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ABSTRACT
When data are large and query processing workloads consist of data
selection and aggregation operations (as in online analytical pro-
cessing), column-oriented data stores are generally the preferred
choice of data organization, because they enable effective data
compression, leading to significantly reduced IO. Most column-
store architectures leverage bitmap indices, which themselves can
be compressed, for answering queries over data columns. Column-
domains (e.g., geographical data, categorical data, biological tax-
onomies, organizational data) are hierarchical in nature, and it may
be more advantageous to create hierarchical bitmap indices, that
can help answer queries over different sub-ranges of the domain.
However, given a query workload, it is critical to choose the ap-
propriate subset of bitmap indices from the given hierarchy. Thus,
in this paper, we introduce the cut-selection problem, which aims
to help identify a subset (cut) of the nodes of the domain hierar-
chy, with the appropriate bitmap indices. We discuss inclusive, ex-
clusive, and hybrid strategies for cut-selection and show that the
hybrid strategy can be efficiently computed and returns optimal (in
terms of IO) results in cases where there are no memory constraints.
We also show that when there is a memory availability constraint,
the cut-selection problem becomes difficult and, thus, present effi-
cient cut-selection strategies that return close to optimal results, es-
pecially in situations where the memory limitations are very strict
(i.e., the data and the hierarchy are much larger than the available
memory). Experiment results confirm the efficiency and effective-
ness of the proposed cut-selection algorithms.

1. INTRODUCTION
Range selection queries are frequent in many applications, in-

cluding online analytical processing (OLAP) scenarios, where an
aggregation operation needs to be applied over a certain range of
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data [1]. When data are large and the query processing workloads
consist of such data selection and aggregation operations, column-
oriented data stores are generally the preferred choice of data or-
ganization, especially because they enable effective data compres-
sion, leading to significantly reduced IO [2].

Recently, many databases have leveraged bitmap-indices, which
themselves can be compressed, for efficiently answering queries
[3], [4]. When column-domains (e.g., geographical data, categori-
cal data, biological taxonomies, organizational data) are hierarchi-
cal in nature [5], it is often more advantageous to create hierar-
chical bitmap indices to efficiently answer queries over different
sub-ranges of the domain. [5] for example proposes a hierarchi-
cally organized bitmap index (HOBI) for answering OLAP queries
over data with hierarchical domains.

In this paper, we also focus on hierarchically organized bitmap
indices for answering queries over column-oriented data and
present efficient algorithms for selecting the subset of bitmap in-
dices to answer queries efficiently over compressed data columns.
Before we detail the contributions of this paper in Section 1.2, we
first provide an overview of the related work in the area.

1.1 Related Work
Range and Aggregation Queries over Data Columns. As men-
tioned above, column-oriented data stores are generally the pre-
ferred choice of data organization for aggregation queries over sin-
gle attribute columns, because they enable effective data compres-
sion, leading to significantly reduced IO [2]. Range queries are
used in data warehouse environments to perform aggregations over
a specified range for analysis. Research has been done on cre-
ation of specific data structures that can better the performance of
range queries. In [6], the authors propose an update to an exist-
ing data structure to store the aggregate values of the leaf nodes
in the internal nodes. This reduces the lookup at the leaf nodes
if all the leaf nodes fall under a range of an internal node in the
query. Their drawback is that the proposed approach stores ag-
gregation values even for queries that do not require aggregation,
thus degrading their performance. In [7], the authors build upon
the work described in [6], and create a more generalized data struc-
ture that leverages upper levels to help aggregate queries but does
not store the aggregate values for queries that do not require any
aggregation. In [1], the authors present algorithms to solve range
queries for two types of aggregation operations, sum and max, by
using precomputed max over balanced hierarchical tree structures.
Caching results of query data has also been looked into, particu-
larly for column store environments. In [8], the authors’ main fo-
cus is to develop a system that can cache aggregate results as well

 

 

271 10.5441/002/edbt.2014.26



as be able to handle transactional and analytical workloads in one
system. In [9], the authors present a hierarchical structure to effi-
ciently execute range-sum queries. Their focus is on reducing num-
ber of cell accesses per query and improving update performance
specifically in a data cube. In this paper, we present algorithms that
choose specific bitmap indices to be cached in the memory to speed
up a given query workload.

Bitmap Indices. Bitmap indices have been used in OLAP queries
and data warehouses for their benefit of compression. There has
been significant amount of work to improve the performance of
bitmap indices as well as keeping the compression rates high [10],
[11], [12]. Most of the newer compression algorithms use run-
length encoding for compression: it provides a good compression
ratio and one can do bitwise operations directly on decompressed
bitmaps without actually decompressing them [10]. Recently, re-
searchers have shown that bitmap indices perform well even on
high-cardinality attributes [13].

Multi-level Indices. There has also been considerable research
done in the area of multi-level indices [14], [15], [16]. In data ware-
house applications, bitmap indices are also shown to perform better
than traditional database index structures like the B-tree [10], [17].
Our work focuses on which bitmaps to read and cache in the mem-
ory from a given hierarchy. We introduce novel algorithms that
choose these bitmaps efficiently. As far as we know, most of the
existing approaches use what we term as an inclusive strategy:
they first identify upper level bitmaps for retrieving the data that
fully satisfies the given query and the lower level bitmaps to satisfy
the boundary bitmaps in the hierarchy that the upper level bitmaps
could not be used to give an exact answer [11]. As discussed in
the next subsection, however, we generalize the problem into a cut-
selection problem and introduce exclusive and hybrid strategies that
complement inclusive result construction. The works [5] and [18]
focus on building hierarchies on dimensions, specifically in a data
warehouse environment, to efficiently execute range queries. [19]
deals with the similar problem of choosing the appropriate set of
bitmap join indices of one or more attributes using data mining
techniques; we on the other hand focus on choosing the appropri-
ate set of bitmap indices for a given domain hierarchy.

1.2 Contributions of this Paper
Since IO is often the main bottleneck in processing OLAP work-

loads over large data sets, given a query or a workload consisting
of multiple queries, the main challenge in leveraging hierarchically
organized bitmap indices is to choose the appropriate subset of
bitmap indices from the given hierarchy to process the query. [5],
for example, proposes a (what we term as an “inclusive”) strat-
egy which leverages bitmap indices associated to the internal nodes
along with the bitmap indices associated to the data leaves to bring
together the data elements needed to answer the query.

In this paper, we note that such inclusive strategies can be sub-
optimal. In fact, [5] shows that the inclusive strategy is effective
mainly for small query ranges. Therefore, in this paper, we in-
troduce a more general cut-selection problem, which aims to help
identify a subset (referred to as a cut) of the nodes of the domain
hierarchy, which contain the operations nodes with the appropri-
ate bitmap indices to efficiently answer queries. In particular, we
discuss inclusive, exclusive, and hybrid strategies for cut-selection
(Section 3.1) and experimentally show that the so-called exclusive
strategy provides gains when the query ranges are large and that
the hybrid strategy provides best solutions across all query range
sizes, improving over the inclusive strategy even when the ranges
of interest are relatively small (Section 4.1). We also show that the

hybrid strategy can be efficiently computed for a single query or
a workload of multiple queries and also that it returns optimal (in
terms of IO) results in cases where there are no memory constraints
(Section 4.2).

However, in cases where the memory is constrained, the cut-
selection problem becomes difficult to solve. To deal with these
cases, in Section 2.3.4, we present efficient cut-selection strategies
that return close to optimal results, especially in situations where
the memory limitations are very strict (i.e., the data and the hierar-
chy are much larger than the available memory).

Experiment results presented in Section 4 confirm the efficiency
and effectiveness of the proposed cut-selection algorithms.

2. PROBLEM SPECIFICATION
In this section, we first introduce the relevant concepts and no-

tations, provide a cost model, and introduce the cut-selection prob-
lem for identifying a subset of the nodes of the domain hierarchy,
containing the nodes with the bitmap indices to efficiently answer
a given query or a query workload.

2.1 Key Concepts, Parameters, and Notations
We first provide an overview of the concepts and parameters nec-

essary to formulate the problem described in this paper and intro-
duce the relevant notations.

2.1.1 Columns and Domain Hierarchies
A database consists of relations, R = {R1, . . . , Rmaxr}.

Each relation, Rr , consists of a set of attributes,
Ar = {Ar,1, . . . , Ar,maxar}, with domains Dr =
{Dr,1, . . . , Dr,maxar} In this paper, without loss of gen-
erality, we associate to each attribute, Ar,a, a correspond-
ing hierarchy, Hr,a, which consists of a set of nodes,
Nr,a = {Nr,a,1, . . . , Nr,a,maxnr,a}. Also, since our goal is
to efficiently answer queries over a single data column, unless
necessary, we omit explicit references to relation Rr and attribute
Ar,a; hence, when we do not need to refer to a specific relation
and attribute, we simply omit the relation and attribute subscripts;
e.g., we refer to H instead of Hr,a.

In this paper, when talking about the nodes of a domain hierarchy
H , we use the following notations:

• Parent of a node: For all N∗, parent(N∗) denotes the par-
ent of N∗ in the corresponding hierarchy; if N∗ is the root,
then parent(N∗) = ⊥.

• Descendants of a Node: The set of descendants of node n
in the corresponding hierarchy is denoted as desc(n).

• Leaves: LH denotes the set of leaf nodes of the hierarchy
H . Any other node in H that is not a leaf node is called an
internal node. The set of internal nodes of H is denoted by
IH . We assume that only the leaves of a hierarchy occur in
the database.

• Leaf Descendants of a Node: Leaf descendants of a node
are the set of nodes such that they are leaf nodes as well as de-
scendants of the given node; i.e., for a node n, leafDesc(n)
returns a set of nodes such that

∀b∈leafDesc(n)b ∈ LH ∧ b ∈ desc(n).

2.1.2 Query Workload
In this paper, we focus on query workloads with range queries

on an attribute (i.e., column) of the database relations:
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• Range Specification: Given an attribute Aa and the start
and end points, i and j, we denote the corresponding range
specification as, rsa,i,j .

Given two range specifications, rsa,i,j and rsa,k,l,

– if k > j, then these two range specifications are dis-
joint,

– if (i < k, l) ∧ (j > k) ∧ (j < l), then the two range
specifications are intersecting, and

– if (i < k, l) ∧ (j > k, l), then the two range specifica-
tions are overlapping.

• Range Queries: Each query q involves fetching one or more
sets of column values, such that each set of values belongs to
a continuous range over the domain hierarchy of the attribute.

A query, q, can have multiple range specifications. The set of
range specifications for a query q is denoted as RSq . Without
loss of generality, we assume that all range specifications in
RSq are disjoint. If a query has two intersecting or overlap-
ping range specifications, rsa,i,j and rsa,k,l, then we par-
tition the query into two subqueries, q1 and q2, such that
range specification for q1 is rsa,i,j and specification for q2
is rsa,k,l. In Sections 3.2 and 3.3, we discuss algorithms for
handling multiple queries.

• Range Nodes: Given a range specification, rsa,i,j , the set
of leaf nodes that fall in this range is denoted as, RNa,i,j .
These nodes are also referred to as range nodes.

Given a query, q, and a node n, Gq,n ∈ {0, 1} denotes
whether the node n is a range node for query q. More specif-
ically, if node n is a range node for any range specification
in RSq , then Gq,n = 1 and otherwise, Gq,n = 0.

The set of all range nodes for any range specification of query
q is denoted as RNq . If RNq is empty, the query returns
null, whereas if RNq has the exact same nodes as LH , then
the query returns the entire database content for the attribute
on which H is defined.

2.1.3 Hierarchically Organized Bitmap Indices
As described above, the query workload includes queries that

fetch ranges of values from columns of relations in the database,
before performing further operations on these ranges. When bitmap
indices are available, these operations are implemented in terms of
bitmap manipulations [11]: for example, intersection of two range
queries can be performed as bitwise-AND of two bitmap indices
representing the database values in the two ranges. This ensures
that those data objects that will be pruned as a result of the query
processing are never fetched into memory. In this paper, we assume
that indices are organized hierarchically; i.e., every node n in H has
a corresponding bitmap Bn denoting which of the leaf nodes of n
occur in attribute A of the database.

• Bitmap Density: Each bitmap Bn has a bit density, 0 ≤
DBn ≤ 1, denoting ratio of bits set to 1 to the size in the
bitmap.

Note that bitmap Bn may or may not have been materialized in the
form of a bitmap index in the database.

2.2 Cost Model and Query Plans
Especially when the data sets are large, the bitmaps are often

stored in a compressed manner and the various bit-wise operations
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Figure 1: Comparison of our Cost Model and WAH Library
Model. Dx1 = 0.01, Dx2 = 0.015, Dx3 = 0.03, and a =
1043, b = 0.5895, on a 500 GB SATA Hard Drive with 7200
RPM, and 16 MB Buffer Size.

are performed on compressed versions of the bitmap indices, fur-
ther boosting the query performance [10]. In general, the time taken
to read the bitmaps from secondary storage into the memory dom-
inates the overall bitwise manipulation time [11], [20]. The cost of
this process is proportional to the size of the bitmap file on the sec-
ondary storage; the larger the size of a bitmap file on a secondary
storage, the longer it takes to bring the bitmap into the physical
memory.

2.2.1 Read Cost of Compressed Bitmap Indices
Therefore, in this paper, we model the cost of a bitmap opera-

tion as proportional to the size of the corresponding (compressed)
bitmap file, which in turn determines the time taken to read a
bitmap into the memory. Note that in general the query perfor-
mance of a bitmap index with density greater than 0.5 is equivalent
to the performance of a bitmap with density complement to the
original [21]. For example, performance of a bitmap with density
0.7 is often equivalent to the performance of a bitmap with density
0.3. This is because a bitmap with density 0.7 can be negated and
stored as a bitmap with density 0.3. We also include this behavior
in our cost model, readCost(Bn), of reading a bitmap index, Bn,
as follows:

0 if DBn = 0 ∨DBn = 1

aDBn + b if (0 < DBn ≤ Dx1) ∨ (1−Dx1 ≤ DBn < 1)

k1 if (Dx1 < DBn ≤ Dx2)∨
(1−Dx2 ≤ DBn < 1−Dx1)

k2 if (Dx2 < DBn ≤ Dx3)∨
(1−Dx3 ≤ DBn < 1−Dx2)

k3 otherwise

Here DBn is the bit density, 0 < Dx1 < Dx2 < Dx3 < 0.5 are
three bit density thresholds, and a, b, k1, k2, and k3 are constants.

Intuitively, when the bit density of a bitmap is 0 or 1, the size
of the bitmap on the disk is very negligible due to the high-level of
compression. Hence, we assume the size of these bitmaps as non-
existant on the secondary storage. The bit density thresholds, Dx1 ,
Dx2 , and Dx3 , and the constant values, a, b, k1, k2, and k3, are
specific to the implementation of the bitmap library.

Figure 1 shows alignment of our cost model with the read cost
of the WAH library for different bit densities.

2.2.2 Inclusive, Exclusive, and Hybrid Query Plans
For a query plan for q, we define the set of nodes that are required
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to execute q as its operation nodes. Naturally, a given query can be
executed in various different ways, each with a different set, ONq ,
of operation nodes. In particular, in this paper, we consider two
distinct types of query plans: inclusive and exclusive plans.

      

  

SFO L.A. S.D. 

U.S. 

    

PHX Tempe 

  

  

Tucson 

CA AZ 

  

Consider the 3-level location hierarchy, H , shown above. Here,
the leaf nodes (cities in U.S.) are the actual values in the database.
The node U.S. is the root node of the hierarchy. Let us consider a
query q that has a set of range nodes (shaded nodes in the figure)
RNq =[SFO, L.A., S.D., PHX]. Assume that we have bitmap
indices for all the nodes of H . There are at least two different plans
of executing q:

• Inclusive query plans: The first plan is to combine a subset
of the bitmaps of H . In the above example, one inclusive
way to do this would be to combine the bitmaps of RNq .

Another inclusive plan would be to combine the bitmaps of
CA and PHX (i.e. CA OR PHX). Note that this strategy
is similar to what was reported in the literature [5].

• Exclusive query plans: Alternatively, we can remove the
bitmaps of the non-range nodes of q from the relevant in-
ternal nodes of H . For instance, in this example, we
can achieve this by first performing a bitwise-OR operation
on the bitmaps of Tempe and Tucson and then doing a
bitwise-ANDNOT operation between the bitmap of U.S and
the resultant bitmap from the OR operation (i.e. U.S AND-
NOT (Tempe OR Tucson)).

Another exclusive plan would be to do the following:
CA OR (AZ ANDNOT (Tempe OR Tucson).

It is easy to see that all four plans would return the same result;
however, these plans have different operation nodes: for the first
inclusive query plan, the operation nodes are ONq = [SFO,
L.A., S.D., PHX], whereas for the second inclusive query plan,
ONq = [CA, PHX]. Similarly, for the first exclusive query plan
ONq = [U.S., Tempe, Tucson], and for the second exclusive
query plan ONq = [CA, AZ, Tempe, Tucson]. As a result, each
execution plan also requires different amount of data being read.

In this paper, we consider inclusive and exclusive strategies
for answering range queries using hierarchical bitmaps. We also
consider hybrid strategies, which combine inclusive and exclusive
strategies (that may make inclusive or exclusive decisions at differ-
ent nodes of the hierarchy) for better performance.

2.3 Cut Selection Problem
As described above, any range query, q, on hierarchy H , can

be answered (through inclusive, exclusive, and hybrid strategies)
using bitmap indices for the leaves of the hierarchy. We note how-
ever that, if we are also given the bitmap indices for a subset of
the internal nodes of the hierarchy, we may be able to reduce the
overall cost of the query significantly by also leveraging the bitmap
indices for these internal nodes. We refer to these subsets as cuts of
the hierarchy.

2.3.1 Query Processing with Cuts
We define a cut, c, as a subset of internal nodes (including the

root node) in a hierarchy, H , satisfying the following two condi-
tions:

• validity: there is exactly one node on any root-to-leaf branch
in a given cut (note that, by this definition, the set containing
only the root node of the hierarchy by itself is a cut); and

• completeness: the nodes in c collectively cover every possi-
ble root-to-leaf branch in the given hierarchy, H .

If a set of internal nodes of H only satisfies the first condition, then
we refer to the cut as an incomplete cut.

The challenge of course is to select the appropriate cut c of the hi-
erarchy H that will minimize the query processing cost, but will not
add significant memory overhead (if the memory is a constraint).
We discuss the alternative formulations of the cut-selection prob-
lem, next.

2.3.2 Cut Selection Case 1: Single Query without
Memory Constraints

The simplest scenario is identifying the cut necessary to execute
a single range query. As we explained earlier, the cost for executing
a query is proportional to the size of the bitmaps that are read into
the memory from the secondary storage. Thus, given a query q and
cut c on H , problem

cost(c, q) = MIN
ONq⊆(c∪LH )

 ∑
n∈ONq

readCost(Bn)

 (1)

denotes the best execution cost for query q given the bitmaps for
the leaves, and the cut c.

The cut-selection problem for a given query q on hierarchy H
can be formulated as finding a cut c such that cost(c, q) is the
smallest among all cuts of the hierarchy H .

2.3.3 Cut Selection Case 2: Multiple Queries with-
out Memory Constraints

In general, we are not given a single range query, but a set of
range queries that need to be executed on the same data set. There-
fore, we need to generalize the above formulation to scenarios with
multiple range queries. If we are given a set, Q, of queries on hier-
archy H , then one way to formulate the cut-selection problem is to
search for a cut c such that cost(c,Q), defined as

cost(c,Q) =
∑
q∈Q

cost(c, q) (2)

is the smallest among all cuts of the hierarchy H .
Note, however, that this formulation treats each query indepen-

dently and implicitly assumes that each query plan accesses the
bitmaps of its operation nodes from the secondary storage; i.e. it
pays the cost of reading a bitmap from the secondary storage every
time the node is needed for query processing. This will obviously
be redundant when the different queries can be processed using the
same operation nodes: in such a case, it would be best to bring the
bitmap for the operation nodes to the memory and keep it to process
all the relevant queries.

This, however, changes the problem formulation significantly; in
particular, we now need to search for a cut c such that cost′(c,Q),

274



defined as(∑
n∈c

readCost(Bn)

)
+

 ∑
n∈(∪q∈QONq)/c

readCost(Bn))


(3)

is the smallest among all cuts of the hierarchy H . Intuitively, the
cut is read into the memory once and for each query in Q the re-
maining operation nodes are brought to the memory as needed. The
first term in equation 3 is the cost of reading the bitmaps of the
nodes in c from the secondary storage into the memory. Once these
bitmaps have been read into the memory, we reuse them for further
query processing, i.e. the bitmaps of the cuts need to be read into
the memory only once. The second term denotes the cost of read-
ing remaining bitmaps from the secondary storage every time it is
needed to execute a query. These remaining bitmaps are also read
only once and cached subsequently for further re-use for queries in
the workload.

2.3.4 Cut Selection Case 3: Multiple Queries with
Memory Constraints

The above formulations do not have any memory availability
constraints; i.e., as many bitmaps as needed can be read and cached
in memory for the given workload. In general, however, there may
be constraints on the amount of data we can cache in memory.
Therefore, we next consider scenarios where we have a constraint
on the amount of memory that can be used during query process-
ing. Let us assume that we have a memory availability constraint
Stotal. Every bitmap has a size associated to it, SBn , denoting
the memory requirement of the bitmap file of node n in the main
memory. Given a query workload Q and Stotal, we want to find a
(potentially incomplete) cut c that minimizes the following cost:(∑

n∈c

readCost(Bn)

)
+

∑
q∈Q

∑
m∈ONq/c

readCost(Bm)


(4)

subject to ∑
n∈c

SBn ≤ Stotal (5)

Note that the bitmaps for c are read into the memory once and for
each query in Q the remaining operation nodes are brought to the
memory as needed. The major difference from before is that due
to the constraint on the size of the nodes that can be maintained
in memory, c may be an incomplete cut. Moreover, the operation
nodes that are not in the cut cannot be cached in memory for reuse
(unless Stotal >

∑
n∈c SBn ).

3. CUT SELECTION ALGORITHMS
As described in the previous section, query execution times can

be reduced if we are also given the bitmap indices for a subset of the
nodes in the domain hierarchy of the column. A key challenge is
to select the appropriate subset (or cut) of the hierarchy H to mini-
mize the query processing cost, without adding significant memory
overhead. In this section, we present algorithms that search for a
cut, c, given a query q or a workflow of queries Q. It is important
to note that these algorithms do not directly return the operation
nodes required to execute q; instead they aim to find a cut, c, such
that there exists a set of operation nodes ONq ⊆ (c ∪ LH) with a
small cost. Once a good cut of hierarchy is found, the necessary op-
eration nodes ONq are identified in post-processing by searching
within the cut c.

Algorithm 1 Inclusive Cut Selection Algorithm
1: Input: Hierarchy H , Set of internal nodes IH , Query q
2: Output: Set of nodes c
3: Initialize: Node n = root, c
4: procedure FINDNODEINCLUSIVECUT(n)
5: Set children = findChildren(n, IH);
6: if children is empty then
7: add n to c;
8: return nodeInclCost(n, q);
9: else
10: costChildren = 0;
11: for each child m of n do
12: costChild = findNodeInclusiveCut(m);
13: if costChild ̸= ∞ then
14: costChildren = costChildren + costChild;
15: end if
16: end for
17: if costChildren = 0 then
18: costChildren = ∞;
19: end if
20: costCurrNode = nodeInclCost(n, q);
21: if costCurrNode ≤ costChildren then
22: remove all descendants of n from c;
23: add n to c;
24: end if
25: return min(costCurrNode, costChildren)
26: end if
27: end procedure

3.1 Case 1: Single Query without Memory
Constraints

As described in Section 2.2.2, queries can be processed using
inclusive, exclusive, and hybrid strategies. In this subsection,
we first provide three algorithms, corresponding to different
strategies, for the basic scenario with a single query without
memory constraint.

3.1.1 Inclusive Cut Selection (I-CS) Algorithm
The inclusive cut selection (I-CS) algorithm associates an in-

clusive cost to all nodes of the hierarchy and selects the cut us-
ing these inclusive costs. Given node v of the hierarchy H , let
l(v) = {m∥(m ∈ leafDesc(v))∧ (Gq,m = 1)}. Formally, given
a query q and a node n on hierarchy H , we define the inclusive
cost, nodeInclCost(n, q), of the node in the cut as follows:
∞ if ∀m∈leafDesc(n)Gq,m = 0

readCost(Bn) if ∀m∈leafDesc(n)Gq,m = 1∑
m∈leafDesc(n)

∧Gq,m=1

readCost(Bm) otherwise

Note that the inclusive cost is only applicable for the internal
nodes of a hierarchy; it is undefined for a leaf node.

In Alg. 1, we present the outline of the proposed algorithm which
uses the above definition of inclusive cost to find a cut c that gives
the optimal cost to execute a single range query q. Note that since
a valid cut does not include any leaf nodes, the algorithm considers
only the set of internal nodes, IH , of hierarchy H .

The inclusive cut selection algorithm presented in Alg. 1 is a
dynamic programming solution that traverses the nodes in the hier-
archy in a bottom-up manner:

• In line 5 of the pseudo-code, the set children is empty for
a node on the second-to-last level of the hierarchy H , since
the input to the function findChildren is the set of internal
nodes IH . Whenever the set children is empty, we add the
current node to the cut c, and return the inclusive cost of the
current node.
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• The condition on line 13 makes sure that the cost of children
of n does not include the cost when a child m has the cost ∞.
This will happen when none of the nodes in leafDesc(m)
is a range node, i.e. q does not want the contents of m to be
included in the result of the query.

• The condition on line 17 will be true if for every child m of
n, nodeInclCost(m) = ∞. This also means that no node
in leafDesc(n) is a range node. In such a case, we want the
total cost of all the children of n to be equal to ∞.

• The algorithm then compares the inclusive cost of the par-
ent with the inclusive cost of the set of its children. If the
inclusive cost of the parent is cheaper than the combined in-
clusive cost of its children, then we remove the descendants
of n from c and add n to c. Otherwise, we keep the cut as it
is, since using the children of n is cheaper than using n.

If the resulting c contains only the root node of the hierarchy, then
it means that using the leaves is the cheapest option.

Note that the algorithm is very efficient: each internal node in
the hierarchy is considered only once and for each node only its
immediate children need to be considered; moreover, the func-
tion nodeInclCost(), which is called for each node, itself has a
bottom-up implementation with O(1) cost per node assuming that
node densities for each internal node has been computed ahead of
time Consequently, the cost of this algorithm is linear in the size of
the hierarchy, H .

3.1.2 Exclusive Cut Selection (E-CS) Algorithm
Above, we considered the inclusive strategy which uses bitwise

OR operations among the selected bitmaps to execute the query q.
As we see in Section 4.1, this option may be costly when the query
ranges are large. Alternatively, we can identify query results using
an exclusive strategy: For a given query q, consider a leaf node
m such that Gq,m = 0. That means that this node is not a range
node. We call the leaf nodes (like m), which are outside of the
query range, the non-range nodes and denote them as NSq . The
values of these leaf nodes are part of the actual data that q does not
want to be displayed in the result. The exclusive strategy, initially
introduced in Section 2.2.2, would first identify the non-range leaf
nodes and then use the rest to identify the query results.

Like the inclusive cost, we associate an exclusive cost to all in-
ternal nodes of the hierarchy. Consider an internal node n of the hi-
erarchy. If every node in leafDesc(n) is a range node, that means
that the q wants the content of n to be included in the result of the
query, i.e. leafDesc(n) does not contain any non-range node. In
this case, we do not need to remove any node from n, and thus,
the exclusive cost of n is the read cost of the node n. Note, that in
the same scenario, the inclusive cost of n is also the read cost of n.
If, in contrast, none of the leaf descendants of n is a range node,
then the query results will not include n and in this case, the node
exclusive cost of n can be said to be ∞. The main difference is the
scenario when only some of leafDesc(n) are non-range nodes.
In this case, the exclusive strategy removes the non-range nodes
from n, and thus, the exclusive cost of n is the read cost of read-
ing all the non-range nodes under n, in addition to the read cost
of n. Based on these, we can formulate the node exclusive cost,
nodeExclCost(n, q) as follows:


∞ if ∀m∈leafDesc(n)Gq,m = 0

readCost(Bn) if ∀m∈leafDesc(n)Gq,m = 1

readCost(Bn)+
∑

m∈leafDesc(n)∧Gq,m=0 readCost(Bm)

otherwise

Given these node exclusive costs (which can again be computed
in O(1) time per node using a bottom-up algorithm), an optimal
exclusive cut can be find using a linear time algorithm similar to
the node inclusive cut algorithm presented in Alg. 1; the main dif-
ference being that each internal node in the hierarchy is associ-
ated with an exclusive cost, instead of an inclusive cost. In this
case, the results would be a cut c such that reading every node in
ONq ⊆ (c∪NSq), we can execute the query q optimally using the
exclusive strategy. If the output cut c is the root node of the hierar-
chy, then every node in NSq has to be removed, i.e. an ANDNOT
operation has to be done between the root node and the nodes in
NSq .

3.1.3 Hybrid Cut Selection (H-CS) Algorithm
So far, we have considered inclusive and exclusive strategies in-

dependently from each other. However, we could consider both in-
clusive and exclusive strategies for each node in the hierarchy and
associate the better strategy to that node. In other words, we could
modify the linear-time, bottom-up algorithm presented in Alg. 1
using the following cost function for each internal node of the hier-
archy, H:

nodeHybridCost(n, q) = min( nodeInclCost(n, q),

nodeExclCost(n, q)).

Unlike when searching for the inclusive or exclusive cuts of the
hierarchy, during the traversal, we also need to mark each node
as an inclusive-preferred or exclusive-preferred node based on the
contributor to the hybrid cost.

Naturally, in this case the resulting cut, c, can be partitioned into
two: an inclusive cut, ci (whose nodes are considered in an inclu-
sive way), and an exclusive cut, ce (whose nodes are considered un-
der the exclusive strategy). Those nodes that have a lower inclusive
cost are included in ci, whereas those that have a lower exclusive
cost are included in ce.

• If no leafDesc(n) is in the range, then we call n, an empty
node. An empty node is not used in any query processing
and is ignored.

• If all of leafDesc(n) are in the range, then we call n, a
complete node. A complete node indicates that all the leaf
descendants of the node are needed for query processing.
Hence, both the inclusive and the exclusive costs of a com-
plete node are same.

• If only some of the leafDesc(n) are part of the range, then
we call n, a partial node. Note that the only time n will have
potentially different inclusive and exclusive costs is when n
is a partial node. If a node is a partial node, we find both the
inclusive and exclusive costs, and choose the minimum of the
two costs. Subsequently, whichever cost is chosen, we label
the node accordingly as part of the inclusive or the exclusive
cut. This helps us in efficiently finding the operation nodes
as described further.

As we mentioned earlier, the algorithms described in this sec-
tion return a cut c, but not the specific operation nodes that are
required to optimally execute the query q. Given a cut c, we need
an additional step in order to find the necessary operation nodes.
Alg. 2 provides the pseudo-code for finding the operation nodes
following execution of the H-CS algorithm. Here, the functions
nodeInclusiveCut(n, q) and nodeExclusiveCut(n, q) return
the set of operation nodes required to execute the relevant part of
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Algorithm 2 Finding the Operation Nodes
1: Input: Set of nodes c, Query q
2: Output: Set of operation nodes ONq

3: Initialize: ONq

4: procedure FINDOPERATIONNODES(c, q)
5: for each node n in c do
6: if n is a complete node then
7: add n to ONq ;
8: else if n is a partial node then
9: inclusiveCost = nodeInclCost(n, q);
10: exclusiveCost = nodeExclCost(n, q);
11: if inclusiveCost ≤ exclusiveCost then
12: add every node from nodeInclusiveCut(n, q) to ONq ;
13: else
14: add every node from nodeExclusiveCut(n, q) to ONq ;
15: end if
16: end if
17: end for
18: return ONq

19: end procedure

the query q at an internal node n based on inclusive or exclusive
strategies, respectively and the algorithm follows the minimal cost
strategy to identify the operation nodes for the hybrid execution.
We explained our marking strategy earlier in this section. Based on
the marking of each node in the cut, we call the respective function
to get the corresponding inclusive or exclusive operation nodes.
Note that if the cut, c, includes the root of the hierarchy, then either
reading the nodes as part of the query range, or removing the non-
range nodes from the root is the cheapest option. This decision is
again made based on whether the root node was labeled as part of
the inclusive or exclusive cut. We do not need to recompute the two
individual costs to make that decision.

3.2 Case 2: Multiple Queries without Mem-
ory Constraint

In this previous section, we have shown that the simple case
where there is a single query to be executed can be handled in linear
time in the size of the hierarchy. In general, however, we may be
given a set of range queries and need to identify a cut of the hierar-
chy to help process this set of queries efficiently. In this subsection,
we present an algorithm to find a cut for multiple queries without
any memory constraints. We consider the more realistic case with
memory constraints in the next subsection.

Assume we are given a query workload Q that contains more
than one query (each with its corresponding range). Since we do
not have memory constraints, if a bitmap node in the hierarchy has
been read into the memory, it can also be cached to be reused by
other queries, without incurring any further read costs.

Remember that in Section 3.1.3 we have discussed how to find
a hybrid cut and the corresponding operation nodes given a single
query. Let us first assume that we use the algorithms discussed
in Section 3.1.3 to find the hybrid costs and the appropriate label-
ing for each query in the workload, Q, separately. In order to see
how important a particular node n is relative to a particular query
workload. Let us consider, Sub-Operation Nodes, SNn,q , which
denote the operation nodes required to execute the part of q (in
Q) that is under n. Hence, SNn,q will contain nodes that are in
n ∪ leafDesc(n). In order to decide which nodes to choose in
the set n ∪ leafDesc(n) given q, we use the same hybrid logic as
explained in Algorithm 2.

We associate to each node, n, in the hierarchy a new cost, called
no constraint node cost (NCNodeCost(n,Q)), defined as the cost
to perform the query workload such that (a) first the node is read
and cached into the memory and (b) the remaining nodes in each

Algorithm 3 Hybrid Cut Multiple Query Algorithm
1: Input: Hierarchy H , Set of internal nodes IH , Query Workload Q
2: Output: Set of nodes c
3: Initialize: Node n = root, c
4: procedure FINDHYBRIDCUT(n)
5: Set children = findChildren(n, IH);
6: if children is empty then
7: add n to c;
8: return NCNodeCost(n,Q);
9: else
10: costChildren = 0;
11: for each child m of n do
12: costChildren = costChildren + costChild;
13: end for
14: costCurrNode = NCNodeCost(n,Q);
15: if costCurrNode ≤ costChildren then
16: remove all descendants of n from c;
17: add n to c;
18: end if
19: end if
20: return min(costCurrNode, costChildren)
21: end procedure

query’s corresponding SNn,q are read:

NCNodeCost(n,Q) =

(readCost(Bn)) +

 ∑
m∈(∪q∈QSNn,q)/n

readCost(Bm)

 .

Intuitively, this cost tells us how important a particular node, n,
is relative to the query workload Q: If there are two nodes, na and
nb, such that na appears in SNna,q for more than one query q ∈ Q
and nb does not appear in any SNnb,q for any q ∈ Q, then the
NCNodeCost(na, Q) will be lower than NCNodeCost(nb, Q).
Consequently, we can say that a node that is included in the SNn,q

is more important (caching it would impact more queries) and such
important nodes have small NCNodeCost values. We use this
as the basis of our algorithm, shown in Alg. 3, to find the rele-
vant hybrid cut given multiple queries. This bottom-up travers-
ing algorithm is similar to the Hybrid Cut Algorithm explained in
the previous section. The main difference is that we use the cost
NCNodeCost(n,Q) for each node, which is derived using the
hybrid logic as explained in the previous section.

3.3 Case 3: Multiple Queries with Memory
Constraint

In the previous subsection, we introduced a node cost (based on
the cost model as described in 2.3.3.) to capture the importance of a
node in a multiple query scenario without a memory constraint. In
this section, we relax the assumption of unlimited memory avail-
ability and consider the more general situation where we have a
memory constraint, limiting how many bitmaps we can keep in
memory at a time. More specifically, in this section, we present
two algorithms, namely 1-Cut Selection Algorithm and k-Cut Se-
lection Algorithm, that find a cut given a query workload and a
memory constraint. Note that, as discussed in Section 2.3.4, due to
the memory constraint, the resulting cuts may be incomplete.

Let us consider a set of nodes for each query and each n,
called Constraint Operation Nodes, denoted by CONn,q . Here,
CONn,q ⊆ n ∪ LH . CONn,q chooses the set of nodes from
n∪LH that are required to execute q in the cheapest possible man-
ner given n and the set of leaf nodes.

CONn,q consists of two sets of nodes. The first set is the set of
nodes that includes n and its leaf descendants. We have to decide
which nodes to choose in the set n∪leafDesc(n) given q. In order
to make this decision, we use the same hybrid logic as explained in
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Algorithm 4 1-Cut Selection Algorithm
1: Input: Hierarchy H , Set of internal nodes IH , Query Workload Q, Savailable

2: Output: Set of nodes c
3: Initialize: Savailable = Stotal

4: procedure FINDCUTCONSTRAINT(DH , Savailable)
5: while IH is not empty OR there exists a node n such that SBn ≤

Savailable do
6: choose node n such that n has the lowest CNodeCost(n,Q) among

nodes in IH & SBn ≤ Savailable;
7: add n to c;
8: remove n from IH ;
9: remove ancestors and descendants of n from IH ;
10: update Savailable = Savailable − SBn ;
11: end while
12: return c
13: end procedure

Algorithm 2. The second set of nodes, consists of the set of leaf
nodes that are not descendants of n , i.e. LH ∩ leafDesc(n). In
order to execute q, all the query range nodes in this set have to be
read, and hence we include them in CONn,q .

As we have done in Case 2 (without memory constraints), we in-
troduce a node cost to capture the importance of each internal node
in the hierarchy relative to query workload Q. This cost, called
constrained node cost (CNodeCost(n,Q)), reflects the cost of
performing the query in such a way that (a) only nodes with low
cost, and that can fit into the memory within the given constraint,
are read and cached into the memory and (b) the remaining nodes
in each query’s CONn,q are read from the secondary storage as
needed.
CNodeCost(n,Q) =

(readCost(Bn)) +

∑
q∈Q

∑
m∈CONn,q/n

readCost(Bm)


Intuitively, if more queries can reuse a node for further query

processing when the node is cached, the lower the constrained node
cost of the node is relative to the query workload Q.

3.3.1 1-Cut Selection Algorithm
In Alg. 4, we present the pseudo-code of 1-Cut Selection Algo-

rithm, for Case 3 with multiple queries in the presence of a memory
constraint. Here, Savailable denotes the amount of memory avail-
able for adding nodes to a cut and SBn denotes the size of the
bitmap index of node n on the secondary storage. The first time the
algorithm is called, we initialize Savailable to the memory available
for the whole process, i.e., Stotal; in subsequent calls, the amount
is reduced as new bitmaps are added to the cut. Note that

• In line 6, we choose a node that has the lowest node cost and
the size of the node is lesser than or equal to the remaining
memory availability.

• In line 9, we ensure that the returned cut does not contain any
two nodes that are on the same root-to-leaf branch.

The stopping condition of the greedy process is reached when the
input set of nodes is empty (i.e. a complete cut is found) or when
each of the remaining nodes have sizes larger than Savailable. Note
that it is possible that in some cases the optimal subset of nodes re-
quired to execute the given query workload may all fit in the avail-
able memory. Our algorithm adds nodes until all nodes are seen
or no nodes can be added further due to memory constraints. In
order to avoid adding nodes that are not going to be used in query
processing, we introduce a new node label, unused, applied while
calculating the CNodeCost(n,Q) indicating that the node as un-
used if the node is not used by any query. This is easy to find out

Algorithm 5 k-Cut Selection Algorithm
1: Input: Hierarchy H , Set of internal nodes IH , Query Workload Q, Savailable,

cutList
2: Output: Set of nodes c
3: Initialize: ∀c∈cutListSci,available = Stotal.
4: procedure FINDKCUTCONSTRAINT(H)
5: while each node n in IH is seen OR there exists a node n such that SBn ≤

Sci,available for i ≤ k do
6: choose node n such that n has the lowest CNodeCost(n,Q) among

nodes in H;
7: mark n as seen;
8: for each cut c in cutList do
9: if SBn ≤ Sci,available then
10: if there is no conflict in c for node n then
11: if n has not been added to any empty cut then
12: add n to c;
13: update Sci,available = Sci,available − SBn ;
14: end if
15: else
16: copy each node in c to the next available empty cut;
17: replace the conflicting node with node n;
18: end if
19: end if
20: end for
21: Sort the cutList based on the lowest cost for each cut;
22: end while
23: return the cut c in cutList that has the lowest total cost;
24: end procedure

if for every q in Q, Pn,q does not include n, then the node is an
unused node.

It is important to note that the above algorithm does not necessar-
ily return a cut that has the optimal cost. As we see in Section 4.3,
the sub-optimality of the algorithm is most apparent in situations
where we have plenty (yet still insufficient amount of) memory
and, consequently, the cost-sensitive greedy algorithm over-prunes
the solution space (though it still provides cuts that are significantly
more efficient than a naïve execution plan). In situations where the
memory constraints are tight, however, the algorithm returns very
close to optimal or optimal cuts, proving the effectiveness of the
cost model and the proposed approach.

3.3.2 k-Cut Selection Algorithm
In this subsection, we note that the key weakness of the above

algorithm is that it considers only a single cut of the hierarchy:
When we choose to include a node in the cut, we remove all the
ancestors and descendants of the node from further consideration;
however, it is possible that a node can have the lowest cost, but
two or more of its ancestors or descendants combined can lead to a
better execution plan. A node n may be chosen before its ancestor
m, because cost(n) is lesser than cost(m). But, it is also possible
that choosing m could be a better choice than choosing n if m can
be used to execute a larger portion of the range nodes of the query.

Therefore, in Alg. 5, we present a variation of the algorithm,
called the k-Cut Selection Algorithm. In this variation, the algo-
rithm considers k different cuts. When a node, n, is added to a
cut, the algorithm does not eliminate its ancestors and descendants
from further consideration; instead, it simply does not add these
ancestors and descendants to the same cut as n to follow the rules
of validity as described in Section 2.3.1. These ancestors and de-
scendants however may be added to the other k-1 cuts.

In Algorithm 5, the ith cut has a corresponding memory require-
ment, Sci,available.

• In the algorithm, line 11 ensures that a node is not added
more than once to an empty cut. This prevents two cuts con-
taining identical nodes.

• Lines 16 and 17 are part of the replacement procedure. Ac-
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Figure 2: Case 1, single query without memory constraints: effects of varying hierarchy and range sizes on the amount of data read
by the three different cut-selection algorithms
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Figure 3: Case 1, single query without memory constraints:
comparing the proposed cut algorithm to (exhaustively found)
optimal, average, and worst cuts (TPC-H data)

cording to Section 2.3.1, a cut cannot have two nodes on the
same root-to-leaf branch. Hence, n cannot be added to the
existing cut if there is such a conflict. In these lines, when we
detect a conflict, we add the nodes of a cut to an empty cut
and replace the conflicting node with the current node. This
lets us construct multiple conflicting cuts that are individu-
ally conflict-free. Note that if after replacing the conflicting
node with the current node, the size of the cut exceeds the
size of available memory, then we ignore this node and the
corresponding conflicting cut.

• In Line 21, we sort the cutList in ascending order based on
the overall cost of each discovered cut. We do this in order
to give more preference to the cuts with a lower cost during
the next iteration.

3.3.3 Auto Selection of k
As we see in the next section, in practice it is sufficient to con-

sider fairly small number of cuts to significantly improve the effec-
tiveness of the proposed greedy algorithm (returning very close to
optimal cuts), without increasing the cost of the optimization step
significantly. However, in cases where it is difficult for the user to
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Figure 4: Case 1, single query without memory constraints:
percentages of nodes in each strategy (TPC-H data)

set the value of k ahead of the time, we propose a δ auto-stop con-
dition: after finding the i’th cut, we evaluate if costi−1−costi < δ,
for a user provided per-iteration cost gain value, δ. The algorithm
auto-stops when the condition is satisfied (i.e., when the cost gain
of the iteration drops below the predetermined gain). In Section 4.3,
the auto-stop condition is effective, even when we simply set δ = 0;
i.e., we stop when the cost of the new cut has the same cost as the
previous cut (note that, for any two integers l,m > 1, and l > m,
the cost of l-greedy cut will always be equal to or lesser than the
cost of m-greedy cut; this is because whatever cut that is returned
by the m-greedy cut algorithm will always be enumerated and con-
sidered by the l-greedy cut algorithm).

4. EVALUATIONS
In order to evaluate the cut-selection algorithms presented in

this paper, we considered two datasets: (a) a synthetically gener-
ated dataset (with normal value distribution) and (b) the TPC-H
dataset [22], each with 150 million records. In particular, in the
TPC-H dataset, we focused on the account balance attribute whose
values demonstrate a near-uniform distribution, with spikes in the
occurrences for some values.

In this section, we have two main evaluation criteria: (1) query
execution IO cost and (2) optimization time. We compared the
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Figure 5: Case 2, multiple queries without memory constraints (TPC-H data)
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Figure 6: Case 3, multiple queries with varying memory availability (TPC-H data)

results of our cut-selection algorithms against (a) leaf-only query
execution, (b) random cut-selection, and (c) exhaustive cut-search
strategies.

For both of the above data sets, we considered (balanced) at-
tribute hierarchies of different depth and internal-node fanout:
these were generated for different numbers of leaf nodes and
maximum possible fanouts of the internal nodes of the hierar-
chy. Since finding the optimal cut using an exhaustive strategy
for comparison purposes is prohibitively expensive, we initially
considered small hierarchies, with 20, 50, and 100 leaf nodes and
heights of 4, 5, and 4 respectively (the root of the hierarchy being
considered at height 1).

In Section 4.4, we consider hierarchies of larger sizes and higher
number of queries to study the scalability of the cut-selection algo-
rithms against the hierarchy size.

Bitmap indices were generated for the nodes of these hierarchies
using the Java library, WAH bitset [23] as explained in [10]. The
parameters of the read cost model presented in Section 2.2.1, and
shown in Figure 1 were computed based on these bitmap indices.

We have also created query workloads with different target range
sizes. For example, for a hierarchy of 100 leaf nodes, 10% query
range size indicates that each range query covers 10 consecutive
leaf nodes.

We ran the experiments on a quad-core Intel R⃝CoreTMi5-2400
CPU @ 3.10GHz machine with 8.00GB RAM. All codes are im-
plemented and run using Java v1.7.

4.1 Case 1: Single Query without Memory
Constraints

We first evaluate the cut-selection algorithm for the single query
without memory constraints scenario. All reported costs are aver-
ages of the costs for 10 different runs.

Figures 2(a) through (f) compares the three different cut-
selection algorithms (I-CS, E-CS, and H-CS) presented in Sec-
tion 3.1 for different data sets and varying hierarchy and range
query sizes. As we see in these charts, the inclusive strategy is
efficient when the query ranges are small; this is consistent with
the observation in [5]. The exclusive strategy, however, is more ef-

ficient than the inclusive strategy when the query ranges are larger.
Most importantly, in all cases, the hybrid strategy (H-CS) returns
the best cuts.

In Figure 3, we compare the hybrid (H-CS) strategy against (ex-
haustively found) optimal and average cuts. The figure also shows
the performance of the worst cut. As expected, the H-CS strategy
returns optimal cuts. On the average, randomly selecting a cut per-
forms quite poorly (almost as bad as selecting the worst possible
cut), especially as the query range sizes increase. This highlights
the importance of utilizing an effective (hybrid) cut-selection algo-
rithm for answering queries.

In Figure 4, we show the percentages of nodes that are labeled
inclusive-preferred or exclusive-preferred in a hybrid cut, as ex-
plained in Section 3.1.3, for different query ranges. As defined in
Section 3.1.3, empty nodes are nodes that are not used in query
processing. When the query range size is small, most of the query
processing can be done using the leaf nodes. Hence, we see in the
figure that most of the nodes in the cut are empty nodes. As ex-
pected, when the query range is small, the inclusive strategy domi-
nates and when the range is large, the exclusive strategy dominates.
For ranges that are neither small nor large, the hybrid algorithm
leverages a mix of inclusive and exclusive strategies.

4.2 Case 2: Multiple Queries without Mem-
ory Constraints

In this section, we evaluate the hybrid cut selection algorithm
(Alg. 3) for query workloads with multiple queries. For our evalu-
ations, we considered query workloads of different sizes (and with
different ranges). All reported costs are averages of the costs for 10
different runs.

Figure 5 shows the impact of using the proposed hybrid cut se-
lection algorithm for different numbers of queries. As we see in
this figure, as expected, the hybrid cut selection algorithm returns
the optimal cut. The impact of the proposed cut selection algorithm
is especially strong when the query includes large ranges as when
there are large overlaps among the queries, the query evaluation al-
gorithm has more opportunities for reusing cached nodes, and the
proposed hybrid cut strategy is able to leverage these opportunities
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4.3 Case 3: Multiple Queries under Memory
Constraints

In this section, we evaluate the effectiveness of the proposed k-
hybrid cut algorithm (Alg. 5, described in Section 3.3.2), for multi-
ple queries, but under memory constraints. We report the memory
availability in terms of the percentage of the memory needed to
store the bitmap indices corresponding to the maximum cut of the
given hierarchy. The presented results are averages of 10 different
runs.

Once again, we compare the proposed cut selection algorithm
against solutions found through exhaustive enumeration, average
solutions representing randomly selected cuts, and also the worst
solution. Remember, that under memory limitations, we need to
consider also the incomplete cuts of the input hierarchies.

Note that the number of incomplete cuts that an exhaustive algo-
rithm would need to consider grows very fast:

Num. of leaves Height Incomplete cuts
20 4 154
50 5 296,381
100 4 1,185,922

However, since the number of incomplete cuts grow even faster
than the number of complete cuts, enumerating all incomplete cuts
for the exhaustive algorithm (which we use to locate the optimal cut
for comparison purposes), becomes prohibitive beyond hierarchies
with 100 leaf nodes.

Figure 6 shows that, in this case, the proposed hybrid cut selec-
tion algorithms are not optimal; however, they return cuts that are
very close to optimal. In fact, especially when the memory avail-
ability is very restricted (which is the expected situation in most
realistic deployments), even the 1-Cut algorithm is able to return
optimal or very close to optimal answers. As the available mem-
ory increases, the optimal cost decreases as there are more caching
opportunities, but 1-Cut strategy may not be able to leverage this
effectively, especially for larger query ranges. However, we see
that the multi-cut strategy (10-Cut in this figure) performs quite
close to optimal. Figure 7, which plots the ratio of the cost of the
solutions found by the multi-cut strategy (for different values of k)
to the cost of the optimal cut found through an exhaustive search,
confirms this observation: note the figure also shows that the auto-
stop strategy described in Section 3.3.3 is effective in reducing the
cost, without having to fix the value k ahead of time.

Figures 8 through 10 further confirm that the proposed multi-cut
strategy is robust against changes in the size of the query ranges,
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number of queries, and hierarchy sizes.

4.4 Cut-Selection Time
Up to now, we considered query processing cost using cuts. We

now focus on the time needed to select cuts for hierarchies of dif-
ferent sizes. In Figures 11 and 12, we see the cut selection time as a
function of the size of the hierarchy (number of leaf nodes; i.e., the
size of the domain) and the number of queries, respectively. Please
note that, in these figures, we do not compare our algorithm with
exhaustively found cuts, and hence are able to consider larger hi-
erarchy sizes and higher number of queries. The figures confirm
that the time taken to find the cut increases linearly with size of the
attribute domain and the number of queries.
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5. CONCLUSION
Column-stores use compressed bitmap-indices for answering

queries over data columns. When the data domain is hierarchical,
organizing the bitmap indices hierarchically can help more effi-
ciently answer queries over different sub-ranges of the attribute
domain. In this paper, we showed that existing inclusive strategies
for leveraging hierarchically organized bitmap indices can be
sub-optimal in terms of their IO costs unless the query ranges are
small. We also showed that an exclusive (cut-selection) strategy
provides gains when the query ranges are large and that and
that a hybrid (cut-selection) strategy can provide best solutions,
improving over both strategies even when the ranges of interest
are relatively small. In this paper, we also presented algorithms
for implementing the hybrid strategy efficiently for a single query
or a workload of multiple queries, in scenarios with and without
memory limitations. In particular, we showed that when the
memory is constrained, selecting the right subset of bitmap indices
becomes difficult; but, we also showed that, even in this case, there
exists efficient cut-selection strategies that return close to optimal
results, especially in situations where the memory limitations are
very strict. Experiment results confirmed that the cut-selection
algorithms presented in this paper are efficient, scalable, and
highly-effective.
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