk such that, for every partial
assignment θ, if Φ = Ψ[θ], then Hk0[θ] = ϕ0, . . ., Hkk[θ] =
ϕk. We say that Φ defines ϕ0, . . . , ϕk.

In other words, assuming that Φ is a restriction of Ψ, Φ =
Ψ[θ] for some partial assignment θ, then Φ is transparent
if the formulas Hk0[θ], . . . , Hkk[θ] are uniquely defined; i.e.,
are independent of θ. Equivalently, for any two assignments
θ, θ′, if Ψ[θ] = Ψ[θ′] = Φ, then for all 0 ≤ ` ≤ k, Hk`[θ] =
Hk`[θ

′].

Example 5.2. Let k = 3 and f = X0 ∨ X1 ∨ X2 ∨ X3.
Given a domain size n > 0, the formula Ψ is:

Ψ =
_
i,j

R(i)S1(i, j) ∨
_
i,j

S1(i, j)S2(i, j)

_
i,j

S2(i, j)S3(i, j) ∨
_
i,j

S3(i, j)T (j)

H30, . . . , H33 denote each of the four disjunctions above. Let
Φ = R(3)S1(3, 7) ∨ S1(3, 7)S2(3, 7). There are many partial
substitutions θ for which Φ = Ψ[θ]: for example, θ may set
to 0 all variables with index 6= (3, 7), and also set S3(3, 7) =
T (7) = 0; or, it could set S3(3, 7) = 0, T (7) = 1; there
are many more choices for variables with index 6= (3, 7).
However, one can check that, for any θ such that Φ = Ψ[θ],
we have:

H30[θ] =R(3)S1(3, 7) H31[θ] =S1(3, 7)S2(3, 7)

H32[θ] =0 H33[θ] =0

Therefore, Φ is transparent. On the other hand, consider
Φ′ = S1(3, 7). This formula is no longer transparent, be-
cause it can be obtained by extending any θ that produces Φ
with either R(3) = 0, S2(3, 7) = 1, or R(3) = 1, S2(3, 7) = 0,
or R(3) = S2(3, 7) = 1, and these lead to different resid-
ual formulas for H30 and H31 (namely 0 and S1(3, 7), or
S1(3, 7) and 0, or S1(3, 7) and S1(3, 7)).

In order to convert an FBDD F for Ψ = f(Hk) into a
multi-output FBDD for Hk = (Hk0, . . . , Hkk), we will try
to modify it so that the formulas defined by the restrictions
reaching its nodes become transparent without much of an
increase in the FBDD size. To do this we will add new inter-
mediate nodes at which the formulas may not be transparent

but we will be able to reason about its computations based
on the nodes where the formulas are transparent.

Observe that if we know that Φv = Ψ[θ] is transparent and
we have a small multi-output FBDD Fθ for Hk[θ] then we
can simply append that small FBDD at node v to finish the
job and ignore what the original FBDD did below v. Intu-
itively, the reason that Hk andHk might not have such small
FBDDs is the tension between the R(i)S1(i, j) terms, which
give a preference for reading entries in row-major order and
the Sk(i, j)T (j) terms, which suggest column-major order,
together with the intermediate S`(i, j)S`+1(i, j) terms that
link these two conflicting preferences. If all of those links are
broken, then it turns out that there is no conflict in the vari-
able order and the difficulty disappears. This motivates the
following definition which we will use to make this intuitive
idea precise.

Definition 5.3. Let θ be a partial assignment to
V ar(Hk).

• A transversal in θ is a pair of indices (i, j) such
that R(i)S1(i, j) is a prime implicant of Hk0[θ],
Sk(i, j)T (j) is a prime implicant of Hkk[θ], and
S`(i, j)S`+1(i, j) is a prime implicant of Hk`[θ] for all
` ∈ [k − 1].

• Call two pairs of indices (or transversals)
(i1, j1), (i2, j2) independent if i1 6= i2 and j1 6= j2.

• A Boolean formula is called transversal-free if there
exists a θ such that Φ = Ψ[θ] and θ has no transversals.

We now see that assignments without transversals, or even
those with few independent transversals, yield small FBDDs.

Lemma 5.4. Let θ be a partial assignment to V ar(Hk).
If θ has at most t independent transversals then there ex-
ists a multi-output FBDD for (Hk0[θ], . . . , Hkk[θ]) of size
O(k2k+tn2).

Proof. We first show that if t = 0 (θ has no transversals)
then there exists a small OBDD that computes Hk[θ].

Let Gθ be the following undirected graph. The nodes are
the variables V ar(Hk), and the edges are pairs of variables
(Z,Z′) such that ZZ′ is a 2-prime implicant in Hk`[θ] for
some `. Since θ has no transversals, all nodes R(i) are dis-
connected from all nodes T (j). In particular, there exists
a partition V ar(Hk) = Z′ ∪ Z′′ such that all R(i)’s are in
Z′, all T (j)’s are in Z′′ and every Hk`[θ] can written as
ϕ′` ∨ ϕ′′` where V ar(ϕ′`) ⊂ Z′ and V ar(ϕ′′` ) ⊂ Z′′; in partic-
ular, ϕ′′0 = ϕ′k = 0.

Define row-major order of the variables in the set
V ar(Hk) − {T(1), · · · , T (n)} by:

R(1),S1(1, 1), . . . , Sk(1, 1), S1(1, 2) . . . , Sk(1, n),

R(2),S1(2, 1), . . . , Sk(2, 1), S1(2, 2) . . . , Sk(2, n),

. . .

R(n),S1(n, 1), . . . , Sk(n, 1), S1(n, 2) . . . , Sk(n, n)

Let π′ be the restriction of the row-major order to the vari-
ables in Z′. Similarly, let π′′ be the restriction to Z′′ of
the corresponding column-major order of the variables that
omits the R(i)’s, and places the T (j) before all variables
S`(i, j). We build a multi-output OBDD using the order
π = (π′, π′′) for (Hk0, . . . , Hkk). In the first part using or-
der π′ it will compute each ϕ′` term in parallel in width
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O(2k) and in the second part it will continue by including
the additional terms from ϕ′′` using order π′′. Observe that,
except for the R(i)S1(i, j) terms, each of the variables in the
2-prime implicants in ϕ′` appear consecutively in π′. Each
level of the OBDD will have at most 2k+3 nodes, one for each
tuple consisting of a vector of values of the partially com-
puted values for the k+1 functions ϕ′`, remembered value of
R(i), and remembered value of the immediately preceding
queried variable. In the part using order π′′, the remem-
bered value of T (j) is used instead of the remembered value
of R(i). The size of F ′ is O(k2kn2) since there are kn2 + 2n
variables in total in V ar(Hk).

For general t, let I and J be the sets of rows and columns,
respectively, of the transversals (i, j) in θ. Since θ has at
most t independent transversals, the smaller of I and J has
size at most t. Suppose that this smaller set is I; the case
when J is smaller is analogous. In this case, every transver-
sal (i, j) of θ has i ∈ I. Notice that if we set all R(i) vari-
ables with i ∈ I in an assignment θ′ then the assignment
θ ∪ θ′ has no transversals, and thus, by the above construc-
tion, Hk[θ′] can be computed efficiently by a multi-output
OBDD. Therefore, construct the FBDD which first exhaus-
tively tests all possible settings of these at most t variables
in a complete tree of depth t, then at each leaf node of the
tree, attaches the OBDD constructed above.

A nice property of a single transversal for θ is that its
existence ensures that each Hk` is a non-trivial function of
its remaining inputs; more transversals will in fact ensure
that less about each Hk` disappears. We will see the follow-
ing: if there are at least some small number of independent
transversals for θ (three suffice), then we can use the fact
that f depends on all inputs to ensure that Ψ[θ] = f(Hk)[θ]
will be transparent provided one additional condition holds:
there is no variable which we can set to kill off all transver-
sals in θ at once.

If we didn’t have this additional condition, then the con-
struction of F ′ for Hk would be simple: We would just use
Lemma 5.4 at all nodes v of F at which all assignments θ for
which Φv = Ψ[θ] do not have enough transversals to ensure
transparency of Φv.

Failure of the additional condition is somewhat reminis-
cent of the situation with setting units in Section 4: This
failure means that there is some variable we can set to kill off
all transversals in θ at once, which by Lemma 5.4 means that
along the branch corresponding to that setting one can get
an easy computation of Hk (not quite as simple as fixing the
value of the formula to 1 by setting units as in Section 4, but
still easy). It is not hard to see, and implied by the proposi-
tion below, which is easy to verify, that the only way to kill
off multiple independent transversals at once is to set such
a variable to 1. By analogy we call such variables Hk-units.

Proposition 5.5. Let Φ = Ψ[θ] for some θ with t inde-
pendent transversals and θ′ = θ∪{W=b} for b ∈ {0, 1}. The
number of independent transversals in θ′ is in {t − 1, t} if
b = 0 and is in {0, t− 1, t} if b = 1.

Definition 5.6. We say that a variable Z is an Hk-unit
for the formula Φ if Φ[Z = 1] is transversal-free but Φ is
not. We let Uk(Φ) denote the set of Hk-units of Φ, and we
say that Φ is Hk-unit-free if Uk(Φ) = ∅.

The following lemma makes our intuitive claim precise;

the proof of Lemma 5.7 appears in the full version of the
paper [4] due to space constraints.

Lemma 5.7. Let Ψ = f(Hk) where f depends on all its
inputs. Suppose that there exists a θ with at least 3 indepen-
dent transversals such that Ψ[θ] = Φ. If Φ is Hk-unit-free
then Φ is transparent.

We will still need to deal with the situation when Φ has
any Hk-units along with multiple independent transversals.
Our strategy will be simple: whenever we encounter an edge
in F on which an Hk-unit is created (possibly more than
one at once) and the resulting formula has sufficiently many
transversals then, just as with the unit rule, we immediately
test these Hk-units, one at a time, each one after the previ-
ous one has been set to 0 (since the branch where it is set
to 1 has an easy computation remaining).

In order to analyze this strategy properly, it will be use-
ful to understand how Hk-units can arise. Observe, that if
Φ = Ψ[θ] and Z is a unit for some Hk`[θ], for 0 ≤ ` ≤ k, then
Z is an Hk-unit for Ψ[θ], because setting Z = 1 we ensure
that Hk`[θ ∪ {Z = 1}] = 1, wiping out all transversals. The
following lemma shows a converse of this statement under
the assumption that θ has at least 4 independent transver-
sals; the proof of Lemma 5.8 appears in the full version of
the paper [4].

Lemma 5.8. Let Ψ = f(Hk) where f depends on all its
inputs. If Φ = Ψ[θ] for some partial assignment θ that has at
least 4 independent transversals, then Uk(Φ) =

S
`∈{0,...,k}

U(Hk`[θ]).

Since a transversal (i, j) requires that all elements of Hk

have 2-prime implicants rather than units on the terms in-
volving (i, j), Lemma 5.8 immediately implies the following:

Corollary 5.9. If Φ = Ψ[θ] for some partial assignment
θ, then no Hk-unit of Φ is in the prime implicants indexed
by any transversal of θ.

Since the formulas in Hk are monotone, by Lemma 5.8
and Proposition 4.8, units are created by setting a variable
to 1. Hence, if Φ has at least 4 independent transversals,
then setting all Hk-units in Φ to 0 in turn yields a formula
that still has at least 4 independent transversals (by Corol-
lary 5.9) and is Hk-unit-free (by Lemma 5.8), and hence
transparent (by Lemma 5.7 and Proposition 4.8).

We now describe the procedure for building a multi-output
FBDD F ′ computing Hk: Start with the FBDD F for Ψ
and let V and E be, respectively, the vertices and edges
of F . Let V4 ⊆ V be the set of nodes v ∈ V such that
Φv = Ψ[θ] for some assignment θ that has at least 4 inde-
pendent transversals. By Proposition 5.5, V4 is closed under
predecessors (ancestors) in F ; let E4 be the set of edges in F
whose endpoints are both in V4. The following is immediate
from Proposition 5.5 and the definition of V4.

Proposition 5.10. If v ∈ V4 but some child of v is not
in V4 then either or both of the following hold: (i) there is
an assignment θ with precisely 4 independent transversals
such that Φv = Ψ[θ], or (ii) the variable Z tested at v is in
Uk(Φv) and the 0-child of v is in V4.

We will apply a similar construction to that of Section 4.1
to the subgraph of F on V4. For e = (u, v), define Uk(e) =
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(a) (b)

(c)

Figure 2: Given an FBDD F for Ψ = f(Hk) in (a), apply
the conversion to produce F ′ for Hk as in (b), with detail for
unit propagation in (c) in case that setting W = 1 produces
new Hk-units.

Uk(Φv)−Uk(Φu) to be the set of new Hk-units created along
edge e. There are two differences from the argument in Sec-
tion 4.1: (1) we will only apply the construction to edges in
E4 and will build the rest of F ′ independently of F , and (2)
unlike setting ordinary units to 1, in which the correspond-
ing FBDD edges simply point to the 1-sink, each setting of
an Hk-unit to 1 only guarantees that the resulting formula is
transversal-free; moreover the transversal-free formulas re-
sulting from different settings may be different. The details
are as follows (see Figure 2).

• For every e = (u, v) ∈ E4 such that Uk(e) is non-
empty (and hence the 0-child of u is also in V4), add
new vertices (e, 1), . . . , (e, |Uk(e)|) and replace e with
a path from u to v having the new vertices in order as
internal vertices.

• Edge (u, (e, 1)) in F ′ will have label 1, which is the
label that e has in F ; denote the variable tested at u

by W .

• The variable labeling each new vertex (e, i) will be the
i-th element of Uk(e) under some fixed ordering of vari-
ables; we denote this variable by Ze,i.

• The 0-edge out of each new vertex (e, i) will lead to
the next vertex on the newly created path. However,
unlike the simple situation with ordinary units, the
1-edge out of each new vertex (e, i) will lead to a dis-
tinct new node (u, i) of F ′. Since (u, v) ∈ E4 there is
some partial assignment θ such that Φu = Ψ[θ], Φv =
Ψ[θ,W=1], and θ∪{W=1} has at least 4 transversals;
for definiteness we will pick the lexicographically first
such assignment. Define the partial assignment

θ(u, i) = θ ∪ {W=1} ∪ {Uk(Φu)=0}
∪ {Ze,1=0, . . . , Ze,i−1=0, Ze,i=1},

to be the assignment that sets all Hk-units in Φu to
0 along with the first i− 1 of the Hk-units created by
setting W to 1. The sub-dag of F ′ rooted at (u, i) will
be the size O(k2kn2) FBDD for Hk[θ(u, i)] constructed
in Lemma 5.4.

• For any node w ∈ V4, whose 0-child is in V4, such
that w is labeled by a variable W that was an Hk-unit
of Φv for some ancestor v of w, convert w to a no-op
node pointing to its 0-child; that is, remove its variable
label and its 1-outedge and retain its 0-outedge with
its labeling removed.

• For any node v ∈ V4 with a child that is not in V4 and
to which the previous condition did not apply, let θ be
a partial assignment such that Φv = Ψ[θ] and θ has
precisely 4 independent transversals, as guaranteed by
Proposition 5.10, make v the root of the size O(k2kn2)
FBDD for Hk[θ′] constructed in Lemma 5.4 where θ′ =
θ ∪ {Uk(Φv) = 0}.
• All other labeled edges of F between nodes of E4 are

included in F ′.

The fact that this is well-defined follows similarly
to Proposition 4.9.

Lemma 5.11. F ′ as constructed above is a multi-output
FBDD computing Hk that has size at most O(k2kn3) times
the size of F .

Proof. We first analyze the size of F ′: As in the analysis
for computing Hk, some nodes u have one added unit-setting
path of length at most n and each node on the path of at the
extremities of V4 has a new added FBDD of size O(k2kn2)
yielding only O(k2kn3) new nodes per node of F . Also, the
fact that F ′ is an FBDD follows similarly to the proof in
Lemma 4.11.

If Φv is the function computed in F at node v for all
v ∈ V4, then we show by induction that for every partial
assignment θ′ reaching v in F ′, Ψ[θ′] = Φv[Uk(Φv)=0] and
θ′ = θ∪{Uk(Φv)=0} for some partial assignment θ such that
Φv = Ψ[θ]. It is trivially true of the root. The argument is
similar to that for Lemma 4.11.

We now see why this is enough. Since v ∈ V4,
Φv[Uk(Φv)=0] is Hk-unit-free and has at least 4 transver-
sals, and so it is transparent by Lemma 5.7. It remains
to observe that (i) each multi-output FBDD attached di-
rectly to any node v ∈ V4 used a restriction θ of Ψ that
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would lead to that node in F ′, which, because Ψ[θ] is trans-
parent, implies that its leaves correctly compute the val-
ues of Hk, and (ii) the same holds for the restriction lead-
ing to node (u, i) with parent (e, i), namely, the restric-
tion used to build the multi-output FBDD consists of a
restriction θ that in F ′ would reach node u ∈ V4 and for
which Ψ[θ] is transparent, together with the assignment
{W=1} ∪ {Ze,1=0, . . . , Ze,i−1=0, Ze,i=1} which follows the
unique path from u to (u, i). Again this implies that its
leaves correctly compute the values of Hk.

6. DISCUSSION
In this paper we proved exponential separations between

lifted model counting using extensional query evaluation
and state-of-the-art propositional methods for exact model
counting. Our results were obtained by proving exponen-
tial lower bounds on the sizes of the decision-DNNF rep-
resentations implied by those proposition methods even for
queries that can be evaluated in polynomial time. We also
introduced DLDDs, which generalize decision-DNNFs while
retaining their good algorithmic properties for model count-
ing. Though our query lower bounds apply equally to their
DLDD representations, DLDDs may prove to be better than
decision-DNNFs in other scenarios.

In light of our lower bounds, it would be interesting to
prove a dichotomy, classifying queries into those for which
any decision-DNNF-based model counting algorithm takes
exponential time and those for which such algorithms run in
polynomial time. In this paper we showed such a dichotomy
for a very restricted class of queries. A dichotomy for general
model counting is known for the broader query class UCQ
[6] which classifies queries as either #P-hard or solvable in
polynomial time. Our separation results show that this same
dichotomy does not extend to decision-DNNF-based algo-
rithms; is there some other general dichotomy that can be
shown for this class of algorithms?
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