
On Optimization of Semi-stable Routing
in Multicommodity Flow Networks

Artur Tomaszewski

Institute of Telecommunications,

Warsaw University of Technology

Warsaw, Poland

a.tomaszewski@tele.pw.edu.pl

Michał Pióro

Institute of Telecommunications,

Warsaw University of Technology

Warsaw, Poland

m.pioro@tele.pw.edu.pl

Davide Sanvito

Dipartimento di Elettronica,

Informazione e Bioingegneria,

Politecnico di Milano

Milan, Italy

davide.sanvito@polimi.it

Ilario Filippini

Dipartimento di Elettronica,

Informazione e Bioingegneria,

Politecnico di Milano

Milan, Italy

ilario.filippini@polimi.it

Antonio Capone

Dipartimento di Elettronica,

Informazione e Bioingegneria,

Politecnico di Milano

Milan, Italy

antonio.capone@polimi.it

ABSTRACT
Ideally, the network should be dynamically reconfigured as traffic

evolves. Unfortunately, even in SDN paradigm, network recon-

figurations cannot be too frequent due to a number of reasons

related to route stability, forwarding rules instantiation, individ-

ual flows dynamics, traffic monitoring overhead, etc.

In this paper, we focus on the fundamental problem of deciding

whether, when, and how to reconfigure the network during traf-

fic evolution. We consider a problem of optimizing semi-stable

routing in the capacitated multicommodity flow network when

one may use at most a given maximum number of routing con-

figurations (called clusters) and when each routing configuration

must be used for at least a given minimum amount of time.

We propose a solution method based on cluster generation

that provides a good lower bound on the minimum network delay

(i.e., the total of link delays) and scales well with the size of the

network.

1 INTRODUCTION
The dynamic nature of network traffic caused by daily fluctu-

ations is the origin of a crucial trade-off between routing opti-

mality and frequency of network reconfiguration. Nevertheless,

network operators have traditionally privileged routing stabil-

ity by resorting to approaches, like oblivious routing [1] and

robust routing [9, 15, 16], that apply static routing designs based

on“worst case” traffic conditions. This unavoidably creates over-

provisioning and suboptimal utilisation of network capacity.

Recently, Software-Defined Networking (SDN) has provided

tools for making online network reconfiguration a potentially

viable solution: dynamic routing reconfigurations can be applied

at the network devices to optimize performance as the traffic

evolves [4, 7, 8, 12]. However, reconfiguring the network too

frequently can in general affect its stability since reprogramming

flow rules can take longer than the reconfiguration period.

A group of hybrid approaches [2, 5, 13, 14, 17], often referred to

as semi-stable routing, have been recently proposed to combine

static and dynamic routing. Considering a limited set of routing

configurations, each designed and activated during specific time

© 2018 Copyright held by the owner/author(s). Published in Proceedings of the

International Network Optimization Conference (INOC), June 12-14, 2019:

Distribution of this paper is permitted under the terms of the Creative Commons

license CC-by-nc-nd 4.0.

intervals, allows for reducing the penalty of using the “worst

case” traffic conditions, and, simultaneously, for controlling the

reconfiguration frequency. As a result, the optimization problem

of selecting a sequence of routing configurations, and timepoints

when the consecutive routing configurations must be activated,

arises.

In this paper we consider the problem of optimizing routing in

the capacitated multicommodity flow network, in which demand

volumes change periodically over an ordered set of timepoints.

Following the semi-stable routing approach, we analyse a specific

version of the problem where one may use at most a given maxi-

mum number of routing configurations and where each routing

configuration must be used for at least a given minimum num-

ber of consecutive timepoints, in order to meet the maximum

network reconfiguration frequency constraint. Referring to a set

of consecutive timepoints as a (timepoint) cluster, we name this

problem the semi-stable routing cluster design problem (SSR-

CDP). In SSRCDP the optimization objective is to minimize the

network delay, i.e., the sum of timepoint delays (over all time-

points) where for a single timepoint its delay is defined as the

sum of the link delays. Although we have chosen the delay met-

ric, the solution method we propose is general enough to cope

with other types of the congestion metric.

The works on semi-stable routing available in the literature

usually exhibit one of the following limitations: (i) they ignore the

time domain by not providing any limit on the reconfiguration

rate [2, 14, 17], (ii) the number of created clusters is limited and

reconfiguration timepoints are arbitrary [2, 5]. Other semi-stable

approaches have more recently been proposed to overcome these

limitations [3, 11]. In particular, the techniques presented there

compute a set of routing configurations that can be combined

together to generate a routing configuration for a new traffic

realization. However, combining multiple configurations may

generate a large number of paths and flow split ratios that might

not be feasible to handle by network devices.

For SSRCDP we propose a solution method based on cluster

generation that delivers provably near-optimal solutions, i.e.,

it also provides a good lower bound of the network delay. In

addition, this method scales well with the size of the network

and can be effectively applied to networks of large sizes. The

problem formulation, the solution method, and an illustrative

realistic numerical example are presented below.

ISBN 978-3-89318-079-0 on OpenProceedings, ISSN 2510-7437 54 DOI: 10.5441/002/inoc.2019.11

https://OpenProceedings.org/
https://OpenProceedings.org
http://dx.doi.org/10.5441/002/inoc.2019.11

2 PROBLEM FORMULATION
The notation used in the paper, summarized in Table 1, is as

follows. Let the capacitated multicommodity flow network be

modeled with a graph G = (V, E,D), where V is the set of

nodes and E is the set of (directed) links (where c(e) ≥ 0, e ∈ E,
is the capacity of link e). D is the set of (directed) demands,

where o(d), t(d), d ∈ D, are the originating and terminating

node, respectively, of demand d . Next, let P(d) be a given set

of (routing) paths in graph G that are admissible for demand

d, d ∈ D, (each path p ∈ P(d) connects the demand’s origin

o(d) with its termination t(d)). (Below, P will denote the set of

all admissible paths, i.e., P :=
⋃
d ∈D P(d).) Additionally, let

Q(e,d) ⊆ P(d), e ∈ E,d ∈ D, denote the set of admissible paths

of demand d that use link e . Finally, let T := {0, 1, . . . ,T − 1} be
the set of consecutive timepoints, and let h(d, t) ≥ 0, d ∈ D, t ∈
T , be the volume of demand d to be realized at timepoint t .

We assume that a routing configuration is defined by vector

x := (xdp)d ∈D,p∈P(d), where xdp is the fraction (i.e., xdp ∈
[0, 1]) of the volume of demand d that is assigned to path p. The
following condition must thus hold:∑

p∈P(d) xdp = 1 d ∈ D . (1)

Then, if routing configuration x is used at timepoint t ∈ T , the
utilizationwt

e (x) of link e at t is defined as:

wt
e (x) :=

1

c(e)
∑
p∈Q(e ,d) h(d, t)xdp e ∈ E . (2)

Note that the quantity

∑
p∈Q(e ,d) h(d, t)xdp in the right-hand

side of definition (2) expresses the load of link e at timepoint

t . Further, let F : [0,+∞) → [0,+∞) be an increasing convex

piece-wise linear function with F (0) = 0. We will call F (w) the
delay function (see [6, 10]) as it is supposed to measure the packet

delay on a link for a given link utilizationw . Finally, the quantity

zt (x) :=
∑
e ∈E F (w

t
e (x)) (3)

will be called the timepoint delay at timepoint t .
We may now introduce the notion of a cluster C(t, l) with pa-

rameters t (timepoint in which the cluster starts) and l (length of

the cluster). Namely, C(t, l) is the set of l consecutive timepoints

that starts at timepoint t . Hence, C(t, l) := {t, t ⊕1, . . . , t ⊕(l−1)},
where ⊕ denotes addition modulo T (i.e., the timepoints are

counted modulo T). For a given cluster C = C(t, l), let t(C) = t
and l(C) = l denote, respectively, the start and the length of C.

Suppose that the same routing configuration (denoted by

x(C) = (x(C)dp)d ∈D,p∈P(d)) is used for all timepoints of cluster

C. Then, we will call C a (stable) routing cluster. For a routing
cluster C and a given routing configuration x , the quantity

z(C, x) :=
∑
t ∈C z

t (x) (4)

will be referred to as cluster delay (of cluster C under routing con-

figuration x). The minimum cluster delay (i.e., the value of z(C, x)
minimized over all routing configurations x will be denoted by

Z (C).
The semi-stable routing cluster design problem (SSRCDP) we

consider is this: given G, P, D, T , and a pair of positive integer

numbers N ≤ T and L ≤ T , find a partition R of the set of time-

points T into at most N (non-empty) routing clusters, each of

length at least L (i.e., |R | ≥ L, R ∈ R), and find a routing configu-

ration x(R) for each routing cluster R ∈ R, so as to minimize the

network delay Z (R) :=
∑
R∈R Z (R). In the following, the min-

imum value of the total maximal network utilization resulting

from SSRCDP will be denoted by Z ∗. Note that the assumptions

on N , L,T imply that N ≤ T
L , and hence N ≤ ⌊TL ⌋.

3 SOLUTION METHOD
3.1 The fixed partition subcase
We start with the following observation. If the sets forming a

partition R of set T were given and fixed, SSRCDP would reduce

to finding a routing configuration x(R)minimizingZ (R) for each
cluster R ∈ R, and this could be done independently for each

cluster. Thus, we first analyse the problem of finding an optimal

routing configuration for a given cluster. We aim, in particular,

at deriving some properties that can be useful in formulating and

solving the original semi-stable routing cluster design problem.

Finding an optimal routing configuration for a given set of

(not necessarily consecutive) timepointsU ⊆ T is identical to

a well-known problem of finding an optimal routing configura-

tion for a given set of traffic matrices. Such a routing problem
(denoted by RP(U)) consists in finding a single routing config-

uration x(U) that minimizes the sum of timepoint delays overU:

Problem RP(U)

Z (U) = min

∑
t ∈U

(∑
e ∈E z

t
e
)

(5a)∑
p∈P(d) xdp = 1 d ∈ D (5b)

wt
e ≥

1

c(e)
∑
p∈Q(e ,d) h(d, t)xdp t ∈ U, e ∈ E (5c)

zte ≥ a(k)wt
e + b(k) t ∈ U, e ∈ E, k ∈ K (5d)

xdp ∈ [0, 1] d ∈ D, p ∈ P(d) (5e)

zte ,w
t
e ∈ R t ∈ U, e ∈ E . (5f)

Above, variables xdp , d ∈ D, p ∈ P(d), define a routing

configuration x(U) common for all timepoints inU, variables

wt
e , t ∈ U, e ∈ E, express link utilizations at the timepoints inU,

and variables zte , t ∈ U, e ∈ E, specify the corresponding link

delays. In (5d), parameters a(k),b(k), k ∈ K := {1, 2, . . . ,K}, de-
fine the delay function F (z) := max{a(k)z+b(k) : k ∈ K}, where
b(1) = 0 > b(2) > . . . > b(K), 0 < a(1) < a(2) < . . . < a(K).

Note that RP(U) is a linear programming (LP) problem in a

non-compact formulation that can be easily solved to optimality

(even for large networks) using the column (path) generation

approach based on a shortest path algorithm: to generate a new

pathp ∈ P(d) for demandd ∈ D and price out a new variablexdp
one has to find a shortest path in graph G between the end nodes

of d , with the costs of links equal to
1

c(e)
∑
t ∈U h(d, t)π te , e ∈ E,

where π te are optimal dual variables associated with constraint

(5c). A path is added to the problem if its cost is less than λd –

optimal dual variable associated with constraint (5b). Observe

that RP(U) can alternatively be formulated as an LP problem

in a compact way, using the node-link notation with link flows

(instead of path flows) that does not require column generation.

We end this section with the following observation.

Remark 1. For any two sets U ′,U such that U ′ ⊆ U ⊆ T ,
the inequality

Z (U ′) ≤
∑
t ∈U′ z

t (x∗(U)) (6)

holds, where x∗(U) and is the optimal routing configuration re-
sulting from RP(U), and zt (x∗(U)), t ∈ U, are defined by (2).
The reason is that if Z (U ′) would be larger than

∑
t ∈U zt (x∗(U)),

then the routing configuration x∗(U), when applied toU ′, would
decrease the value of Z (U ′). Clearly, whenU = U ′ then the right
hand side of (6) is equal to Z (U ′).

55

Table 1: Notation

Notation Description

G = (V, E, D) network graph, V – set of nodes, E – set of (directed) links, D – set of (directed) demands

T = {0, 1, . . . ,T − 1} set of timepoints

c(e) capacity of link e (e ∈ E)
h(d , t) volume of demand d to be realized in timepoint t (d ∈ D, t ∈ T)
o(d), t (d) originating node and terminating node, respectively, of demand d ∈ D
P(d) set of admissible (routing) paths for demand d ∈ D
Q(e , d) set of paths in P(d) that contain link e (e ∈ E, d ∈ D)

P =
⋃
d∈D P(d) set of all admissible paths

x = (xdp)d∈D,p∈P(d) routing configuration (vector of path flows)

w t
e (x), F (w

t
e (x)) utilization of link e at timepoint t and the corresponding delay

zt (x) timepoint delay (sum of link delays at timepoint t ∈ T) implied by routing configuration x
C (routing) clusters composed of timepoints

t (C), l (C) starting timepoint and length (respectively) of cluster C (t (C) ∈ T, l (C) ∈ {1, 2, . . . ,T })
C(t , l) cluster with t (C) = t , l (C) = l , C(t , l) = {t , t ⊕ 1, . . . , t ⊕ (l − 1)} (⊕ denotes addition modulo T)
C family of (routing) clusters (C ∈ C)

x (C) routing configuration used in routing cluster C

z(C, x) =
∑
t∈C zt (x) cluster delay for cluster C with routing configuration x

Z (C) cluster delay of C minimized over all routing configurations x (Z (C) is a solution of RP(C))

Z (C |∞) =
∑
t∈C Z ({t }) a lower bound for Z (C)

R family of routing clusters forming a partition of the set of timepoints T into at most N
(1 ≤ N ≤ T

L) routing clusters, each of length at least L (|R | ≥ L, R ∈ R)

z(R) =
∑
R∈R z(R, x (R)) network delay for partition R (with routing configurations x (R), R ∈ R)

Z (R) =
∑
R∈R Z (R) minimum network delay for partition R

SSRCDP semi-stable routing design problem

Z ∗ minimum of Z (R) over all partitions R (Z ∗ is the optimal solution value of SSRCDP)

RP(U) routing problem for U ⊆ T (finding routing configuration realizing Z (U))
APP(C) approximative partitioning problem using control cluster family C
R(C) family of routing clusters solving APP(C)

Y (C) minimum objective value of APP(C) (lower bound for SSRCDP)

CGA cluster generation algorithm

B, Z+, R+ B = {0, 1}, Z+ = {0, 1 . . . }, R+ non-negative real numbers

3.2 Approximation problem
The suboptimal approach to SSRCDP presented below consists

in formulating an optimization problem that determines a sub-

optimal partition of the set of timepoints T into a family R of

clusters, where for each R ∈ R, an optimal routing configuration

x∗(R) will then be found by solving problem RP(R).

Let ut (t ∈ T) be a binary variable that equals 1 if, and only

if, t is a start of a routing cluster, and 0 otherwise, and let yt

(t ∈ T) be a continuous variable that approximates (from below)

the minimum timepoint delay at t . Let C be a fixed subfamily

of the family of all timepoint clusters (below the family C will

be called a control family of control clusters), and let Z (C|∞) :=∑
t ∈C Z ({t}) for each C ∈ C .

The approximate partitioning problem APP(C) of finding a

partition R of the set of timepoints T into routing clusters that

minimizes the approximated network delay is as follows:

Problem APP(C)

Y (C) = min

∑
t ∈T y

t
(7a)∑

t ∈T u
t ≤ N (7b)∑

0≤k≤L−1 u
t ⊕k ≤ 1 t ∈ T (7c)

U C=
∑
1≤k<l (C) u

t (C)⊕k C ∈ C (7d)

Y C=
∑
t ∈C y

t C ∈ C (7e)

yt ≥ Z ({t}) t ∈ T (7f)

Y C ≥ Z (C) +
(
Z (C|∞) − Z (C)

)
·U C C ∈ C (7g)

ut ∈ B, yt ∈ R+ t ∈ T (7h)

U C ∈ Z+, Y
C ∈ R+ C ∈ C . (7i)

Constraints (7b) and (7c) guarantee that each feasible binary

vector u := (ut)t ∈T specifies a partition of the set of timepoints

T which contains at most N clusters, each of length at least L.
Let us denote such a partition by R. Then, constraint (7d) defines

integer variables U C that specify with how many clusters in

family R a given cluster C from family C intersects. Note that

whenU C = 0 then C intersects with only one cluster in R, when

U C = 1 then C intersects with exactly two clusters in R, and so

on. Additionally, constraint (7e) defines an approximated cluster

delay for each control cluster C.

Constraints (7f) and (7g) specify two kinds of valid inequalities,
i.e., inequalities that are satisfied by the maximal link utilizations

zt (x(R)), R ∈ R, t ∈ R, determined (through definition (3)) by

any partition R and any set of routing configurations x(R), R ∈
R (satisfying condition (1)).

The inequality in constraint (7f) holds since Z ({t}), as the
optimal solution of RP({t}), provides the absolute lower bound
on the timepoint delay for any given t ∈ T . Thus, (7f) is a valid
inequality. Note also, that (7f) implies that

∑
t ∈C y

t ≥ Z (C|∞).
Now observe that the right hand side of inequality in (7g)

defines an affine function of variableU C (defined by (7d)). Let us

denote this function by A. Since Z (C) ≥ Z (C|∞) (by definition

of Z (C|∞)), function A is non-increasing, and in fact strictly

decreasing whenZ (C) > Z (C|∞). SinceA(0) = Z (C), forU C = 0

the inequality in (7g) reduces to

∑
t ∈C y

t ≥ Z (C). Moreover,

conditionU C = 0 means that C ⊆ R for some R ∈ R, and hence,

56

by Remark 1, implies inequality

∑
t ∈C z

t (x(R)) ≥ Z (C). This

means that forU C = 0 the inequality in (7g) is valid.

Next, since A(1) = Z (C|∞), for U C = 1, inequality in (7g)

reduces to

∑
t ∈C y

t ≥ Z (C|∞), which, as mentioned above, is

already implied by (7f). This means that in this case (7g) is valid

as well. Moreover, since A is non-increasing, A(U) ≤ A(1) for

U > 1 and this means that (7g) is valid for allU C > 1. Thus, (7g)

is valid for all possible values ofU C , and this finally implies that

APP(C) is a relaxation of SSRCDP so that its optimal solution

value Y (C) is a lower bound for the minimum network delay Z ∗.
Observe that the reason for using the particular form of the

inequality in (7g) is that it is stronger than inequality∑
t ∈C y

t ≥ Z (C)
(
1 −U C

)
C ∈ C (8)

as far as the linear relaxation of APP(C) is concerned.

In order to find a (suboptimal) solution of SSRCDP we can

first solve APP(C) for a given control family C , for example for

the family of all clusters with length not greater than L. Then,
we can solve the routing problem RP(R) for each R ∈ R(C),
where R(C) denotes the partition of T resulting from solving

APP(C), and determine Z (R(C)), i.e., the minimum of the net-

work delay for partition R(C). An issue is, however, how to find

a way for extending the current family C in order to decrease

the so obtained Z (R(C)). The following three basic properties
of formulation APP(C) will help to resolve this issue.

Property 1. Let C be an arbitrary family o clusters for the set
of timepoints T . For any partition R of T into at most N routing
clusters with length at least L each, there exists a feasible solution
u = (ut)t ∈T ,y = (y

t)t ∈T of problem APP(C) that defines the
partition R and such that for each R ∈ R, yt = zt (x(R)), t ∈ R,
i.e., yt is equal to the timepoint delay at t implied by the routing
scheme x(R) of the routing cluster R.

Proof. For each t ∈ T we put ut = 1 if t = t(R) for some

R ∈ R; otherwise, we put ut = 0. Clearly, the so obtained vector

u satisfies constraints (7b), (7c) and uniquely defines the partition

R. Also, the vector y specified in the thesis of the proposition

is feasible for APP(C) since, as explained above, inequalities (7f)

and (7g) are valid for any routing family R in question. �

Property 2. Let R(C) be the family of clusters determined by
an optimal solution of APP(C), i.e., by u∗. Then,

Y (C) ≤ Z ∗ ≤ Z (R(C)), (9)

where Y (C) =
∑
t ∈T y

t∗ is the optimal objective of APP(C), Z ∗ is
the optimal objective of SSRCDP (i.e, the minimum network delay),
and Z (R(C)) =

∑
R∈R(C)) Z (R).

Proof. Inequality Y (C) ≤ Z ∗ holds because APP(C) is a re-

laxation of SSRCDP. The second inequality (Z ∗ ≤ Z (R(C)) holds
because partition R(C) with optimized clusters’ routing config-

urations is a feasible solution of SSDRP. �

Property 3. Let R(C) denote an optimal partition resulting
fromAPP(C) and suppose thatR(C) is a subset ofC . ThenZ (R(C))
is an optimal solution of SSRCDP.

Proof. Consider the vectorsu,y defined for partitionR(C) as
in Proposition 1, where x(R) is a routing configuration optimized

for each routing cluster R ∈ R(C) by means of RP(R). By Propo-

sition 1, the solutionu,y is feasible for APP(C). We will show that

it is also optimal. Consider an arbitrary routing clusterR ∈ R(C)
and note that among the inequalities in (7g) that involve vari-

ables yt , t ∈ R, the one corresponding to C = R is satisfied

tightly since, by assumption,

∑
t ∈R y

t = Z (R). Since for each
C′ ⊂ R (whether or not C′ is in C), the inequality

∑
t ∈C′ y

t ≥

Z (C′) holds (by Remark 1), we conclude that vector y is optimal

for APP(C), and hence Y (C) =
∑
t ∈T y

t =
∑
R∈R

∑
t ∈R y

t =∑
R∈R Z (R). Thus, by (9), Z (R(C)) = Z ∗. �

3.3 Cluster generation algorithm
The above properties suggest the following algorithm for solving

SSRCDP.

CGA: cluster generation algorithm
Step 0: Specify an initial family of clusters C .

Step 1: Solve APP(C) to obtain R(C) and Y (C). Compute

Z (R(C)) by solving RP(R) for each R ∈ R(C).

Step 2: If R(C) ⊆ C or
Z (R(C))−Y (C)

Y (C) ≤ ε then stop:

R(C) is suboptimal (or even optimal) family of routing

clusters solving SSRCDP (where for each R ∈ R its rout-

ing is optimized by RP(R)).

Step 3: C ← C ∪R(C) and go to Step 1.

If in Step 2 the condition R(C) ⊆ C is fulfilled then the routing

family R(C) delivered by CGA is optimal and Z (R(C)) is the

optimal objective value. The same is true when
Z (R(C))−Y (C)

Y (C)
equals 0. Clearly, the delivered family can be optimal even when

R(C) \C , ∅ and Z (R(C))−Y (C)
Y (C) > 0 as in this case the optimal-

ity will be proven in the next CGA iteration.

Finally observe that CGA will stop even if ε = 0 is assumed

(and then return an optimal partition R(C) for SSRCDP) in a

finite number of steps, because the number of all clusters is finite.

This, however, can take an excessive computation time.

3.4 An efficient heuristic
In this section we describe a heuristic consisting in solving only

one iteration of the CGA algorithm but using a modified version

of APP(C). Consider a partition R defined by a binary vector

u = (ut)t ∈T feasible for APP(C), i.e., fulfilling (7b) and (7c).

Property 4. Let C = C(τ , l) be a control cluster with l ≥ 2

that has a non-empty intersection with exactly two (neighboring)
clusters from R (i.e., U C = 1). Let us also define the following
quantity:

Z (C|1) := min
1≤k≤l−1

{
Z (C(τ ,k)) + Z (C(τ ⊕ k, l − k))}. (10)

Then the inequality ∑
t ∈C y

t ≥ Z (C|1) (11)

is valid.

Proof. Suppose that C ⊆ R ′∪R ′′, where R ′ and R ′′ are two

neighboring (and disjoint) clusters from family R specified by u.
Then C = C(τ ,k)∪C(τ ⊕k, l−k) for some 1 ≤ k ≤ l−1. Let C′ =
C(τ ,k) ∩ R ′ and C′′ = C(τ ⊕ k, l − k) ∩ R ′′. Since, by Remark 1,

Z (C′) ≤
∑
t ∈C′ z

t (x∗(R ′)) and Z (C′′) ≤
∑
t ∈C′′ z

t (x∗(R ′′)).
Thus,

∑
t ∈C′ z

t (x∗(R ′))+
∑
t ∈C′′ z

t (x∗(R ′′)) ≥ Z (C′)+Z (C′′) ≥
Z (C|1), which shows that (11) is a valid inequality. Note that

when in an optimal solution of APP(C), C′ = R ′ and C′′ = R ′′

and inequality (11) becomes tight. �

Clearly, forU C = 1, inequality (11) is tighter than the inequal-

ity implied by constraint (7g) (recall that Y C :=
∑
t ∈C y

t
) since

in general Z (C|1) > Z (C|∞) (see Remark 1). Thus, substituting

constraint (7g) in (7) with

57

Y C ≥ Z (C) +
(
Z (C|1) − Z (C)

)
·U C C ∈ C (12)

will result in amodified version of APP(C) (referred to asMAPP(C))

with stronger linear relaxation than the original one.

Observe however, that forU C ≥ 2, inequality (12) is in general

not valid. For example, forU C = 2, the value of Z (C)+
(
Z (C|1)−

Z (C)
)
· 2 can be greater than the proper value given by the

following formula (analogous to (10)):

Z (C|2) := min
1≤k1<k2≤l−1,k2−k1≥L

{
Z (C(τ ,k1))+

+Z (C(τ ⊕ k1,k2 − k1)) + Z (C(τ ⊕ k2, l − k1 − k2))}.
(13)

It follows that MAPP(C) is correct only when the control family

C is a subfamily of C (L + 1) – the family of all clusters of length

at most L + 1 – since only then it is guaranteed thatU C ≤ 1 for

all C ∈ C , and thus inequality in (12) is valid. Thus, the modified

problem cannot be used in the CGA algorithm, as in general the

family R(C) contains clusters with length larger than L + 1 and
such sets cannot be added to the control cluster family C when

MAPP(C) is applied; therefore its use in CGA is limited to just

one iteration. As we will see in Section 4, even this (non-iterative)

solution gives very good results when applied to SSRCDP.

3.5 Improvements
The efficiency of the CGA algorithm described in Section 3.3 can

be improved in two complementary ways.

First, the linear relaxation of formulation (7) can be strength-

ened (by improving, i.e., increasing, the lower bound delivered by

its linear relaxation) in order to speed up the branch-and-bound

algorithm (used to solve APP(C) in Step 1 of CGA)) and also to

decrease the gap
Z (R(C))−Y (C)

Y (C) between the integer solution and

the relaxed solution. The lower bound computed through the

linear relaxation of formulation (7) can be increased by improv-

ing valid inequalities specified in constraint (7g). In fact, these

valid inequalities are tight only for the case U C = 0, i.e., when

the control cluster C is contained in a cluster of the constructed

family of routing clusters R. (Recall that in this case the inequal-

ity in question takes the form

∑
t ∈C y

t ≥ Z (C).) ForU C ≥ 1 the

inequalities implied by (7g) are weaker than the inequality in (7f),

which, as already mentioned, implies that

∑
t ∈C y

t ≥ Z (C|∞),
and this inequality is in general not tight.

A tight valid inequality generalizing (7g) can be obtained

by constructing, for each C ∈ C , a piece-wise linear function

GC(U), 0 ≤ U ≤ M(C), where M(C) := ⌈
l (C)−1

L ⌉ is an up-

per bound for U C , and for integer values of the argument U ,

GC(U) = Z (C|U), where Z (C|0) := Z (C), Z (C|1) is defined by

(10), Z (C|2) by (13) and Z (C|U), U ≥ 3, are defined analogously.

Then, the valid inequality in (7g) should be replaced with the

tight valid inequality Y C ≥ GC(U). (Such an inequality is not lin-

ear but can be transformed, using additional binary variables and

linear constraints, to a form appropriate for a MIP formulation.)

Second, on top of the family of clusters R(C) that is added
to the control family C in Step 2 of CGA, we may seek to add

extra control sets C′ for which constraints (7g) are broken to the

largest extent by the the current optimal values y∗.

4 NUMERICAL EXPERIMENT
Below we describe a numerical experiment illustrating the effi-

ciency of the proposed APP(C)-based approach for a network

linking 47 cities in an European Union country. The network

consists of 47 nodes linked with 140 directed links (each of capac-

ity 4 Gbps), and 47 × 46 = 2162 traffic demands corresponding

to all ordered pairs of nodes. The demand volumes used in the

calculations are derived from real traffic measurements (obtained

from a network operator) taken every 15 minutes on a selected

weekday (a Wednesday in 2018). Thus, the number of considered

timepoints equals 96 (T − 1 = 95). We set the maximal number of

clusters to N = 8 and the minimum cluster length to L = 8. This

means that we accept at most 8 changes of the routing configu-

ration during 24 hours and require that a routing configuration

change can occur after the hold-off time of at least 2 hours.

In the experiment reported below, for solving the semi-stable

routing cluster design problem (SSRCDP) we used formulation

MAPP(C) in the way described in Section 3.4. The procedure

was implemented using the platform: Lenovo Thinkpad, Intel

i7-6500U, 8GB RAM, Windows 10 x64, ILOG CPLEX Studio 12.8,

ILOG Concert library, C# language, CPLEX 12.8 solver, 2 threads.

For the control family C we used all the clusters of length

L and L + 1. There are 2T = 192 of such clusters, and thus, in

the preprocessing phase, for each of them we need to calculate

the values Z (C) and Z (C|1) according to formulae (5a) and (11),

respectively. For that, the routing problem RP(U) (5) is solved

8T = 768 times, i.e., for all clusters of length between 2 and 9.

In RP(U) the delay function F (z) := max{0.1z, z − 0.45, 10z −
8.5} (with K = 3 linear pieces) was used, i.e., b(1) = 0,b(2) =
−0.45,b(3) = −8.5 and a(1) = 0.1,a(2) = 1,a(3) = 10. Thus, F (z)
grows from 0 to 0.05 in the interval [0, 0.5], from 0.05 to 0.5 in the

interval [0.5, 0.9], and from 0.5 to +∞ in the interval [0.9,+∞].

The results of our experiment are presented in Table 2. For

each task of the solution procedure, the corresponding row of

the table first gives the determined lower bound (column lb) and

the upper bound (column ub) for the optimal objective function

value, and the current gap between the two (column gap). Next,

column t shows the total execution time of the task. Then, col-

umn nclusters gives the number of clusters that we analyze in

the task, i.e., clusters for which we solve the routing problem,

and in brackets, if applicable, the number of clusters that are

contained in the control set of the partitioning problem. Finally,

column npaths first shows (in brackets, with the plus sign) the

total number of paths that we have generated while solving rout-

ing problems in the task, and (not in brackets) the final size of

the set of paths P obtained in the routing problem.

In the row static routing, the case when only one rout-

ing cluster, i.e., T , is applied. Then an optimized single routing

scheme gives the optimal objective equal to Z (T) given in the

column ub, as this value is the upper bound for the true SSDRP

optimal solution value. The row dynamic routing corresponds

to the case when each timepoint is considered as a cluster, i.e.,

the routing scheme is optimized individually for each timepoint.

Hence, the column lb in this row indicates

∑
t ∈T Z ({t}) which

is clearly the cheapest solution value to SSRCDP (the case when

the partition to the routing clusters is unconstrained). The value

in column gap, equal to
ub-lb

lb
× 100% (ub taken for static rout-

ing and lb taken for dynamic routing), is indicated. The row

preprocessing contains information concerning preparation of

the control cluster family C and initial routing paths (recall the

RP(U) is solved through path generation). Next, the row par-

titioning LR shows the results of solving the linear relaxation

of the modified APP(C) formulation, i.e., of problem MAPP(C)

described in Section 3.4. The so obtained value of lb happens

to be the same as for dynamic routing, although in general

it could be larger. Further, the solution of the MIP formulation

58

Table 2: Performance of the solution procedure

task lb ub gap t nclusters npaths

static routing - 563.65 - 5m7s 1 (+4461) 6623

dynamic routing 545.47 - 3.33% 1m23s 96 (+89) 6712

preprocessing - - - 1h1m16s 768 (+1298) 8010

partitioning LR 545.47 - 3.33% 1s (192) -

partitioning MIP 550.50 - 2.43% 2s (192) -

routing - 551.86 0.25% 1m16s 8 (+1) 8011

MAPP(C) is described in the row partitioning MIP. The lb

value delivered by this solution is increased with respect to the

preceding row and hence the gap value is decreased. Finally,

the row routing shows the results for the partitioning R(C)
obtained with the MIP formulation MAPP(C) with the routing

scheme optimized for each of the resulting routing clusters R. In

particular, ub gives the value of Z (R(C)). Observe that the gap
between this feasible SSRCDP solution and the best lower bound

obtained with partitioning MIP is very small and equals 0.25%.

In the final solution, the optimal routing cluster family R(C)
is composed of five 8-element, one 13-element, one 15-element,

and one 28-element clusters.

The results indicate that already the simplified version of the

proposed method, without any special tuning, is capable of find-

ing a suboptimal solution of SSRDCP in a reasonable time within

the optimality gap as small as 0.25%.

5 CONCLUSIONS
In this paper we propose a scalable solution to the problem of

designing clusters of the semi-stable routing in multicommod-

ity flow networks. Although the problem can be approached

directly using a compact mixed-integer formulation it cannot be

just solved with a solver, even for small-size networks, due to

an excessive number of binary variables and poor linear relax-

ation. Thus we were considering a number of exact and hybrid

approaches (as in [13]) that aimed at separating the design of

a partition of the time horizon into clusters from the design of

traffic routing for those clusters.

Although there are just O(T 2) clusters with length between

1 and T (where T is typically between 96 and 288 as the traffic

measurement period is either 5 or 15 minutes), our numerical

trials show that in practice we cannot analyze all those clusters.

Using a link-path formulation combined with path generation

and a warm start for the master problem, it took aroundk seconds

to solve the routing problem for a cluster of length k and a 50-

node network. And this time might grow considerably as we aim

at networks whose number of nodes approaches 500.

Therefore, leveraging the valid inequalities of an approximate

time-horizon partitioning problem, we developed an efficient

heuristic algorithm based on cluster preprocessing. Our algo-

rithm is capable of providing the upper and the lower objective

function value bounds with very low optimality gaps, well below

0.5%, as shown in the presented numerical study (and some other

studies not reported here for the lack of space). It also offers the

trade-off between the quality of the solution, and the number of

clusters in the control set that influences the preprocessing time,

and the size and the solution time of the partitioning problem.

In addition, we have proposed two possible ways for improving

the efficiency of the approach that lead to interesting future

research. First, we can use a stronger formulation of APP(C)

equipped with improvements described in Section 3.5. Second,

we can either implement a full version of the cluster generation

algorithm presented in Section 3.3, or, even better, to incorporate

cluster generation into a branch-and-bound procedure of solving

the partitioning problem, by analyzing relaxed or incumbent

solutions and generating appropriate user cuts. We will also aim

at testing the resulting optimization procedure on examples with

lower correlation among the traffic matrices, which might feature

a more substantial gap between the static and dynamic routing

solutions than the 3.33% observed in the current example (which

our algorithm nonetheless managed to decrease tenfold).

ACKNOWLEDGMENT
The work of the Polish authors was supported by the National

Science Center, Poland, grant no. 2015/17/B/ST7/03910 “Logical

tunnel capacity control – a traffic routing and protection strategy

for communication networks with variable link capacity”.

REFERENCES
[1] Yossi Azar, Edith Cohen, Amos Fiat, et al. 2003. Optimal oblivious routing in

polynomial time. In ACM Symp. on Theory of Computing. 383–388.
[2] Walid Ben-Ameur and Mateusz Żotkiewicz. 2011. Robust routing and optimal

partitioning of a traffic demand polytope. Intl. Trans. in Operational Research
18, 3 (2011), 307–333.

[3] Walid Ben-Ameur and Mateusz Żotkiewicz. 2013. Multipolar routing: where

dynamic and static routing meet. Electronic Notes in Discrete Mathematics 41
(2013), 61–68.

[4] Theophilus Benson, Ashok Anand, Aditya Akella, and Ming Zhang. 2011.

MicroTE: Fine grained traffic engineering for data centers. In Proc. ACM
CoNext. 8.

[5] Pedro Casas, Lionel Fillatre, and Sandrine Vaton. 2008. Multi Hour Robust

Routing and Fast Load Change Detection for Traffic Engineering. In Proc. IEEE
ICC. 5777–5782.

[6] Bernard Fortz and Mikkel Thorup. 2002. Optimizing OSPF/IS-IS weights in a

changing world. IEEE JSAC 20, 4 (2002), 756–767.

[7] Chi-Yao Hong, Srikanth Kandula, Ratul Mahajan, et al. 2013. Achieving high

utilization with software-drivenWAN. InACM SIGCOMMCCR, Vol. 43. 15–26.
[8] Sushant Jain, Alok Kumar, Subhasree Mandal, et al. 2013. B4: Experience with

a globally-deployed software defined WAN. ACM SIGCOMM CCR 43, 4 (2013),

3–14.

[9] Murali Kodialam, TV Lakshman, and Sudipta Sengupta. 2004. Efficient and

robust routing of highly variable traffic. In Proc. HotNets.
[10] Michał Pióro and Deep Medhi. 2004. Routing, Flow, and Capacity Design in

Communication and Computer Networks. Morgan-Kaufmann.

[11] Michael Poss and Christian Raack. 2013. Affine recourse for the robust network

design problem: Between static and dynamic routing. Networks 61, 2 (2013),
180–198.

[12] Matthew Roughan, Mikkel Thorup, and Yin Zhang. 2003. Traffic engineering

with estimated traffic matrices. In Proc. ACM IMC.
[13] Davide Sanvito, Ilario Filippini, Antonio Capone, Stefano Paris, and Jeremie

Leguay. 2018. Adaptive Robust Traffic Engineering in Software Defined Net-

works. In Proc. IFIP Networking.
[14] Marco Silva, Michael Poss, and Nelson Maculan. 2018. Solving the bifurcated

and nonbifurcated robust network loading problem with k-adaptive routing.

Networks 72, 1 (2018), 151–170.
[15] Vahid Tabatabaee, Abhishek Kashyap, Bobby Bhattacharjee, Richard J La, and

Mark A Shayman. 2007. Robust routing with unknown traffic matrices. In

Proc. IEEE INFOCOM. 2436–2440.

[16] Hao Wang, Haiyong Xie, Lili Qiu, Yang Richard Yang, Yin Zhang, and Albert

Greenberg. 2006. COPE: traffic engineering in dynamic networks. In ACM
SIGCOMM CCR, Vol. 36. 99–110.

[17] Yin Zhang and Zihui Ge. 2005. Finding critical traffic matrices. In Proc. IEEE
DSN.

59

	On Optimization of Semi-stable Routing in Multicommodity Flow NetworksArtur Tomaszewski, Michał Pióro, Davide Sanvito, Ilario Filippini, Antonio Capone

