
Index Design for Enforcing

Partial Referential Integrity Efficiently

⇤

Mozhgan Memari

Department of Computer Science

University of Auckland, New Zealand

m.memari@auckland.ac.nz

Sebastian Link

Department of Computer Science

University of Auckland, New Zealand

s.link@auckland.ac.nz

ABSTRACT
Referential integrity is fundamental for data processing and
data quality. The SQL standard proposes di↵erent seman-
tics under which referential integrity can be enforced in prac-
tice. Under simple semantics, only total foreign key values
must be matched by some referenced key values. Under par-
tial semantics, total and partial foreign key values must be
matched by some referenced key values. Support for sim-
ple semantics is extensive and widespread across di↵erent
database management systems but, surprisingly, partial se-
mantics does not enjoy any native support in any known sys-
tems. Previous research has left open the questions whether
partial referential integrity is useful for any real-world ap-
plications and whether it can enjoy e�cient support at the
systems level. As our first contribution we show that e�cient
support for partial referential integrity can provide database
users with intelligent query and update services. Indeed, we
regard partial semantics as an e↵ective imputation technique
for missing data in query answers and update operations,
which increases the quality of these services. As our sec-
ond contribution we show how partial referential integrity
can be enforced e�ciently for real-world foreign keys. For
that purpose we propose triggers and exploit di↵erent index
structures. Our experiments with synthetic and benchmark
data sets confirm that our index structures do not only boost
the performance of the state-of-the-art recommendation for
enforcing partial semantics in real-world foreign keys, but
show trends that are similar to enforcing simple semantics.

1. INTRODUCTION
In his seminal paper [5] Codd introduced the principles of

entity and referential integrity as two fundamental corner-
stones of the relational model of data. While more than 100
classes of relational integrity constraints have been inves-
tigated [21], relational database management systems o↵er

⇤This research is supported by the Marsden fund council
from Government funding, administered by the Royal Soci-
ety of New Zealand.

c�2015, Copyright is with the authors. Published in Proc. 18th Inter-
national Conference on Extending Database Technology (EDBT), March
23-27, 2015, Brussels, Belgium: ISBN 978-3-89318-067-7, on OpenPro-
ceedings.org. Distribution of this paper is permitted under the terms of the
Creative Commons license CC-by-nc-nd 4.0

only native support for keys and foreign keys, which enforce
entity and referential integrity, respectively. Indeed, keys
and foreign keys provide principled mechanisms to process
quality data e�ciently. The SQL standard promotes the
use of two di↵erent semantics for referential integrity. Un-
der simple semantics, referencing tuples with null markers on
some of their foreign key columns satisfy referential integrity
by default. Under partial semantics, every referencing tuple
requires a referenced tuple that matches all total values on
the foreign key columns in the corresponding key columns.
Partial semantics o↵ers a higher degree of data quality as it
subsumes simple semantics.

Example 1. For illustration consider an example from
an Australian tourism company [8]. Tours in the Tour table
have a tour id, for example a tour such as the “Gold Coast
Grand Tour” has tour id GCG. Tours have a fixed sequence
of sites they visit. Sites are identified by a site code (e.g.,
MV) but also have a unique site name (e.g., Movie World).
The primary key on Tour is {tour id, site code}. Booking
orders by visitors, who can join a tour from any allocated
site, are stored in the Booking table. The foreign key

[tour id, site code] ✓ Tour[tour id, site code]

is defined on Booking. Consider the following database.
Tour

Tour id Site code Site name
GCG OR O’Reilly’s
BRT OR O’Reilly’s
BRT MV Movie World
RF BB Binna Burra
RF OR O’Reilly’s

Booking
Visitor id Tour id Site code Date

1006 BRF null Sep 19th

1001 BRT OR Nov 21st

1008 null BB Sep 5th

1012 null BR Nov 2nd

1011 RF null Oct 5th

Simple referential integrity is satisfied: the only total for-
eign key value (BRT,OR) in the Booking table is matched
in the Tour table. Partial referential integrity is violated:
for the partial foreign key value (BRF,null) in the Booking
table there is no tuple in the Tour table with value “BRF”
on tour id, and similarly for (null, BR).

While every database management system we know of-
fers built-in support to enforce simple referential integrity,

217 10.5441/002/edbt.2015.20

http://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2015.20

it is surprising that none of them o↵ers built-in support to
enforce partial referential integrity [22]. Explanations for
this gap between the SQL standard and its implementations
have been brought forward by Härder and Reinhart, who an-
alyzed in great detail the requirements of partial referential
integrity on the operational level [9]. Two main questions
remain open two decades after they have been posed in [9]:

1. Is partial referential integrity useful for any real-world
application?

2. Can partial referential integrity be enforced e�ciently?

Contribution. In the present paper we provide a�rma-
tive answers to both questions. Our first main contribution
shows that partial referential integrity is useful for the two
most significant real-world applications of database technol-
ogy: updates and queries. More specifically, we propose
intelligent update and query services that are based on e�-
ciently enforcing partial semantics. Indeed, partial referen-
tial integrity can be exploited to impute missing data values.
Our intelligent updates provide database users with sound
choices to reduce the level of incompleteness in the database,
which is an important measure for the quality of data [7]. In
the example above, suppose that the last tuple is not already
part of the Booking table but about to be inserted. Based
on the assumption that the updated table shall satisfy par-
tial referential integrity, our update service would provide
the user with the option to replace the null marker by either
“BB” or “OR”. This service can be customized further de-
pending on the authorization rights of the user, for example.
Our intelligent query service provides database users with
additional query answers that result from the imputation of
missing data values in standard answers. In our example,
the standard answer to the query that selects tour id and
site code from tuples in the Booking table, may be aug-
mented by the tuples (RF,BB), and (RF,OR) based on the
partial semantics of the foreign key. We believe that intelli-
gent updates and queries o↵er a strong a�rmative answer to
the first open question, that goes beyond the straightforward
argument that partial referential integrity targets a higher
level of data quality than simple referential integrity. Note
that our applications cannot be supported by simple seman-
tics. Indeed, they provide strong motivation to investigate
the second open question, as the e↵ectiveness of the appli-
cations largely depend on the e�ciency of enforcing partial
semantics for real-world foreign keys. Based on our experi-
ence, the literature [6] and public schemata, most real-world
foreign keys have rarely more than four columns and the ref-
erenced key is commonly the primary key, or a candidate key
where all columns are NOT NULL. Our second main contribu-
tion is a detailed analysis of partial referential integrity at
the systems level, as proposed for future work in [9]. The
main finding is that partial semantics for“real-world”foreign
keys can be implemented in the form of triggers and enforced
e�ciently by a right combination of indices. In general, it
is worthwhile investigating which subsets of the foreign key
columns carry the most total values, and then define indices
on those subsets. As updates include the maintenance of all
a↵ected indices, having too many indices means that the loss
in time for their maintenance outweighs the gain in search
time when enforcing referential integrity. Some organiza-
tions may have a good knowledge of the top-k indices they
want to support, but we have made it part of our research

to shed further light on what a reasonable number k could
be. For this purpose, we applied our analysis to test data
in which null marker occurrences are evenly distributed be-
tween all possible subsets of columns. That is, we have the
least degree of information available about which indices to
define. Our recommendation for an n-column foreign key
is to exploit n + 1 indices on each of the referencing and
referenced tables: one compound index on the n columns,
and one index on each of the n individual columns. This
combination of indices outperforms any other combination
for all possible kinds of updates. The finding is confirmed by
experiments on two benchmark and one real life database.
We remark that the original proposal by Härder and Rein-
hart to utilize one index for each of the n key columns on
the referenced table and one compound index on the for-
eign key columns of the referencing table performs well only
for 2-column key relationships. Essentially, by doubling the
number of indices over their proposal, we improve the speed
for inserts by a factor of 7, and for deletions by a factor
of 123, on the largest data set considered with a 5-column
foreign key relationship. Note that this includes the main-
tenance of all indices involved. Further experiments explain
this performance boost over the original proposal: Adding
an index for each of the n foreign key columns on the refer-
encing table overcomes the poor performance of the original
proposal when deleting tuples from the referenced table that
have no alternative match for referencing tuples. Further-
more, adding a single index for the compound key on the
referenced table boosts the performance when inserting to-
tal tuples in the referencing table. The only trade-o↵ we
found is that the time for loading data on the referencing
table is 1.5 times more, due to building twice as many in-
dices. This one-time cost is feasible.
Organization. The remainder of this paper is organized
as follows. We comment on some related work in Section 2.
Details on the semantics of referential integrity constraints
in SQL are given in Section 3. We describe our ideas of
intelligent update and query services in Sections 4 and 5,
based on partial semantics. In Section 6 we propose triggers
as well as five di↵erent index structures for which we will
analyze the performance of enforcing partial referential in-
tegrity on synthetic data sets in Section 7, and on TPC-C
and TPC-H data sets in Section 8. We conclude in Section
9 where we also briefly comment on future work.

2. RELATED WORK
Work on referential integrity has largely addressed inclu-

sion dependencies. A seminal paper on the theory of inclu-
sion dependencies is [2], in which a finite axiomatization for
the associated implication problem is presented and the non-
k-ary-axiomatizability of both finite and unrestricted impli-
cation for functional and inclusion dependencies together is
demonstrated. An axiomatization which is not k-ary for the
finite implication of functional and inclusion dependencies is
presented in [18]. Undecidability of (finite) implication for
functional and inclusion dependencies taken together was
shown independently by [4] and [19]. Another seminal pa-
per is [12], which also observed the distinction between finite
and unrestricted implication for functional and inclusion de-
pendencies, generalized the chase to incorporate functional
and inclusion dependencies, and used this to characterize
containment between conjunctive queries. Databases have
benefited from referential integrity constraints and inclusion

218

dependencies in areas as diverse as database design [15],
consistency enforcement [3], query optimization [12], data
cleaning [1], data quality [20], and data profiling [24]. In-
clusion dependencies have also been considered in XML [13]
and RDF [14].
The di↵erent semantics of referential integrity, as pro-

posed by the SQL standard [17], have not received much
attention from neither academia nor practice. As observed
in [22], there are no database management systems that of-
fer built-in support for enforcing partial referential integrity
while every database management system o↵ers built-in sup-
port for enforcing simple referential integrity. In [9] Härder
and Reinhart investigated the functional requirements for
preserving simple and partial referential integrity. Indeed,
they determined the number and kinds of searches necessary
for referential integrity maintenance, without implementa-
tion considerations. Their main result was that a combined
access path structure is the most appropriate for checking
simple semantics, while partial semantics requires very ex-
pensive and complicated check procedures. Their “best ad-
vice is to avoid the use of MATCH PARTIAL at all”. If required,
they recommend the use of one index for each of the key
columns on the referenced table and one compound index
on the foreign key columns of the referencing table. They
also investigate the performance of multi-dimensional access
paths by considering grid file structures. Here, the access
costs for partial match queries are remarkably more expen-
sive than their suggested index option. The main reason is
that grid files retrieve all matching tuples while partial refer-
ential integrity requires only one matching tuple. In conclu-
sion, Härder and Reinhart say that their “presented results
rely on the assumption that the search costs are indicative
for the entire costs of referential integrity maintenance. This
assumption has to be justified through further research es-
pecially at the system level. Another interesting question to
be answered is whether or not MATCH PARTIAL is useful for
a real world application”. Here, we address both questions.
In a research-in-progress paper [16] we performed a static

analysis of the costs for validating simple and partial se-
mantics in a fixed database. Therefore, the analysis did not
consider updates at all. It only applied to referential in-
tegrity constraints with two columns, and only considered
compound indices which refer to all columns of a foreign
key. The present paper presents a detailed analysis of the
costs for enforcing simple and partial semantics in a dynamic
database that is subject to updates; applies to foreign keys
with up to five columns, considers multiple index structures
on referenced and referencing tables, and proposes triggers
and the new intelligent query and update services.

3. REFERENTIAL INTEGRITY IN SQL
Foreign keys form one of the most fundamental classes

of integrity constraints, which implement Codd’s proposal
of referential integrity from his seminal paper [5]. Referen-
tial integrity maintains the relationship between two table
schemata, which are the referencing schema or child schema,
usually denoted by CS , and the referenced schema or par-
ent schema, usually denoted by PS . A referential integrity
constraint is commonly written as

[f1, . . . , fn] ✓ PS [k1, . . . , kn]

to denote the relationship between the sequence [f1, f2, . . .
, fn] of distinct column names on CS , usually called the for-

eign key, and the sequence [k1, k2, . . . , kn] of distinct column
names, which form a candidate key on PS . For i = 1, . . . , n,
the domains of the column names fi and ki must match. In-
tuitively, referential integrity requires that for each tuple c in
a child table C there is a matching tuple p in the parent ta-
ble P . The SQL standard recommends the use of the MATCH
clause to specify di↵erent ways for handling occurrences of
the null marker null in foreign key and key columns [17].

Under simple semantics, the foreign key constraint is sat-
isfied if for every tuple c in the child table C, either c(fi) =
null for some 1  i  n, or there is some tuple p in the
parent table P such that c(fi) = p(ki) for all i = 1, . . . , n.
More precisely,

8c 2 C

n̂

i=1

c(fi) 6= null

!
) 9p 2 P

n̂

i=1

c(fi) = p(ki)

!!
.

Hence, simple referential integrity is never violated by tuples
that are partially defined on the foreign key columns.

Under partial semantics, the foreign key constraint is sat-
isfied if for every tuple c in the child table C there is some
tuple p in the parent table P such that c[f1, . . . , fn] is sub-
sumed by p[k1, . . . , kn]. That is,

8c 2 C9p 2 P (c[f1, . . . , fn] v p[k1, . . . , kn])

Here, a tuple c over the column sequence [f1, . . . , fn] is sub-
sumed by a tuple p over the column sequence [k1, . . . , kn], if
for every i = 1, . . . , n, c(fi) = null or c(fi) = p(ki).

The table from Example 1 satisfies the foreign key con-
straint [tour id,site code] ✓Tour [tour id,site code] on table
Booking under simple semantics, but not under partial se-
mantics. For instance, the Booking-tuple (BRF,null) over
[tour id,site code] has noTour-tuple over [tour id, site code]
by which it is subsumed.

Enforcing some referential integrity constraint means that
each time the child or parent table is modified it must be ver-
ified that the constraint is satisfied by the modified database
instance. Therefore, referential integrity is particularly im-
portant for transactional databases, or for updates of im-
portant data such as master data.

In general, six basic updates must be addressed to accom-
modate all possible modifications on parent tables P or child
tables C. Tuple inserts into P and tuple deletions from C do
not cause a violation of referential integrity. The other four
update operations, however, hInsert a new tuple into Ci and
hUpdate Ci, hUpdate P i and hDelete a tuple from P i may
lead to modified tables that violate referential integrity. If a
tuple c from C references a tuple p from P , we call c a child
of p, and p a parent of c.
hDelete a tuple from P i: A tuple p from P may be the

only parent of some child c from C. That is, there is no
other tuple p0 in P which is a parent of c. Deleting such
single parents from P will always violate referential integrity.
hUpdate P i: This update can be interpreted as hDelete a

tuple from P i along with hInsert a new tuple into P i. There-
fore, it may only cause a referential integrity violation due
to the Delete action.
hInsert a new tuple into Ci: Referential integrity requires

for every newly inserted child c in C the existence of a parent
p in P . Otherwise, referential integrity is violated.
hUpdate Ci: An update of a child in C can be interpreted

as a delete from C followed by an insert into C. Only the
insert into C can lead to a violation of referential integrity.

219

According to the SQL standard, inserts into C or updates
on C are only allowed if they result in a new child table that
satisfies the referential integrity constraints defined on CS .
However, di↵erent actions can be applied when a delete from
P or an update on P results in the violation of some referen-
tial integrity constraint. Based on the SQL standard, “CAS-
CADE”,“SET NULL”,“SET DEFAULT”,“RESTRICT”and
“NO ACTION” are available referential actions.

Under simple semantics, every child has at most one par-
ent. Under partial semantics, any child may have several
parents, given that the child has a null marker occurrence
in some of its foreign key columns. If the state of a child is
defined as the subset of the n foreign key columns on which
it is null, then each given parent may have up to 2n � 1
children that have pairwise di↵erent states. If u denotes the
number of null marker occurrences (0  u < n),

�
n
u

�
is the

number of distinct states with u null marker occurrences [9].

Example 2. Given a 3-attribute key with value h1, 2, 3i
on the key columns, the seven di↵erent states may result
from children with the following values on their foreign key
columns: h1, 2, 3i, hnull, 2, 3i, h1, null, 3i, h1, 2, nulli, hnull,
null, 3i, hnull, 2, nulli and h1, null, nulli. Each of the
non-total children may have some other parent. The par-
ent with h4, 2, 3i, for example, has also children with the
following values on their foreign key columns hnull, 2, 3i,
hnull, 2, nulli and hnull, null, 3i.

4. AN INTELLIGENT UPDATE SERVICE
We propose an intelligent update service that enables us to

give an a�rmative answer to Härder and Reinhart’s question
“whether or not MATCH PARTIAL is useful for a real world
application?” [9].
Null markers o↵er great flexibility for data entry, but

have serious consequences. Indeed, the level of informa-
tion completeness is an important factor for data quality
[7]. Partial data causes significant problems for enterprises:
it routinely leads to misleading analytical results and bi-
ased decisions, and accounts for loss of revenue, credibil-
ity and customers [7]. We propose the use of MATCH PAR-
TIAL for intelligent updates of data. For a given foreign key
[f1, . . . , fn] ✓ PS [k1, . . . , kn] on CS we propose the following
two strategies to reduce information incompleteness.

4.1 Intelligent Insertions
Suppose a new tuple c is inserted into the child table C

and c(fi) = null on some foreign key column f1, . . . , fn.
Then the database management system (DBMS) determines
all parents p of the parent table P where c[f1, . . . , fn] v
p[k1, . . . , kn]. For each of these parents p, the DBMS com-
putes the tuple cp that results from c by replacing each null
marker occurrence c(fi) = null by the value p(ki), where
i = 1, . . . , n. Finally, the tuples cp are presented as alterna-
tives to c for insertion into C.
For instance, suppose again that the tuple c = (1011, RF,

null, Oct 5th) is not already part of the Booking table in
Example 1, but about to be inserted into it. Our intelligent
update service would determine all possible parents of c in
Tour, which are p = (RF,BB,Binna Burra) and p0 = (RF,
OR, O’Reilly’s), and present the tuples cp = (1011, RF,BB,
Oct 5th) and cp0 = (1011, RF,OR, Oct 5th) as alternatives

to c = (1011,RF, null,Oct 5th) for insertion into Booking.

4.2 Intelligent Deletions
Suppose an existing tuple p is deleted from P . For all

children c of p in C where c[f1, . . . , fn] v p[k1, . . . , kn] and
c(fi) = null on some f1, . . . , fn, the DBMS determines
all alternative parents of p in P � {p}, i.e. those tuples
p0 2 P � {p} where c[f1, . . . , fn] v p0[k1, . . . , kn]. It then
computes the tuple cp0 that results from c by replacing each
null marker occurrence c(fi) = null by the value p0(ki),
where i = 1, . . . , n. Finally, for each child c of p the tuples
cp0 are presented as potential updates of c in C.

For instance, consider the tables from Example 1. Sup-
pose the tuple p = (RF,OR,O’Reilly’s) is deleted from
the Tour table. The only child of p in Booking is c =
(1011,RF, null,Oct 5th), and the only alternative parent of
c in Tour is p0 = (RF,BB,Binna Burra). Consequently,
the DBMS presents the tuple cp0 = (1011,RF,BB,Oct 5th)
as an update of the tuple c in Booking.

We propose two di↵erent approaches for implementing in-
telligent deletions. In Method 1, the existence of alternative
parents is first checked in P . Then the potential updates
are ranked according to the number of a↵ected children in
C and presented to the user for confirmation.

Algorithm 1 Intelligent Deletion: Method 1

Require: Deleted tuple: p[k1, . . . , kn], referential action
Ensure: Updated C under Partial Semantics
1: forall c 2 C such that

Vn
i=1 c(fi) 6= null andVn

i=1 c(fi) = p(ki) do Apply referential action
2: for u:=1 to n-1 do
3: S[u] {Suj | the jth state of hk1, . . . , kni with u

nulls, for all j=1 to
�
n
u

�
}

4: for all Suj 2 S[u] do
5: Q[Suj] {p0 2 P � {p}|Suj v p0[k1, . . . , kn]}
6: luj number of c in C match Suj

7: lmj number of c in C match Smj such that
m = u+ 1 to n� 1 and Smj v Suj

8: l0uj luj + lmj

9: if Q[Suj] = ; and luj 6= 0 then
10: Apply referential action on Suj states in C
11: l0uj 0

12: L {(l0uj , Q[Suj]}
13: if 9 l0uj 6= 0 2 L then
14: S0

u Suj with Max(l0uj)
15: Output: Set Q[S0

u] and S0
u (foreign key)

16: Input: If p0 2 Q[S0
u] is selected then Subsume all

c = Suj and c = Smj by p0

17: l0uj 0 and L {(l0uj , Q[S0
u]}

In Method 2, the intelligent system first finds all children
of the given parent. For each of these children, the system
then finds all alternatives. The choice of method depends
on the requirements of the application.

4.3 Implementation
The system is available on http://sqlkeys.info and has

been tested on the 3-column foreign key of the TPC-C bench-
mark database from the Transaction Processing Performance
Council (http://www.tpc.org). Figure 1 shows how users
can insert either their original record or a more informative
record, whatever is perceived to be the better choice. Fig-
ures 2 and 3 show screenshots of the two deletion methods.
Indeed, the choice of continuing with incomplete foreign keys

220

Algorithm 2 Intelligent Deletion: Method 2

Require: Deleted tuple: p[k1, . . . , kn], referential action
Ensure: Updated C under Partial Semantics
1: forall c 2 C such that

Vn
i=1 c(fi) 6= null andVn

i=1 c(fi) = p(ki) do Apply referential action
2: for u:=1 to n-1 do
3: S[u] {Suj | the jth state of hk1, . . . , kni with u

nulls, for all j=1 to
�
n
u

�
}

4: for all Suj 2 S[u] do
5: luj number of c in C match Suj

6: L {(luj , Q[Suj]}
7: if 9 luj 6= 0 2 L then
8: S0

u Suj with Max(luj)
9: Q[S0

u] {p0 2 P � {p}|S0
u v p0[k1, . . . , kn]}

10: if Q[S0
u] = ; then

11: Apply referential action on S0
u states in C

12: else
13: Output: Set Q[S0

u] and S0
u (foreign key)

14: Input: If p0 2 Q[S0
u] is selected then Subsume

all c = Suj and c = Smj by p0 wherem = u+1
to n� 1 and Smj v Suj

15: luj 0 and L {(luj , Q[S0
u]}

Figure 1: Intelligent Update System: Insertion

is available to users, however, referential action will be ap-
plied on the foreign keys which violate partial referential
integrity.
Use cases. It is straightforward to envision novel use cases
of the intelligent update service. For example, when up-
dates are run manually, the user can be presented directly
with available choices for the imputation of null markers.
This can be customized further, for example, according to
the preferred number of such choices or to the access rights
the user enjoys. The decision should be based on the e�-
ciency and quality requirements for data entry as well as the
expertise of the user. When updates are run mechanically,
it is particularly advisable to record the available choices for
imputation in the form of a log. This log can be inspected
later on for analytical purposes, or to assist with data clean-
ing. An interesting use case occurs whenever transactions
are aborted due to null marker occurrences in child columns
that are part of the primary key. Exploiting partial seman-
tics to impute these occurrences by some matching consis-
tent values may result in the successful completion of the
transaction. In any case, the intelligent update service can

Figure 2: Intelligent Deletion Method 1

help reduce information incompleteness in ways current ser-
vices cannot.

Figure 3: Intelligent Deletion Method 2

5. AN INTELLIGENT QUERY SERVICE
The occurrence of null markers in query answers restricts

the insights that stakeholders can gain from data. It is there-
fore important that database systems raise user awareness of
actual data values that null markers may represent. By ex-
ample, we will now explain why partial referential integrity
constitutes a prime mechanism to reduce information incom-
pleteness in query answering. Consider the following query
which returns the tour id and site code of all bookings:

SELECT Tour id, Site code
FROM Booking

On our database from Example 1, the standard answer to
this query consists of the records that are written in normal
font below:

Tour id Site code
BRF null
BRT OR
null BB
RF BB

Tour id Site code
null BR
RF null
RF BB
RF OR

Partial semantics suggests to add the records written in
bold font, as these have corresponding parents in the Tour
table. As illustrated above, users benefit from highlighting
non-standard answers and placing them directly below the
records in the standard answer from which they originate.

221

Summary. Our intelligent query and update services ex-
ploit partial semantics to minimize information incomplete-
ness. This results in higher quality data, better data-driven
decision making, and more competitive organizations. Both
services complement each other: Fewer choices for imputa-
tion mean fewer choices for intelligent updates, and more
choices for imputation mean more non-standard query an-
swers users can benefit from. So, whichever case we en-
counter at least one of the services is useful. It is beyond
the scope of this paper to go deeper into the specific ap-
plication of our proposed services. Instead, we see them as
strong drivers to investigate the second open question, that
is, whether partial semantics can be enforced e�ciently.

6. OPERATIONAL REQUIREMENTS
This section examines the two main operational require-

ments for enforcing partial semantics. First, we propose
implementation details in the form of triggers on child and
parent schemas. Next we discuss five di↵erent index struc-
tures. Their impact on the performance of enforcing partial
referential integrity will be analyzed in subsequent sections.

6.1 Triggers for Partial Referential Integrity
Foreign keys commonly enforce simple semantics in cur-

rent database management system implementations. Our
next goal is to define triggers that enforce partial referential
integrity under updates. For that purpose we first propose a
trigger on the referencing child schema CS . This trigger will
enforce partial referential integrity for hInserti and hUpdatei
modifications on any child table C. The referential action
we uniformly consider in our experiments is hSET NULLi.
We have designed a platform on www.sqlkeys.info which

generates triggers for enforcing partial semantics on any ar-
bitrary database with foreign keys up to size five. Below
is the SQL code for a trigger that implements a referential
integrity constraint on n = 3 columns:

Trigger on CS:
BEFORE INSERT ON CS FOR EACH ROW
Declare msg varchar(80);
If (new.f1 is not null and new.f2 is not null and

new.f3 is not null) then
if not exists (select * from PS where (k1=new.f1
and k2=new.f2 and k3=new.f3)) then
set msg =‘No reference is found, enter a valid value’;
signal sqlstate ’02000’ set message text = msg;
end if;

Elseif (new.f1 is not null and new.f2 is not null and
new.f3 is null) then if not exists(select * from PS

where (k1=new.f1 and k2=new.f2) LIMIT 1) then
set msg =‘No reference is found, enter a valid value’;
signal sqlstate ’02000’ set message text = msg;
end if;

Elseif (new.f1 is not null and new.f3 is not null and
new.f2 is null) then if not exists (select * from PS

where (k1=new.f1 and k3=new.f3) LIMIT 1) then
set msg =‘No reference is found, enter a valid value’;
signal sqlstate ’02000’ set message text = msg;
end if;

Elseif . . . /* similar for all 2n � 1 possible states */
End if;
End;

For hDeletei and hUpdatei modifications on the parent
schema PS another trigger is defined. The SQL code of
the trigger in the case of n = 3 columns is as follows:

Trigger on PS:
AFTER DELETE ON PS FOR EACH ROW
Update CS set f1 =null, f2 =null, f3 =null where

(old.k1 = f1 and old.k2 = f2 and old.k3 = f3);
If exists (select * from CS where (f2 is null and f3

is null and old.k1 = f1) limit 1) and not exists
(select * from PS where old.k1 = p.k1 limit 1)

then update CS set f1 =null, f2 =null, f3 =null
where ((f2 is null or f3 is null) and old.k1 = f1);

end if;
If exists(select * from CS where (f1 is null and
f3 is null and old.k2 = f2) limit 1) and not exists
(select * from PS where old.k2 = p.k2 limit 1)

then update CS set f1 =null, f2 =null, f3 =null
where ((f1 is null or f3 is null) and old.k2 = f2);

end if;
If exists (select * from CS where (f1 is null and f2
is null and old.k3 = f3) limit 1) and not exists
(select * from PS where old.k3 = p.k3 limit 1)

then update CS set f1 =null, f2 =null, f3 =null
where ((f1 is null or f2 is null) and old.k3 = f3);

end if; /* similar for all 2n � 1 possible states */
End;

6.2 Index Structures
One feature that significantly a↵ects the system behavior

is the index structure applied to the referenced and refer-
encing tables. An appropriate index structure can optimize
searches and improve the performance by several reads in
one scan.

0) No: No index is defined. This option is a baseline for
judging the performance of actual indices.

1) Full : One index is defined on [k1, . . . , kn] over PS , and
one index on [f1, . . . , fn] over CS . Full enforces simple
semantics [22]. Full might not improve partial refer-
ential integrity enforcement since a null marker in the
foreign key may lead to a complete scan on all parent
key values from the leftmost to the rightmost column
[9].

2) Singleton: One index is defined for each ki over PS ,
and for each fi over CS , for i = 1, . . . , n, resulting
in 2n indices. With individual access to each column
this approach is expected to boost the performance of
enforcing partially-defined foreign keys [9].

3) Hybrid : One index is defined for each ki over PS , and
a single index on [f1, . . . , fn] over CS , resulting in n+1
indices. According to [9], Hybrid takes advantage of
both Full and Singleton options, and the authors con-
jectured that Hybrid best supports partial semantic.

4) Powerset : One index is defined on each non-empty
subset of PS , and on each non-empty subset of CS , re-
sulting in 2n+1�2 indices. Powerset shows the impact
of having all possible indices available.

5) Bounded : One index is defined on [k1, . . . , kn] and
one index for each ki over PS , and one index is de-
fined on [f1, . . . , fn] and one index for each fi over
CS , for i = 1, . . . , n, resulting in 2n + 2 indices. This
structure combines Full, Singleton, and Hybrid, and
reduces Powerset to just the singletons (lower bound)
and the full subset (upper bound) instead of all sub-
sets. Bounded outperforms all other structures in our
experiments.

222

Table 1: Execution Time (s) for Insertion with a 5-Column Foreign Key
Data Partial Semantics Simple
Set No Index Full Singleton Hybrid Powerset Bounded Semantics
Size Ave Max Ave Max Ave Max Ave Max Ave Max Ave Max Ave Max
15M 1.98 9.11 0.0066 0.109 0.019 0.187 0.0189 0.156 0.0157 0.312 0.0026 0.078 0.00076 0.046
10M 0.69 6.63 0.0065 0.093 0.019 0.188 0.0194 0.187 0.0148 0.343 0.0025 0.047 0.00085 0.031
8M 0.57 5.21 0.0066 0.094 0.019 0.187 0.0194 0.218 0.0145 0.312 0.0027 0.063 0.00109 0.031
5M 0.33 2.55 0.0068 0.078 0.019 0.172 0.0194 0.187 0.0137 0.125 0.0025 0.063 0.00103 0.031
3M 0.24 1.51 0.0067 0.094 0.021 0.234 0.0206 0.203 0.0127 0.297 0.0029 0.078 0.00110 0.047
1M 0.15 0.57 0.0069 0.078 0.022 0.156 0.0217 0.156 0.0087 0.093 0.0075 0.125 0.00123 0.016

Figure 4: Performance Trends for Enforcing Partial Semantics under Insertions and Di↵erent Indices

Insertions under 5-column keys Insertions under 4-column keys

7. EXPERIMENTS ON SYNTHETIC DATA
We report on some of our experiments to evaluate the per-

formance of enforcing partial semantics. Experiments were
run on a Dell Latitude E5530, Intel core i7, CPU 2.9GHz
with 8GB RAM. The operating system was Windows 7 Pro-
fessional, Service pack 1 on a 64-bit operating system. The
DBMS we used was MySQL version 5.6.

7.1 Description
All experiments involved two table schemata PS and CS

and the foreign key [f1, . . . , fn] ✓ PS [k1, . . . , kn] on CS .
Here, n varied between 2 to 5 to focus on the constraints
that mostly occur in practice. For n = 1 there is no di↵er-
ence between simple and partial semantics. Parent table P
and child table C were populated with synthetic data sets of
various sizes between 1M and 15M tuples in P and 1.5 times
as many tuples in C, respectively. Columns of the candi-
date key {k1, . . . , kn} on PS did not feature null, while null
markers did occur in the foreign key columns {f1, . . . , fn}
in C. This allows us to gain insights on the foreign keys
that mostly occur in practice. Each non-empty subset S of
{f1, . . . , fn} had the same number of tuples in C which fea-
tured null markers in all columns in S and no null markers in
any column outside of S. This also meant that the order of
columns in a compound index does not matter in the exper-
iments. We also run experiments where 50% and 80% of the
tuples in C featured null markers in the foreign key columns,
but the performances were very similar in each case. The
performance of enforcing [f1, . . . , fn] ✓ PS [k1, . . . , kn] was
measured as the average time to insert tuples in C and
to delete tuples from P , respectively, exploiting the trig-
gers and di↵erent index structures from Section 6. For each
data set and each index structure, the average was taken

over 5,000 deletes and 5,000 inserts, respectively. We also
compared the performance against that of simple seman-
tics, enforced by built-in foreign keys. Note that execution
times include the time for the trigger and the maintenance of
the index structure. All reported experiments used BTrees.
Applying Hash indices to our experiments resulted in sim-
ilar outcomes, showing worse performance with minor ex-
ceptions. For these reasons we do not further comment on
Hash indices here.

7.2 Impact of Indices
The impact of the index structures from Section 6 on the

performance of enforcing partial semantics is the central con-
tribution of our work. Tables 1 and 2 show the times to per-
form insertions into C and deletions from P , respectively,
on the di↵erent data sets and where n = 5. These times are
illustrated in Figures 4 and 5, respectively, along with the
results for the same tests where n = 4. As expected, the
use of indices leads to tremendous time savings for inser-
tions and deletions. Our experiments confirm Härder and
Reinhart’s calculations that Hybrid achieves a performance
similar to that of Singleton under insertions, and to that of
Full under deletions. That is, it combines the performance
gains of Singleton over Full under insertions, and the gains
of Full over Singleton under deletions [9]. However, Power-
set performs better than Hybrid under both insertions and
deletions, and Bounded is the clear winner for both opera-
tions. On the largest data set with the largest foreign key
size, for example, Bounded performs insertions/deletions on
average about 7/123 times faster than Hybrid. The di↵er-
ence is considerable: the average time for deletions is 7.03s
for Hybrid while it is 57ms for Bounded. Bounded is 6/9
times faster than Powerset on the largest data set. The

223

Table 2: Execution Time (s) for Deletion with a 5-Column Foreign Key
Data Partial Semantics Simple
Set No Index Full Singleton Hybrid Powerset Bounded Semantics
Size Ave Max Ave Max Ave Max Ave Max Ave Max Ave Max Ave Max
15M 286.04 824.7 9.16 203.1 110.45 813.9 7.03 142.20 0.531 0.967 0.057 0.296 0.0026 0.047
10M 201.38 480.3 5.91 151.3 109.00 651.7 4.42 100.34 0.442 0.904 0.047 0.234 0.0016 0.046
8M 128.04 393.7 4.93 119.8 93.32 572.8 3.72 82.41 0.401 0.92 0.042 0.218 0.0017 0.062
5M 85.79 255.48 3.7 86.15 39.2 337.1 3.04 67.76 0.330 0.79 0.037 0.188 0.0015 0.047
3M 52.65 138.76 1.7 63.43 15.4 143.3 1.36 41.52 0.255 0.655 0.041 0.156 0.0015 0.047
1M 19.61 41.77 0.62 13.58 3.5 25.4 0.44 8.70 0.140 0.577 0.057 0.266 0.0011 0.031

Figure 5: Performance Trends for Enforcing Partial Semantics under Deletions and Di↵erent Indices

Deletions on 5-column keys Deletions on 4-column keys

performance gain of Bounded over Powerset shows that the
additional time for maintaining further indices in Powerset
and to choose the index from all the options in Powerset
outweighs the time gains for the actual operations by Pow-
erset in comparison to Bounded. Due to space restrictions
we only present the results for 5-column foreign keys. For 3-
column and 4-column foreign keys the index structures show
similar behavior as the ones presented for 5-column foreign
keys. Table 3 illustrates the results of applying Bounded and
Hybrid on a synthetic data set of size 100M with a 5-column
foreign key.

Table 3: Execution Time (s) for 100M Data Set un-
der some Index Structures and 5-Column Foreign
Key

Insertion Deletion
Mean Max. Mean Max.

Hybrid 0.013 0.156 39.74 976.23
Bounded 0.0027 0.063 0.085 0.281
Simple S. 0.001 0.047 0.0021 0.062

Exception. Hybrid shows the best performance when n = 2
and the data set size is large. For example, on the largest
data set it takes 2.8/10.2ms for insertions/deletions, while
these times increase to 4.3/11.5ms on Powerset, see Figure 6.
Note that Powerset and Bounded coincide when n = 2.

Simple semantics. Of course, it takes longer to enforce
partial than simple semantics. However, the additional time
becomes feasible under Bounded. For example, for inser-
tions/deletions on the 15M data set with a 5-column foreign
key, partial semantics is enforced by about 2.6/57ms, re-
spectively. This takes 3.4/22 times longer than for simple

Figure 6: Deletions for 2-Column Foreign Keys

semantics, while it takes 22/2703 times longer than for sim-
ple semantics using Hybrid. Even on a data set with 100M
tuples, inserts and deletions can be processed within 2.7ms
and 84.8ms, respectively, using Bounded. This confirms the
feasibility of enforcing partial semantics on even large for-
eign key sizes.

7.3 Index Building
While the time to load data and build the indices is just

a one-time cost, we still include it in our analysis. Table 4
shows the time taken to load data and build the indices on
all data sets. Not surprisingly, the more indices are defined
the longer it takes to build them. Building Powerset is thus
time-consuming: more than 3hrs and 53mins on the largest
data set, while Hybrid takes just over 10mins. Bounded,
with twice as many indices as Hybrid, takes about 14mins

224

Table 4: Times (s) for Loading Data and Building Indices for 5-Column Key
Data No Index Full Singleton Hybrid Powerset Bounded Foreign
Size C P C P C P C P C P C P key
15M 107.2 69.1 403.7 96.3 297.2 198.3 405.8 200.9 5269.2 8716.8 622.6 234.5 587.9
10M 69.0 43.9 234.5 63.8 199.2 132.9 242.6 134.7 2875.4 5305.8 366.8 156.7 262.0
8M 56.4 36.0 172.3 51.8 159.3 107.6 171.7 106.0 2061.3 4073.4 275.5 120.5 180.3
5M 42.2 22.8 99.3 32.2 95.2 67.0 94.2 63.9 1016.3 2298.1 160.5 77.6 100.9
3M 20.5 13.3 53.5 19.5 63.9 41.4 54.0 40.7 522.6 1162.0 96.2 47.1 53.6
1M 7.9 4.9 16.7 7.4 20.1 13.6 15.3 13.3 142.6 151.1 28.2 14.72 16.9

and 30s. The foreign key index is built in 9mins and 47s.

7.4 Impact of Update Size
We performed some experiments with transactions, that

is, atomic sets of update operations. The reported experi-
ments were conducted for the 5-column foreign key on the
data set with 15M tuples. The first experiment featured an
insert of 5,000 tuples into C, and the second experiment a
deletion of 2,000 tuples from P . The results are illustrated
in Table 5. The transaction with 5,000 inserts takes just un-
der 7s with Bounded, and nearly 90s with Hybrid. For the
transaction with 2,000 deletions it takes over 148mins with
Hybrid, and just under 111s with Bounded.

Table 5: Execution Time (s) of Transactions under
Index Structures on Data Set with 15M Tuples

5000 Insertions 2000 Deletions
Full 28.533 13413.16
Singleton 90.137 59191.81
Hybrid 89.65 8922.6
Powerset 102.81 605.71
Bounded 6.973 110.37
Simple S. 0.811 32.92

7.5 Extended Tests and Analysis
Deletions. Tables 2 and 5 show the poor performance
of Hybrid on delete actions, and that it is overcome by
Bounded. We will now analyze how Bounded achieves this.
For that purpose, we exploited MySQL’s explain statement
which shows the optimizer’s plan in executing the statements
of each test. Recall that Hybrid has only one compound in-
dex over all foreign key columns in CS . When we Delete
from P , this means that one scan through all tuples is re-
quired to apply the referential action to children that feature
null on the left most column. However, the referential ac-
tion is only needed when there is no alternative parent for
these children. Establishing that referential action must be
applied to children whose only parent has been deleted is
therefore poorly supported by Hybrid. We validated this
observation by applying a deeper analysis to the experiment
with our data set of 10M tuples. For this purpose, we call
a parent unique when it has only children for which it is
the only parent. Therefore, referential actions apply to all
children of a unique parent. Otherwise, the parent is called
non-unique. Table 6 shows the average execution time for
deleting unique and non-unique parents when Hybrid is ap-
plied.
Table 7 shows the average execution time for deleting non-

unique and unique parents when Bounded is applied.
These results show that Hybrid performs particularly poor

when deleting unique parents. The same analysis applies to

Table 6: Hybrid for Deletions, Average of Execution
Times
Key size Non-unique Parent Unique Parent
5-Column keys 0.525s 40.47s
4-Column keys 2.37s 18.68s
3-Column keys 0.022s 17.59s

Table 7: Bounded for Deletions, Average of Execu-
tion Times
Key size Non-Unique Parent Unique Parent
5-Column keys 0.051s 0.005522s
4-Column keys 0.00976s 0.00305s
3-Column keys 0.00348s 0.00167s

transactions. In fact, only 3% of the deleted parents were
unique. With Hybrid they occupied 145mins of the overall
time of 148mins, but with Bounded they occupied only 0.5s
of the overall time of 111s, refer to Table 13.

This poor performance ofHybrid can be avoided by adding
to Hybrid one index on each foreign key attribute fi on Cs.
The resulting structure consists of 2n + 1 indices in total,
and we refer to it by Hybrid+nSingle. Table 8 shows the
average execution time for deleting non-unique and unique
parents when Hybrid+nSingle is applied.

Table 8: Hybrid+nSingle for Deletions, Average of
Execution Time
Key size Non-Unique Parent Unique Parent
5-Column keys 0.413s 0.0061s
4-Column keys 2.29s 0.003s
3-Column keys 0.0237s 0.00233s

Another index structure that we have also tested is Hy-
brid+Compound, which consists of Hybrid plus one index
over the key columns of PS . Hybrid+Compound has there-
fore a total of n + 2 indices. For deletions, the additional
index improves the search for children which are not null in
the leftmost columns. This is demonstrated by comparing
the results for Non-Unique Parents in Tables 7 and 8.

Figure 7 illustrates how well Hybrid+nSingle and Hybrid+
Compound perform deletions in comparison to the other in-
dices. Clearly, the performance boost of Bounded over Hy-
brid for deletions is mainly due to adding nSingle.
Insertions. Figure 8 illustrates how well Hybrid+nSingle
and Hybrid+Compound perform insertions in comparison to
the other indices. Clearly, the performance boost of Bounded
over Hybrid for insertions is mainly due to adding Com-
pound.

A deeper analysis confirms our intuition that Hybrid per-
forms particularly poorly when inserting tuples that have
only total foreign key values. Figure 9 breaks down the per-

225

Figure 7: Performances under Deletions with 5-
Column Foreign Keys

Figure 8: Performance under Insertions with 5-
Column Foreign Keys

formance of Hybrid and Hybrid+Compound into insertions
of tuples with only total foreign keys and those that are
partially null.

Figure 9: Performance under Insertions with 5-
Column Foreign Keys

Bounded is the only index structure that performs well
under insertions and deletions, since it does not su↵er from
poor performance for insertions like Hybrid+nSingle and for
deletions like Hybrid+Compound. In comparison to Hy-
brid+nSingle the better performances are achieved under
negligible additional costs for building the indices, see Ta-
bles 11 and 12.
Transactions. Table 13 shows how the new index struc-
tures perform in transactions. Hybrid+Compound performs
best for insertions but takes 149mins for deleting 2000 par-

Table 11: Index Building (IB) and Execution Time
of Bounded

Dataset IB for C IB for P Insert Delete
Size (s) (s) Ave. (s) Ave. (s)
15M 622.569 234.532 0.002678 0.0578
10M 366.821 156.73 0.00251 0.047189
8M 275.513 120.542 0.00271 0.0425
5M 160.463 77.563 0.00254 0.03723
3M 96.237 47.019 0.002988 0.04189
1M 28.173 14.742 0.00757 0.05729

Table 12: Index Building (IB) and Execution Time
of Hybrid+nSingle

Dataset IB for C IB for P Insert Delete
Size (s) (s) Ave. (s) Ave. (s)
15M 636.702 207.029 0.0189 0.5135
10M 367 136.204 0.0194 0.37
8M 282.409 109.045 0.01934 0.3316
5M 162.6 66.81 0.0194 0.43
3M 92.212 40.68 0.0197 0.2481
1M 28.25 13.26 0.02186 0.10149

ents, while Bounded takes just 110s. Hybrid+nSingle is the
runner-up to Bounded for deletions, but performs poorly for
insertions.

Table 13: Execution Time (s) of Transactions under
Index Structures

5000 Insertions
2000 Deletions

Unique p Others
Hybrid 89.65 8753.2 169.4
Hybrid+Compound 6.26 8830.8 104.05
Hybrid+nSingle 90.78 0.515 167.43
Bounded 6.973 0.499 109.9

8. BENCHMARK DATA
We extend our analysis of enforcing partial semantics to

some benchmark and real-world data. For that purpose,
we have run experiments on one two-column foreign key
from the TPC-H database and two three-column foreign
keys from the TPC-C database (www.tpc.org). In addi-
tion, we have tested one three-column foreign key from the
Gene Ontology (GO) database (www.geneontology.org/GO.
database.shtml). Table 9 shows the details of the for-
eign keys. Here, the data set size for test 1 on TPC-H
was 1.43GB, and for test 2 it was 10GB; for TPC-C it was
0.39GB, and for the GO database it was 100MB. Applying
the “Missing at Random” mechanism from [23], null mark-
ers were introduced randomly and spread evenly between
the foreign key columns.

We have tested the TPC-H benchmark with two di↵erent
data set sizes (0.8M and 8M tuples). Note that Powerset
and Bounded coincide on 2-column foreign keys and thus on
the experiments with TPC-H. The results of enforcing par-
tial and simple semantics on these databases are shown in
Table 10. The performances rank very similar to those on
the synthetic data sets. Our results on TPC-H confirm the
observed changes on the performance of Hybrid and Pow-
erset on larger data sets with 2-column foreign keys, see
Figure 6. The TPC-C data set with the 3-column foreign
keys confirms our result with the synthetic data sets that

226

Table 9: Detail of the tested TPC databases
Database Parent table Child table Foreign key

Partsupp Lineitem [partkey, suppkey] ✓
TPC-H Test 1: 0.8M records 6M records 25% Null Partsupp[partkey, suppkey]

Test 2: 8M records 60M records 60% Null
TPC-C Customer Orders [O-W-ID,O-D-ID,O-C-ID] ✓

(90K records) (0.13M records) 55% Null Customer[C-W-ID,C-D-ID,C-ID]
TPC-C Orders Orderline [OL-W-ID,OL-D-ID,OL-C-ID] ✓

(0.13M records) (1.3M records) 20% Null Orders[O-W-ID,O-D-ID,O-ID]
Gene Term2term (T) Term2term-metadata [relationship-type-id, term1-id
Ontology (GO) (80k records) (TT) ,term2-id] ✓ [relationship-type-id
database (2200 records) 85% Null , term1-id, term2-id]

Table 10: Execution Time(ms) to Enforce Partial Referential Integrity on Benchmark Databases
No Index Full Singleton Hybrid Powerset Bounded Simple S.

TPC-H Test 1: Insert into Lineitem 161 1.8 1.6 1.3 1.1 - 1.06
Delete from Partsupp 10.92 (s) 6.1 148 5.6 4.3 - 2
TPC-H Test 2: Insert into Lineitem 1.97s 3.1 1.1 0.76 1.09 - 0.88
Delete from Partsupp 19.7 151.72 5.94 14.79 - 3.10
TPC-C: Insert into Orders 14.5 2.73 2.95 2.84 1.28 1.02 0.81
Delete from Customer 498 11.8 120.3 10.15 2.44 2.47 0.6
TPC-C: Insert into Orderline 9.23 2.44 1.9 2.25 1.62 1.31 1.21
Delete from Orders 2.92(s) 18.6 1.05(s) 15.58 3.78 3.52 1.285
GO Database: Insert into TT 15.6 6.16 1.31 1.16 2.37 1.3 1.12
Delete from T 54.2 2.11 17.35 12.6 2.4 1.87 1.06

Bounded outperforms Hybrid by a factor of 2 for insertions
and by 5 for deletions. Similar results have been observed
on the Gene Ontology database. The best times for enforc-
ing partial semantics are never over 6ms while the times for
enforcing simple semantics are never over 4ms.

9. CONCLUSION AND FUTURE WORK
Even two decades after its introduction to the SQL stan-

dard there are no database management systems with built-
in support for partial referential integrity. Härder and Rein-
hart had argued on the operational level that partial se-
mantics is too costly to implement [9]. They invited more
research on its motivation and its costs at the systems level
[9]. In this paper we addressed both questions. Firstly, we
proposed intelligent update and query services that impute
missing data values by exploiting partial semantics. In par-
ticular, we discussed how these services reduce information
incompleteness in the database and suggest possible values
by which null markers can be replaced in query answers.
Secondly, we proposed two main operational requirements
to enforce and speed up the enforcement of partial seman-
tics, and conducted several performance tests in MySQL.
Our tests were targeted at foreign keys that occur com-
monly in practice. These have very rarely more than five
columns and reference candidate keys without null marker
occurrences. Permitting occurrences of null in referenced
candidate keys only a↵ects our results marginally. Our first
major finding confirms on the system level what Härder and
Reinhart had calculated on the operational level: (1) The
performance of the Hybrid index structure matches that of
the Singleton index structure for insertions, and that of the
Full index structure for deletions. (2) Hybrid is the best
candidate to support MATCH PARTIAL, but only for 2-column
foreign keys. We proposed here the new index structure
Bounded for foreign keys with more than two columns. Our
second major finding is that Bounded outperforms Hybrid
for foreign keys with more than two columns. For example,

for a 5-column foreign key on a data set with 15M tuples
and a fair distribution of null markers, Bounded performed 7
times better for insertions and 123 times better for deletions.
The better performance was confirmed on other synthetic
data sets, for transactions, for two TPC-C data sets and a
three-column foreign key on the Gene Ontology database.
The only trade-o↵ we found concerns the loading time of
the data set and building of the indices, which essentially
were 1.5 times more in comparison to Hybrid. Our third
major finding is that the performance boost of Bounded for
deletions results from adding one index to Hybrid on each
foreign key column, and the performance boost of Bounded
for insertions results from adding one index on the com-
pound key to Hybrid. Overall, the enforcement of partial
semantics with Bounded was never slower than 300ms for
any atomic operation with a 5-column foreign key, while the
enforcement of simple semantics was never slower then 62ms.
Based on our results, we conclude that partial referential in-
tegrity can be enforced e�ciently for real-life foreign keys,
which opens up new applications such as intelligent queries
and intelligent updates that lead to better quality data and
better data-driven decision making. These applications do
not apply to simple referential integrity. Our results demon-
strate the benefits of partial semantics, and Bounded o↵ers
a principled approach to indexing foreign keys with partial
semantics that can be added on top of existing databases in
a non-intrusive fashion.

We hope our research will ignite future work on this topic.
Certainly there are many interesting questions that a sin-
gle paper cannot address, but which should be pursued in
future work to unlock many potential benefits. Other in-
dexing options can be studied, for example the combination
of compound indices over key attributes and multidimen-
sional access paths at the system level. An index option in-
cluding 2n compound n-ary indices over the referenced key
attributes [ki, . . . , kn, k1, . . . , ki�1] and referencing key at-
tributes [fi, . . . , fn, f1, . . . , fi�1], for i = 1, . . . , n, supports

227

partial match index look-ups by the di↵erent prefixes of the
compound indices. However, our initial analysis shows that
Bounded outperforms this index option in deletions of 3, 4
and 5-column foreign keys by more than 3 times on data
sets with 15M tuples. The loading times of the data sets
and building of the indices in Bounded are always between
1.5 to 4 times cheaper. Exploiting 2n compound indices
over key attributes is not enough to support all the possible
partial match queries. For instance when n = 5, defining
2 ⇥ 5 compound indices in di↵erent orders only supports
21 of 31 match queries. Another interesting avenue deals
with the trade-o↵ between query and enforcement issues.
While our results show that enforcement and maintenance
of partial semantics are unlikely bottlenecks on databases
of enterprise-level size (10GB in test 2 for TPC-H), future
research should be aimed at guidelines for resolving con-
flicts between resources for query and update acceleration
in schemata for big data. While our solution of implement-
ing enforcement by database triggers and index primitives is
appealing in several ways, future work may reveal potential
performance gains that could be realized with an engine-
level implementation. For instance, there may be custom
index data structures that leverage partial and adaptive in-
dexing methods, as well as a more streamlined trigger exe-
cution in order to improve enforcement costs. Furthermore,
there are several techniques such as batching and shared ex-
ecution across updates that apply within transactions, and
could therefore optimize the enforcement of partial referen-
tial integrity in this context. Our proposed services of intel-
ligent queries and updates each open up their own areas of
future investigation. For updates it would be interesting to
investigate how large numbers of choices for imputations can
be represented or ranked, how logs of potential imputations
can best be processed by data analysts, or how unsuccessful
imputations can be reversed. For queries, it would be inter-
esting to find re-writings of SQL queries that return not only
standard but also non-standard answers that result from the
application of partial semantics, and to investigate the over-
head of such techniques. Information incompleteness is also
inherent in other data models such as graphs, RDF, or XML.
Finally, implication problems of inclusion dependencies un-
der SQL semantics should be studied [10, 11].

10. REFERENCES
[1] J. Bauckmann, Z. Abedjan, U. Leser, H. Müller, and

F. Naumann. Discovering conditional inclusion
dependencies. In X. Chen, G. Lebanon, H. Wang, and
M. J. Zaki, editors, CIKM, pages 2094–2098. ACM,
2012.

[2] M. A. Casanova, R. Fagin, and C. H. Papadimitriou.
Inclusion dependencies and their interaction with
functional dependencies. J. Comput. Syst. Sci.,
28(1):29–59, 1984.

[3] M. A. Casanova, L. Tucherman, and A. L. Furtado.
Enforcing inclusion dependencies and referential
integrity. In F. Bancilhon and D. J. DeWitt, editors,
VLDB, pages 38–49. Morgan Kaufmann, 1988.

[4] A. K. Chandra and M. Y. Vardi. The implication
problem for functional and inclusion dependencies is
undecidable. SIAM J. Comput., 14(3):671–677, 1985.

[5] E. Codd. A relational model of data for large shared
data banks. Communications of the ACM,
13(6):377–387, 1970.

[6] C. J. Date. Relational database writings: 1985-1989.
Addison-Wesley, 1990.

[7] V. Ganti and A. D. Sarma. Data Cleaning: A
Practical Perspective. Synthesis Lectures on Data
Management. Morgan & Claypool Publishers, 2013.

[8] T. Halpin and T. Morgan. Information modeling and
relational databases. Morgan Kaufmann, 2010.

[9] T. Härder and J. Reinert. Access path support for
referential integrity in SQL2. The VLDB Journal,
5(3):196–214, 1996.

[10] S. Hartmann, M. Kirchberg, and S. Link. Design by
example for SQL table definitions with functional
dependencies. The VLDB Journal, 21(1):121–144,
2012.

[11] S. Hartmann and S. Link. The implication problem of
data dependencies over SQL table definitions. ACM
Trans. Database Syst., 37(2):13, 2012.

[12] D. S. Johnson and A. C. Klug. Testing containment of
conjunctive queries under functional and inclusion
dependencies. J. Comput. Syst. Sci., 28(1):167–189,
1984.

[13] M. Karlinger, M. W. Vincent, and M. Schrefl.
Inclusion dependencies in XML: Extending relational
semantics. In S. S. Bhowmick, J. Küng, and
R. Wagner, editors, DEXA, volume 5690 of LNCS,
pages 23–37. Springer, 2009.

[14] G. Lausen. Relational databases in RDF: Keys and
foreign keys. In V. Christophides, M. Collard, and
C. Gutierrez, editors, SWDB-ODBIS, volume 5005 of
LNCS, pages 43–56. Springer, 2008.

[15] M. Levene and M. W. Vincent. Justification for
inclusion dependency normal form. IEEE Trans.
Knowl. Data Eng., 12(2):281–291, 2000.

[16] S. Link and M. Memari. Static analysis of partial
referential integrity for better quality SQL data. In
J. Shim, Y. Hwang, and S. Petter, editors, AMCIS,
pages 38–49. Association for Information Systems,
2013.

[17] J. Melton. ISO/IEC 9075-2: 2003 (SQL/foundation).
ISO standard, 2003.

[18] J. C. Mitchell. The implication problem for functional
and inclusion dependencies. Information and Control,
56(3):154–173, 1983.

[19] J. C. Mitchell. Inference rules for functional and
inclusion dependencies. In R. Fagin and P. A.
Bernstein, editors, PODS, pages 58–69. ACM, 1983.

[20] C. Ordonez and J. Garćıa-Garćıa. Referential integrity
quality metrics. Decision Support Systems,
44(2):495–508, 2008.

[21] B. Thalheim. Dependencies in relational databases.
Teubner, 1991.

[22] C. Türker and M. Gertz. Semantic integrity support in
SQL: 1999 and commercial (object-) relational
DBMSs. The VLDB Journal, 10(4):241–269, 2001.

[23] Y. Wen, K. B. Korb, and A. E. Nicholson.
DataZapper: Generating incomplete datasets. In
J. Filipe, A. L. N. Fred, and B. Sharp, editors,
ICAART, pages 69–76. INSTICC Press, 2009.

[24] M. Zhang, M. Hadjieleftheriou, B. C. Ooi, C. M.
Procopiuc, and D. Srivastava. On multi-column
foreign key discovery. PVLDB, 3(1):805–814, 2010.

228

