
Efficient Processing of Hamming-Distance-Based
Similarity-Search Queries Over MapReduce ∗

Mingjie Tang †, Yongyang Yu †, Walid G. Aref †, Qutaibah M. Malluhi ‡, Mourad Ouzzani ?

† Computer Science, Purdue University, ‡ Qatar University, ? Qatar Computing Research Institute
{tang49,yu163,aref}@cs.purdue.edu, qmalluhi@qu.edu.qa, mouzzani@qf.org.qa

ABSTRACT
Similarity search is crucial to many applications. Of particular in-
terest are two flavors of the Hamming distance range query, namely,
the Hamming select and the Hamming join (Hamming-select and
Hamming-join, respectively). Hamming distance is widely used in
approximate near neighbor search for high dimensional data, such
as images and document collections. For example, using prede-
fined similarity hash functions, high-dimensional data is mapped
into one-dimensional binary codes that are, then linearly scanned
to perform Hamming-distance comparisons. These distance com-
parisons on the binary codes are usually costly and, often involves
excessive redundancies. This paper introduces a new index, termed
the HA-Index, that speeds up distance comparisons and eliminates
redundancies when performing the two flavors of Hamming dis-
tance range queries. An efficient search algorithm based on the
HA-index is presented. A distributed version of the HA-index is
introduced and algorithms for realizing Hamming distance-select
and Hamming distance-join operations on a MapReduce platform
are prototyped. Extensive experiments using real datasets demon-
strates that the HA-index and the corresponding search algorithms
achieve up to two orders of magnitude speedup over existing state-
of-the-art approaches, while saving more than ten times in memory
space.

1. INTRODUCTION
Hamming-distance search over big data plays an important role

in a large variety of applications. For example, widely used search
engines, such as Google, Baidu, and Bing, use Hamming-distance
search in their image content-based search engines that usually in-
dex billions of images (e.g., refer to [1]). Typically, each image is
modeled by a high-dimensional vector of extracted features, e.g.,
color histograms, texture features, and edge orientation. Then,
based on the learned similarity hash function, e.g., as in [1, 2, 3],
each image is converted into a binary code. Given a query image
that gets modeled with the same high-dimensional vector of fea-

∗This work was supported by an NPRP grant 4-1534-1-247 from
the Qatar National Research Fund and by the National Science
Foundation Grants IIS 0916614, IIS 1117766, and IIS 0964639.

(c) 2015, Copyright is with the authors. Published in Proc. 18th Inter-
national Conference on Extending Database Technology (EDBT), March
23-27, 2015, Brussels, Belgium: ISBN 978-3-89318-067-7, on OpenPro-
ceedings.org. Distribution of this paper is permitted under the terms of the
Creative Commons license CC-by-nc-nd 4.0
.

tures, the search engine maps it into a binary code and performs a
Hamming-distance search to find images whose binary codes have
a Hamming distance smaller than a given threshold ĥ from the
query image. Hamming search is also widely used to detect dupli-
cate web pages in applications, e.g., web mirroring, plagiarism, and
spam detection [4]. A similarity hash function [5] is applied to map
a high-dimensional vector into a binary code, then a Hamming-
distance range search finds web documents that are similar to the
query document.

Typically, computing the Hamming distance between two binary
codes is performed by an Exclusive-Or operation (XOR, for short)
that is followed by a count operation to sum up the number of ones
in the XOR result. The number of ones corresponds to the num-
ber of differing bits between the two binary codes. Thus, a linear
scan over the binary codes of the underlying dataset takes place to
perform the XORing, the counting, and the ranking to retrieve the
objects within a certain range of tq (i.e., the ones within the prede-
fined Hamming distance threshold ĥ). Due to the linear scan, this
approach is slow. When joining two tables via a Hamming distance
predicate, the linear scan approach induces a quadratic cost to eval-
uate the join. An efficient indexing of the binary codes is called for
to perform the Hamming range query and avoid a complete scan
over the underlying dataset, while remaining low on memory us-
age.

The Hamming distance problem [6, 7] is first studied for small
distance thresholds, i.e., ĥ = 1. An algorithm proposed by Manku
et al. [4] uses multiple hash tables to enhance query speed. How-
ever, duplicating the hash entries multiple times for the entire
datasets is expensive and performance tends to degrade as a lin-
ear scan over tuples within a bucket is required. HEngine [8] ex-
tends Manku’s algorithm to improve the query’s speed with less
memory. However, HEngine is sensitive to the Hamming distance
threshold ĥ, and it needs to generate one-bit differing binary code
with each query, then carry out several binary searches over sorted
hash tables. Recently, MapReduce as a reliable distributed com-
puting model has been adopted for handling a variety of similarity
queries, e.g., [4, 9, 10, 11, 12]. Existing techniques for Hamming-
distance queries cannot be easily extended for MapReduce. The
reason is that most of the existing techniques use centralized mul-
tiple hash-table indexes. Because MapReduce needs to write inter-
mediate data on disk when shuffling data between the mappers and
the reducers, rearranging multiple indexes and multiple versions of
the same data can be quite inefficient.

In this paper, we focus on two variants of the Hamming
distance query problem, namely Hamming-distance-based select
and Hamming-distance-based join (for short, Hamming-select and
Hamming-join, respectively). We propose a new index, termed the
HA-Index, that is designed to reduce redundant and duplicate dis-

 

 

361 10.5441/002/edbt.2015.32

http://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2015.32


tance computations during the Hamming-distance search. The HA-
Index assumes that the underlying datasets are preprocessed; data
is mapped from the high-dimensional space into one-dimensional
binary codes that are fixed-length strings of 0’s and 1’s. Then, the
binary codes are sorted using the Gray ordering [13]. Sorting the
binary codes in this way helps group together multiple binary codes
that share a common substring or non-contiguous yet similar se-
quences of bits. By computing the distances between the query
binary code and similar substrings, many redundant distance com-
putations can be avoided.

The contributions of this paper are as follows.

• Based on properties of binary codes, we introduce two ap-
proaches to improve the performance of Hamming-select and
Hamming-join. The first approach uses a simple Radix-tree
index from the literature. The second approach is based on
the HA-Index with both a static and a dynamic version. We
also introduce the maintenance operations, i.e., build, insert,
update, and search operations, for the dynamic HA-Index.

• For Hamming-joins over large and skewed data, we propose
an efficient data partitioning technique for balancing data
computations among servers, and introduce a distributed ver-
sion of the HA-Index to reduce data shuffling inside MapRe-
duce.

• We conduct an extensive experimental study using real
datasets and demonstrate that the HA-Index (i) enhances
the performance of Hamming-select and Hamming-join by
two orders of magnitude over state-of-the-art techniques, and
(ii) saves memory usage by more than one order of magni-
tude. We also evaluate how the proposed index improves
approximate algorithms for kNN-select and kNN-join oper-
ations.

The rest of this paper proceeds as follows. Section 2 dis-
cusses related work. Section 3 presents the problem definition.
Section 4 introduces the centralized-server approach for approx-
imate Hamming-select and Hamming-join. Section 5 introduces
the distributed version of the HA-Index using MapReduce and ex-
plains how Hamming-select and Hamming-join can be performed
in MapReduce. Section 6 presents and discusses the experimental
results. Finally, Section 7 contains concluding remarks.

2. RELATED WORK
Using the Hamming distance as a similarity metric has been

studied in the theory community, e.g., [6, 7]. When the Hamming-
distance query threshold is small, i.e., ĥ = 1, Yao et.al [7]
propose an algorithm with O(m log log(n)) query time and
O(nm log(m)) space. Yao’s algorithm recursively cuts the query
binary code and each binary code in the dataset in half, and then
finds exact matches in the dataset for the left or the right half of
the query binary code. [14] demonstrates that similarity search in
chemical information via the Tanimoto Similarity metric can be
transformed into a Hamming-distance query.

Hamming-distance queries are attracting more attention for pro-
cessing large volumes of data. A relatively recent work [4] uses
multiple hash tables, and hence more space, to reduce the linear
computation of the Hamming distance during query time. The idea
behind this approach is that if two binary codes are within a Ham-
ming distance ĥ, then at least one of the ĥ+1 segments are exact
matches for two binary codes. This algorithm needs to replicate

Table 1: Symbols and their definitions

Symbol Definition
Rd d-dimensional vector space
n, |R| Number of tuples in dataset R
m, |S| Number of tuples in dataset S
tq Query tuple
k The required number of nearest neighbors
||ti, tj ||h Hamming distance between tuples ti and tj
H Similarity Hash function
Ui Binary code for tuple ti
L = |U | Length of the binary code U
li The ith bit in the binary code
ĥ Hamming distance threshold
ĥ-select(tq, S) Hamming distance select for

tuple tq and datasets S
ĥ-join(R,S) Hamming distance join between datasets

R and S
N Number of data partitions

the database multiple times, and it sorts each copy based on parts
of the segments. The Hamming-distance computation is still per-
formed in a linear fashion over tuples of the same bucket in a cer-
tain hash table. Thus, it fails to scale as data size increases. For
performing a Hamming-join of two datasets, say R and S, [4] ex-
tends the sequential approach to MapReduce by broadcasting Table
R into each server, then applying a sequential algorithm betweenR
and S. This approach is subject to a very heavy shuffling cost and
servers cannot work in a load-balanced way when data is skewed.
HEngine [8] adopts a similar idea to that in [4], but uses approx-
imate matching instead by generating multiple one-bit difference
binary codes. The HEngine uses less memory but achieves lim-
ited performance speedup. HmSearch [14] is an exact matching
approach that index over signature of the binary codes. The size of
the index increases dramatically, because HmSearch need to gen-
erated large amount of unique signatures. If used in the context of
MapReduce, the shuffling cost between the mappers and the reduc-
ers is expected to be expensive. Our proposed HA-Index extracts
and groups similar binary codes from among the various tuples to
reduce the cost of shuffling and hence is applicable to MapReduce
as we illustrate later in this paper. Through data sampling, we parti-
tion that data in a way that uniformly distributes the dataset among
the reducer servers and hence enables better load balancing. Exper-
imental comparison with [4, 8] shows that our proposed HA-Index
is two orders of magnitude faster and uses ten times less memory
as illustrated in the experimental section of this paper.

Two related and popular operations to Hamming distance queries
are the k-nearest-neighbor select (kNN-select) and k-nearest-
neighbor join (kNN-join) [15, 16]. Given a dataset, say S, and
a query focal point, say tq , kNN-select finds in S the k-nearest-
neighbors to tq . Given two datasets, say R and S, R kNN-join
S finds the k-nearest-neighbors in S for each tuple in R. In
high-dimensional spaces and because of the curse of dimensional-
ity [17], data-independent hash-based approximate kNN (e.g., lo-
cality sensitive hashing (LSH) [18]) has attracted attention as it can
speed-up query execution while having acceptable error margins.
Recently, data-dependent hashing has been proposed to learn the
hash function, sayH(), given the underlying dataset, e.g., as in [2].
There has been a plethora of work in learning good and represen-
tative hash functions, e.g., [2, 3, 1]. Given the learned similarity
hash function H(), a tuple, say ti, is mapped into its binary code,

362



say Ui, i.e., H(ti) = Ui. Afterwards, all the binary codes of the
dataset R are scanned to find data tuples that are different from
the query’s binary code Ui by at most ĥ bit-positions. If the an-
swer set size is more than k, then only the k-closest answers are
retained. However, if the size of the result set is less than k, then a
larger distance threshold is estimated and the near neighbor query
is repeated. The process is stopped when k or more answers are
reported. Notice that the core of the method for approximate kNN
search is a Hamming-distance query with a threshold ĥ. In our
experiments, we use the state-of-the-art approach [2] to learn the
hash function, and show how our proposed approach can speed up
approximate kNN-select and kNN-join.

3. PRELIMINARIES

3.1 Hamming-distance-based Similarity Op-
erations

We assume that data tuples represent points in a d-dimensional
metric space, say Rd. Given two data tuples, say ti and tj , let
||ti, tj || be the distance between ti and tj in Rd. The Hamming
distance between ti and tj , denoted by ||ti, tj ||h, helps in retrieving
the tuples in a dataset that are within some threshold from an input
tuple, either ti or tj in this case. Table 1 summarizes the symbols
used in this paper.

DEFINITION 1. Hamming-distance-based Similarity Se-
lect [4] (referred to as Hamming-select, for short): Given a query
tuple, say tq , and a dataset, say S, with its corresponding collection
of binary codes, denoted by US , and an integer, say ĥ, that repre-
sents the similarity threshold for the Hamming distance, Hamming-
select identifies a subset from S, denoted by ĥ-select(tq, S) for
short, where ∀o ∈ ĥ-select(tq, S), ||o, tq||h ≤ ĥ.

Similarly, we define the Hamming-distance-based similarity join
as follows.

DEFINITION 2. Hamming-distance-based Similarity Join
(referred to as Hamming-join, for short): Given two collections
of binary codes, say UR and US , that correspond to two datasets,
say R and S, respectively, and an integer, say ĥ, that represents
the similarity threshold for the Hamming distance, Hamming-join
identifies the set ĥ-join(R, S) of tuple pairs such that (ti, tj) ∈ ĥ-
join(R, S) iff ti ∈ R and tj ∈ S and ||ti, tj ||h ≤ ĥ.1

EXAMPLE 1. Consider the set of binary codes given in Ta-
ble 2a and a Hamming distance threshold ĥ = 3. The
query tuple tq has a binary code “101100010". The output of
the Hamming-distance-based similarity select is {t0, t3, t4, t6}.
Using the same Hamming distance threshold ĥ, the out-
put of the Hamming-distance-based similarity join for the
datasets in Tables 2b and 2a is {(r0, t0), (r0, t3), (r0, t4),
(r0, t6)},{(r1, t0), (r1, t3), (r1, t4), (r1, t6)}, {(r2, t3)}.

From the example above, one can produce the output set by sim-
ply scanning the table one tuple at a time, performing Hamming
distance calculation via the XOR operation, and reporting the tuple
as an output if the computed Hamming distance is smaller than or
equal to ĥ. If |S| = n, then the cost of computing Hamming-select
consists of O(n) tuple reads and O(n) Hamming-distance compu-
tations. Similarly, the cost of computing Hamming-join between
1Different from the kNN-join, ĥ-join for datasets R and S is sym-
metric, i.e., ĥ-join(R, S)= ĥ-join(S, R).

Table 2: An example illustrating a Hamming-distance query.

(a) Table S

tuple binary U
t0 001 001 010
t1 001 011 101
t2 011 001 100
t3 101 001 010
t4 101 110 110
t5 101 011 101
t6 101 101 010
t7 111 001 100

(b) Table R

tuple binary U
r0 101 100 010
r1 101 010 010
r2 110 000 010

0 1

01

t0

01

0 1

1100110011001100

001010 011101

01010 11101 10110 01010

t1

t3 t5 t4 t6

t7t2

Figure 1: Radix Tree

the two datasets R and S, where |R| = m and |S| = n respec-
tively, with a nested-loop join algorithm, consists of O(mn) tuple
reads and O(mn) Hamming-distance computations. The focus of
this paper is to develop a Hamming-distance-based tree index to
reduce the above costs.

4. HAMMING-SELECT ALGORITHMS
In this section, we first introduce the basic concept and principles

of binary hash codes, and illustrate the Radix-Tree-based approach.
We then introduce two variants of our proposed HA-Index, namely
the static and dynamic HA-indexes along with their associated al-
gorithms.

4.1 Properties of Binary Codes
DEFINITION 3. A binary code Û is said to be a fixed-length

substring (FLSS) of another binary codeU if |U | = |Û | and there
exist i and j, 1 ≤ i, i + j ≤ |U | such that ∀i, i ≤ v ≤ i + j, and
U [v] = Û [v]. Thus, only the bits between i and i+ j are the same
and all the remaining can be any combination of 0s and 1s.

For example, consider Tuple t0 in Table 2a. Let · denote a 0 or a
1. Based on the above definition, Û=“ · · · ·0101 · ” is one FLSS
of t0’s binary code “001101010". Alternatively, V̂ =“101 · · · · · ·”
is not an FLSS of t0’s binary code.

DEFINITION 4. A binary code, Û , is the fixed-length Sub-
Sequence (FLSSeq, for short) of a binary code U if there ex-
ists a strictly increasing sequence of indices of U such that ∀j ∈
{1, 2, . . . , k′}, we have U [j] = Û [j] and |U | = |Û |.

For example, Û=“ · · · 0 · 1 · 1 · ” is one possible FLSSeq of
t0’s binary code “001001010" in Table 2a. Thus, Û belongs to Set
FLSSeq of Tuple t0. To compute the Hamming distance between
an FLSSeq and a query binary code, we only count the bit differ-
ence in the corresponding effective bit positions. For instance, if
one FLSSeq is Û=“ · · · 0 · 1 · 1 · ” and the query binary code is
U=“001001010", the Hamming distance ||Û , U ||h=2.

363



PROPOSITION 1. Hamming Downward Closure Property A
binary code U ∈ ĥ-select(tq, S) iff each FLSS of U , say UFLSS ,
(each FLSSeq of U , say UFLSSeq , respectively) meets the condi-
tion ||tq, UFLSS ||h ≤ ĥ (||tq, UFLSSeq||h ≤ ĥ, respectively).

We omit the proof for simplicity. Instead, we illustrate the above
proposition using the following example.

EXAMPLE 2. Refer to the Hamming-distance query in Exam-
ple 1 and Table 2. Suppose that the Hamming-distance threshold
ĥ = 2. Consider the following example cases:

• Case 1: Given a query binary code tq = “110010010", since
one FLSS, UFLSS = “001 · · · · · ·”, is the binary code of
an FLSS for both t0 and t1 and ||UFLSS , tq||h ≥ 3, then
neither t0 nor t1 can belong to ĥ-select(tq, S).

• Case 2: Given a query binary code tq = “110110010", the
binary code “ · 11001100” is an FLSS (UFLSS) for both
t2 and t7, ||UFLSS , tq||h ≥ 3, thus, neither t2 nor t7 can
belong to ĥ-select(tq, S).

• Case 3: Given a query binary code tq = “110100010", the
binary code “1010 · 1 · · · ” is an FLSSeq for both t3 and
t5, ||UFLSSeq, tq||h ≥ 3, therefore, neither t3 nor t5 can
belong to ĥ-select(tq, S).

4.2 Radix-Tree-Based Approach
The idea behind using a Radix-Tree index (also termed the PA-

TRICIA trie) [19] is to merge the XOR operations for various bi-
nary codes if they happen to share FLSSs, e.g., similar to Case 1
of the example above. One XOR operation on a common FLSS
can be used to verify all participant tuples in this FLSS. Thus,
we can build a prefix tree out of the binary codes. Based on the
above closure property (Proposition 1), we can compute the Ham-
ming distance with prefixes of the Radix-Tree from the root to find
qualifying binary codes in a top-down fashion.

EXAMPLE 3. Figure 1 gives the corresponding Radix-Tree for
the binary codes in Table 2. From the Radix-Tree, Tuples t0 and t1
in Table 2 share the same FLSS UFLSS = “001 · · · · · ·”. Given the
query binary code tq = “110010110” and a Hamming-distance
query threshold ĥ = 2, both Tuples t0 and t1 can be discarded
without computing the whole Hamming distance for all binary po-
sitions, because the Hamming distance from UFLSS with the first
three bits of tq is bigger than the predefined threshold ĥ. Thus,
processing the Hamming-distance-based select can stop early at
the upper level of the Radix-Tree.

Notice that although useful in the above example, the Radix-
Tree-based approach has several disadvantages, mainly due to its
prefix-sensitiveness. For example, Tuples t2 and t7 in Figure 1 are
split into two branches in the Radix-Tree, although only the first bit
in the two tuples is different while all their remaining bits are the
same. Thus, the search path would go to different branches of the
tree and redundant computations in these two branches cannot be
avoided. In the worst case, if the binary codes in the Radix-Tree
do not share common prefixes, then searching from the root will
bring the computation cost as bad as O(2L), because it would go
through every branch of the Radix-Tree. As a result, we propose the
HA-Index to address the prefix-sensitivity of the Radix-Tree-based
approach.

001 011 101

001 011 101

100010 101

111

110

N1 N2 N3 N4

N5 N6 N7 N8

N9 N10 N11 N12110

Figure 2: Static HA-Index

4.3 Static HA-Index
The idea behind the Static HA-Index is to share the common sub-

strings, i.e., the maximal FLSSs, in contrast to sharing the com-
mon prefixes for the binary codes of the underlying dataset. Thus,
redundant Hamming distance computations can be avoided. Recall
Case 2 of Example 2, the FLSS for t2 and t7 is “·01101010”. For
the Radix-Tree-based approach in Figure 1, searching for the qual-
ifying tuples would proceed to different paths, which introduces re-
dundant computations. Thus, if we are able to realize an index that
shares the common FLSSs, we would be able to avoid redundant
and unnecessary Hamming-distance computations.

Static bit segmentation: We segment the binary codes into
fixed-length contiguous substrings (called fixed-length segments).
For instance, assuming that each segment is of Size 3, the binary
code for tuple t2 is divided into three segments, “011”, “001”
and “100”. The path along these segments can be traced via an
undirected path. For example, the path that corresponds to tuple
t2 is illustrated in Figure 2 where it connects Nodes N2 to N11

via Intermediate Node N6. Meanwhile, the path of Tuple t7 in-
cludes Nodes N4, N6 and N11. Thus, Tuples t2 and t7 can share
the same vertex nodes N6 and N11. While traversing the index,
the Hamming-distance computation for Nodes N6 and N11 will be
performed only once. In the next section, we demonstrate how the
Static HA-Index can be used to evaluate both the Hamming-select
and Hamming-join operations.

The static HA-Index has several limitations though. Both the
height and the length of the paths in the Static HA-index are sen-
sitive to the segment size. Because the segment sizes are fixed,
it is possible to miss common bit substrings that do not align to
segment boundaries. Also, both the Radix-Tree and the static HA-
Index optimize for the FLSSs of the binary codes. An index that
would support FLSSeqs, in contrast to just the FLSSs (recall that
the FLSSs are subsets of the FLSSeqs), would allow for more
shared distance computations and hence additional savings. Con-
sider Case 3 of Example 2. Both the Radix-Tree and Static-HA-
Index approaches fail to capture the common FLSSeq between t3
and t5. In the next section, we introduce the Dynamic HA-Index to
address these limitations.

4.4 Dynamic HA-Index

DEFINITION 5. Gray Order: is an ordering of the binary
codes such that consecutive binary codes differ only by one bit,
i.e., the Hamming distance between two consecutive binary codes
that are sorted according to the Gray order is equal one [13].

PROPOSITION 2. Gray Order and Clustering: When the bi-
nary codes are ordered based on the Gray order, data tuples are
naturally clustered [20],i.e., the Hamming distance between con-
secutive ordered binary codes is small as the consecutively ordered
binary codes share common FLSSeqs.

364



N1 N2 N3 N4 N5 N6

N7 N8 N9 N10

N12N11

….0.010 ….1.101 0…….. 1.….... ….101.. ….010..

..10.1... 101......

00.…... …1...10.1..0.100 ...0.1...

t0 t3 t1 t5 t2 t7 t4 t6

Figure 3: Dynamic HA-Index

For instance, the data tuples in Table 2 can be ordered based on
the Gray order of their corresponding binary codes in descending
order, and the resulting sorted order is {t0, t1, t2, t7, t4, t6, t3, t5}.
Observe that the sorted binary codes provide two important prop-
erties, namely the downward closure and the clustering properties,
that facilitate efficient Hamming-distance-based query processing.
Thus, our aim is to realize an index structure that preserves and
leverages these properties. The Dynamic HA-Index will strategi-
cally divide the binary codes into segments (i.e., sequences of data
points that are close in their binary values according to the Gray
order). As such, the clustering property is preserved to ensure that
nodes with similar FLSSeqs are close to each other in the index.
For example, Tuples t2 and t7 are ordered next to each other, and
these properties can overcome the prefix-sensitivity of the Radix-
Tree-based approach.

In the Dynamic HA-Index, the leaf nodes store data tuples while
the non-leaf nodes store the FLSSeqs of the children nodes. Re-
fer to Figure 3 for an illustration. Internal node N1 represents the
FLSSeq = “···0·010” of Tuples t0 and t3. Internal nodeN2 rep-
resents the FLSSeq = “ · · ·1 ·101” that is common to both Tuples
t1 and t5. Furthermore, Internal Node N7 represents the FLSSeq
for Nodes N1 and N2. Notice, all the descendants of an HA-Index
node can be safely discarded from further Hamming-distance com-
putations if the node’s corresponding FLSSeq does not qualify the
Hamming-distance threshold, thereby reducing computation over-
heads.

4.5 Dynamic HA-Index Manipulation
The primary objective of all the Dynamic HA-Index manipula-

tion algorithms, including build, delete, and insert, is to maintain
the FLSSeq properties of the index while keeping the size of the
index reasonably small.

Bulkloading builds the Dynamic HA-Index in a bottom-up fash-
ion. It has two steps. The first step sorts all the data tuples accord-
ing to the Gray order of their nondecreasing binary codes. The
second step scans these tuples sequentially using a sliding win-
dow with w slots to form index nodes. Algorithm 1 illustrates
the pseudo-code to build the Dynamic HA-Index. A queue is ini-
tialized to store the temporary nodes from the window (Line 2).
From the tuples within a window, Function extractFLSSeq ex-
tracts the maximal FLSSeqs from the tuples’ binary codes to form
new parent nodes (Line 5), and denotes the new binary code of
the child node. Then, the new temporal node is inserted into the
queue (Line 7). For instance, Tuples t0 and t1 share the same
FLSSeq = “0010 · 1 · · · ”. Thus, this FLSSeq’s corresponding
new node is formed and is inserted into the queue. To save memory
storage, Function extractFLSSeq captures the binary code of
t0 as “ · · · ·0 · 010”. Therefore, the non-leaf nodes with the same
FLSSeq are consolidated into one node. Hence, Tuple t3 would
be denoted with the same binary code as that of t0, and would share

Algorithm 1: H-Build
Input: T : Set of data points, w: Window, md: Depth of HA-index, s:

Sliding window size
Output: HA:HA-Index for dataset T

1 Sort T based on the non-decreasing Gray order of the tuples’ binary
codes;

2 q: Queue;
3 for each data element ti of T inside Window w do
4 var n, n̂: Node;
5 n, n̂← extractFLSSeq(ti, · · · , ti+w); // n, the parent node of n̂
6 if n̂ is new then
7 insert n̂ into the current level of the HA-Index.
8 end
9 else

10 update n̂’s frequency
11 end
12 if n is not empty then
13 q.enqueue(n);
14 end
15 else
16 put Tuple ti inside Window w into the top level of the

HA-Index;
17 end
18 w← w+s; //sliding the window
19 end
20 var d:0, begin:0, end:q.size;
21 while q is not empty and d ≤md do
22 // Process similar to Lines 4-18
23 // Use two pointers for q to record the HA-Index depth d
24 end

the same binary codes. Notice that we record the frequency of each
node (Line 6-11). For example, Node N1 represents the binary
code for t0 and t3. Thus, the frequency for N1 is 2. If tuples inside
the window do not share any FLSSeq among each other, these
tuples are linked to the top level of the HA-Index (Line 16). The
window continues to slide until all the data points are scanned in
the first round. Lines 21-24 merge the internal nodes as Lines 4-18
and we can use two pointers begin and end for the queue to in-
dicate the depth. The building process continues until the desired
depth is reached.

In addition, more than one leaf node can be linked to the same
internal node, e.g., Tuples t1 and t5 are linked to Internal Node
N1 in Figure 3. Thus, we build a hash table for the bottom node,
e.g., N1, where the key is the leaf node’s binary codes, and value
is the tuple’s ID. Naturally, if users only want to learn the quali-
fying binary codes, then there is no need to keep the leaf nodes of
The HA-Index. An HA-Index without leaf nodes could save the
overhead of building hash tables, and can be used in MapReduce
Hamming-join as in Section 5.

Deletion removes a tuple with its corresponding binary code
from a Dynamic HA-Index. Algorithm 2 gives the corresponding
process. First, a leaf node that contains the tuple to be deleted
is located by depth-first search using the tuple’s binary code as the
search key. One stack is used to denote the unexplored paths. Func-
tion bitmatch tests whether one binary code is the FLSS or
FLSSeq of the deleted tuple (Lines 3 and 14). Then, the tuple is
removed from the HA-Index. After deletion, the frequency of the
corresponding node needs to be decremented (Lines 5 and 16). If
one node contains 0 or less entries, it is removed.

Inserting a new data tuple into a Dynamic HA-Index is similar to
the deletion process. Insertion uses a depth-first search to locate the
corresponding leaf node, then the search process looks for the leaf
node that shares the maximalFLSSeq with the newly inserted data
tuple. If no such leaf node is found, we put the newly inserted data

365



Algorithm 2: H-Delete
Input: tq : Deleted query tuple,HA: HA-Index for queried dataset

1 s: Stack;
2 for each top level node ni in HA do
3 if bitmatch(tq , ni) then
4 s.push(ni);
5 ni.frequency← ni.frequency-1 ;
6 remove ni from HA if ni.frequency is 0 ;
7 end
8 end
9 while s is not empty do

10 var n: Node;
11 s.pop(n);
12 if n is a non-leaf node then
13 for all child nodes c of n do
14 if bitmatch(tq , ni) then
15 s.push(ni);
16 ni.frequency← ni.frequency-1 ;
17 remove ni from HA if ni.frequency is 0 ;
18 end
19 end
20 end
21 else
22 break;
23 end
24 end

tuple into a temporary buffer. When the buffer reaches a predefined
maximum size, a process similar to H-Build is invoked to append
these newly inserted tuples into the existing HA-Index. We omit
these details here for brevity as they are similar to Algorithms H-
Delete and H-Build.

4.6 HA-Index Query Processing
With the dataset organized in an HA-Index, H-Search traverses

the index to visit the relevant index nodes in a breadth-first order
with a queue to keep track of the unexplored qualifying paths that
match the query’s binary code. Algorithm 3 gives the pseudocode
for H-Search. Initially, H-Search fetches the index nodes/data
points from the top level of the HA-Index (Lines 2-6). If the Ham-
ming distance between the query tuple and the pattern of the cor-
responding node is smaller than the threshold ĥ, then the node is
inserted into the queue. For the non-top level nodes, in each round,
the binary code of a node is examined against the query binary code
by invoking a Hamming-distance computation. If its correspond-
ing Hamming distance is smaller than the threshold (Line 12), the
node is further explored (Lines 13-17). When a leaf node of the
HA-Index is reached, the qualified data tuples are collected and are
inserted into ret (Line 23-25). The algorithm terminates when all
the entries from the qualifying nodes are examined.

To illustrate the H-Search Algorithm, consider the tuples in Ta-
ble 2a. Figure 3 gives the corresponding HA-Index. The execution
trace is given in Table 3. Suppose that the query binary code is
tq = “010001011” and the Hamming-distance threshold is 3. Ini-
tially, the Hamming distance between tq and the top-level entries,
i.e., ||N11, tq||h = 1 and ||N12, tq||h = 3, where both are no big-
ger than 3. Thus, Nodes N11 and N12 are pushed into the queue,
and ret is still empty. Next, the children nodes of N11, i.e., Nodes
N7 and N8 are visited. The Hamming distances ||N7, tq||h = 1
and ||N8, tq||h = 4 are computed. As a result, the correspond-
ing qualifying binary codes for Nodes N11 and N7 are combined,
which results in the pattern “0010 · 1 · · · ”. Thus, [N7, N11] is
put into the queue. But Node N8 is discarded from the qualifying
candidates because the path N11 → N8 has a combined Hamming

Algorithm 3: H-Search

Input: tq : Query tuple, ĥ: Hamming distance query threshold, HA:
HA-Index for queried dataset

Output: ret: Qualified tuple in HA within Hamming distance ĥ from
tuple tq

1 q: Queue.
2 for each top level node ni in HA do
3 if hdist(tq , ni) ≤ ĥ then
4 ni.h← hdis(tq , c);
5 q.enqueue(ni);
6 end
7 end
8 while q is not empty do
9 var n:Node;

10 q.dequeue(n);
11 if n is a non-leaf node then
12 for all children node c of n do
13 if (hdis(tq , c)+n.h)≤ ĥ then
14 var m:Node;
15 m.b← combine(c.b, n.b); //combine binary code of

c and n
16 m.h← hdis(tq , c)+n.h; //update Hamming distance
17 m.children← c.children ;
18 q.enqueue(m);
19 end
20 end
21 end
22 else
23 var binary← getBinary(n);
24 var tuple← gettuple(binary);
25 ret.insert(tuple);
26 end
27 end
28 output ret;

distance ||N11, tq||h + ||N8, tq||h > 3. Then, N12 is explored
and its children nodes(e.g.,N9 and N10) are visited. According
to the Hamming-distance closure properties, [N9, N12] is inserted
into the queue as well, while N10 is discarded. The H-Search pro-
cess continues until the queue is empty as shown in Table 3. Finally,
Tuple t0 is reported as one output tuple qualifying the query. No-
tice that each node maintains a visited flag to indicate whether the
node has already been visited or not. This helps avoid redundant
Hamming-distance computations. For example, Nodes N1 and N2

are already visited. Therefore, we do not need to compute the Ham-
ming distance for both nodes again, and hence avoid unnecessary
distance computation overhead. In addition, Algorithm H-Search
for the dynamic HA-Index can be applied to the static HA-Index,
and thus is not repeated in the paper.

Table 3: Sample execution trace for H-Search that corresponds to
searching the dataset in Table 2a given the query binary code tq =
“010001011”

Queue Qualified tuples ret
N11, N12 ∅
N12, [N7, N11] ∅
[N7, N11], [N9, N12] ∅
[N9, N12] t0
∅ t0

4.7 Analysis

366



EXAMPLE 4. Assume that we have eight tuples t0 =
“000”, t1 = “001”, t2 = “010”, · · · , and t7 = “111”, where
all binary codes are distinct. At most 3 bits are needed to represent
all the tuples, i.e., the length L of the hash values is 3. According
to the H-Build process with Window Size of 2, the output HA-Index
is illustrated in Figure 4.

000 110... 111...001

0.. 1..

.0. .1.

..0 ..1

Figure 4: Full binary codes and the corresponding HA-Index

Observe that the number of internal nodes of this HA-index
is 6, and the number of edges is 8. Based on the breadth-first-
search strategy of the H-Search algorithm, the worst search cost
is bounded by the number of internal nodes and the number of
edges, denoted by |V | and |E|, respectively. Refer to Figure 4
for illustration. The search cost is at worst 14. Suppose that
the number of distinct binary codes is nd, and nd = 2L. An
HA-Index for this example is illustrated in Figure 4. The reason
is that the FLSSeq for the binary codes in the same window is
maximized with Length L − 1, and this FLSSeq also shares the
maximum similar patterns with its neighboring FLSSeq. There-
fore, for the dataset with nd = 2L data points and the built HA-
Index as in Figure 4, the number of internal nodes |V | = 2L
or |V | = 2 log2 nd, and number of edges |E| = 4(L − 1) or
|E| = 4(log2 nd − 1). This can be proven via induction (De-
tails are omitted for brevity). Thus, the worst case for H-Search on
this HA-Index is |V | + |E| = 2 log2 nd + 4(log2 nd − 1), i.e., is
O(log2 nd). This indicates that H-Search can achieve the best per-
formance under this scenario. We will discuss more general cases
later.

Window size We discuss the relationship between window size,
say as w, and binary string length L. Inspired by the previous ex-
treme example, it is desirable that the n tuples can span the space of
binary strings of L bits. L can be chosen such that L = dlog2 ne,
i.e., 2L−1 < n ≤ 2L. Thus, if n is closer to 2L, then the cor-
responding HA-Index is closer to the extreme case in our motivat-
ing example above. On the other hand, the smallest value for n is
2L−1 + 1, and this is the worst case, i.e., the sparsest distribution
of tuples on the space of binary strings of Length L. For the sim-
plicity of discussion, we assume that the hashed binary strings are
uniformly distributed.

Under the above assumption, the maximum Hamming distance
Lm for a window of size of w satisfies dlog2 we ≤ Lm ≤ L. If
Lm = L, then the binary strings in the same window cannot be
merged together since no shared bit position exists. Therefore, a
careful choice should be made on the window size w. The extreme
case when w = n is apparently a bad choice since no sharing pat-
tern can be extracted from the window. A similar argument applies
for w = 1. For smaller values of w, many internal nodes are gen-
erated and this results in indexes with larger heights. A suggested
value for the window size w is w = 2dL/2e when n ≈ 2L. Sup-
pose that w = 2dL/2e, then the maximum Hamming distance Lm

in each window satisfies dL/2e ≤ Lm ≤ L.
Number of nodes in an HA-Index If n ≈ 2L, suppose that

there are only few windows with Lm = L and we denote the num-
ber of these binary codes within that window as δ1. Since the leaves
share about half of the bits in their binary codes, this results in

a number of 2dL/2e + δ1 of internals nodes 1-level higher above
the leaves, where δ1 � 2dL/2e. With the HA-index progressively
growing, a higher level with 2dL/4e+δ2 internal nodes can be built
where δ2 � δ1. In the same way, the HA-index grows to the high-
est level with 2dL/2he + δh uppermost internal nodes, where h is
the height of the index. Thus, the total number of nodes |V | in the
HA-index can be estimated by:

|V | = 2dL/2e + 2dL/4e + · · ·+ 2dL/2he +

h∑
i=1

δi

= 2dlog2 n1/2e + 2dlog2 n1/4e + · · ·+
h∑

i=1

δi

< 2× 2dlog2 n1/2e +

h∑
i=1

δi

< 2× 2dlog2 n1/2e

= O(
√
n).

We can safely ignore the delta part since the summation is negligi-
ble compared to the dominant term.

If n ≈ 2L−1, then the window size w needs to shrink to a proper
length. Based on the assumption of uniform distribution of the bi-
nary strings and Gray ordering, a proper window size can be set to
w = 2dL/4e. The maximum Hamming distance Lm within a win-
dow satisfies dL/4e ≤ Lm ≤ L. A similar analysis suggests that
the number of internal nodes |V ′| satisfies:

|V ′| = 2dL/4e + 2dL/42e + · · ·+ 2dL/4he +

h∑
i=1

δ′i

= 2dlog2 n1/4e + 2dlog2 n1/42e + · · ·+ 2dlog2 n1/4he +

h∑
i=1

δ′i

= O( 4
√
n).

Number of Edges in an HA-Index For the number of edges in
an HA-index, there are two extreme cases. Suppose that n ≈ 2L

and we have already discussed that the two levels above the leaves
contain 2dL/2e and 2dL/4e internal nodes, respectively. The worst
case is that each of the 2dL/2e nodes connects to each of the 2dL/4e

nodes. This induces about 23L/4 edges. Similarly, the edge number
can be estimated,

|E| = 23L/4 +23L/8 + · · ·+23L/2h+1

< 2× 23L/4 = O(
4
√
n3).

On the other hand, the best estimate is that there are no cross edges
between the children and different parents. For this case, a lower
bound of the number of edges is O(

√
n), which is similar to the

number of vertices.
Query Cost and Storage Space of the HA-Index The cost

of H-Search is bounded by the number of nodes and edges, i.e.,
|V | + |E|. Therefore, the worst cost for H-Search is traversing
all the edges and nodes in the HA-index. This indicates that H-
Search can be bounded in the range [O(

√
n), O(

4
√
n3)]. Mean-

while, besides the storage of the leaf nodes, the space usage of the
HA-index also depends on the sum of the number of nodes and
edges, i.e., [O(

√
n), O(

4
√
n3)]. Compared to the state-of-the-art

approaches [4, 8], the HA-Index does not need to maintain several
copies of the dataset. Thus, it can be kept in memory for fast query
processing. Furthermore, the internal nodes of the HA-Index store
enough binary information for the whole dataset, and hence intro-
duce low overhead to broadcast an HA-Index to each server.

367



..

.

..

.

Shuffle

&

Sort 

Shuffle

&

Sort 

R1

..

.

..

.

..

.

..

.

Phase 2:

First MapReduce

Phase 3:

Second MapReduce

H-Build

DFS

Node1

Phase 1:

Preprocessing

R

S

Sampling,

Learn Hash,

Pivot Selection

G2

G3

..

.

..

.

..

.

..

.

..

.

..

.

Merge into 

HA-Index

Of R

MAP

:HA-Index 

H-Search 

REDUCEREDUCE MAP

DFS

DFS

DFS

:Hashing and Partition  

H-Build

H-Build

H-Search 

H-Search 

R4

R5

R8

Node2

R9

R12

Node3

Node1

Node2

Node3

S1

S10

S11

S18

S19

S29

G1

G1

G2

G3

Figure 5: An overview of Hamming-join processing in MapRe-
duce.

5. PARALLEL ALGORITHM FOR
HAMMING-JOIN

To process Hamming-join on two datasets, say R and S, one
straightforward approach is to build an HA-Index for R, then ex-
ecute H-Search on the built index for each tuple of S. However,
to build an HA-Index for R, sorting R would be slower as R gets
larger. Secondly, executing H-Search between each tuple of S and
the HA-Index for R would make the query time bounded by the
number tuples in S. In this section, we address these limitations
of the centralized environment and introduce Hamming-join on the
MapReduce platform [21].

To support Hamming-join over MapReduce, we focus on two
important issues. First, load balancing is important because the
slowest mapper or reducer determines the job running time. Sec-
ondly, data shuffle from the mappers to reducers usually results in
large disk I/O and network communication costs that heavily influ-
ences the run-time performance. Therefore, we not only need to
reduce the data shuffle cost, but also make sure data partitions in
each mapper or reducer are well balanced.

5.1 Overview of MapReduce-based
Hamming-join

In this section, we introduce our implementation of the
Hamming-join operation in MapReduce. As Figure 5 illustrates,
the proposed algorithm includes three phases as explained below.

• Preprocessing phase Retrieve a sample from DatasetsR and
S. Then, use the sampled data to learn the hash function H .
To handle data skew, build a data histogram for the sampled
data and learn the data partitioning rule for the entire MapRe-
duce job.

• Global HA-Index building phase Assume that the size of
R is smaller than that of S. Partition R based on the pivot
values from the data preprocessing step, then build the HA-
Index for each partition using MapReduce by calling the H-
Build function. Then, merge each local HA-Index to realize
a global HA-Index for R.

• Hamming-join phase To join HA-Index of R with tuples in
S, two possible options are applicable based on the size of
R. More details are given later.

To learn the hash function, we utilize a random sample obtained
from both R and S using reservoir sampling [22]. With the learned

hash function H , high-dimensional data tuples in R and S are
mapped into their corresponding binary codes. As discussed in the
previous section, hash binary codes are ordered using the Gray or-
der to preserve the clustering property. Hence, the data in each
partition is more likely to share common FLSSeq patterns. Then,
we build the data histogram for the binary codes of the sampled
data, and get a set of pivot values, denoted by Pv, for each Partition
Ptm. This guarantees that each partition receives approximately
the same amount of data, where data in the various partitions is or-
dered according to the Gray order. More formally, given a set of
data partitions Pt, and a set Pv of corresponding binary code val-
ues that form the partitioning pivots, Tuple ti ∈ Ptm, if the Gray
order for ti’s binary code, say Ûi, belongs to the pivot range, i.e.,
Ûi ∈ [Pvm,Pvm+1), where Pvm and Pvm+1 are the pivot values
for Partition Ptm.

Thus, let |Ptm| be the number of tuples belonging to Partition

Ptm, Pivot set Pv partition dataset R, s.t R =
N⋃

m=1

Ptm, and

|Ptm| ' |Ptm+1|. Therefore, we can build the HA-Index and
Hamming-join in each server as illustrated below.

5.2 Global HA-Index Building
Given the set of pivot values Pv selected in the preprocessing

step, a MapReduce job partitions the data and builds an HA-Index
locally in each partition. Specifically, before launching the map
function, the selected pivots Pv and the learned hash function H
are loaded into memory in each mapper via distributed cache in
MapReduce. A mapper sequentially reads each input data tuple,
say ti, from the mapper’s corresponding partition. The hash func-
tion maps the high-dimensional input data tuples into their corre-
sponding binary codes, i.e., U . Then, a binary search is performed
for the closest pivots in Pv. For the closest partition region, Par-
tition ID is assigned. Finally, the mapper(s) produce(s) as output
each object ti along with its Partition ID, original dataset tuple
identifier (R or S), and its binary code value U .

In the data shuffling phase, the key-value pairs emitted by all
map functions are grouped by each distinct Partition ID, and a re-
duce function is called within each node. Each reduce function
computes the local HA-Index via the H-Build function of Section
4, and produces the local HA-Index as output. In addition, a post-
processing step to merge the various local HA-Indexes into one
global HA-Index. Mainly, non-leaf nodes with the same FLSSeq
from the different local HA-Indexes are merged into one node, and
the corresponding edges between the index nodes are relinked. Be-
cause the HA-Index is relatively small, the processing overhead is
acceptable. After the first MapReduce job finishes, the global HA-
Index for dataset R is built. This index is used by H-Search in the
next phase.

5.3 Hamming-join
The second MapReduce job performs the Hamming-join in two

possible ways.
Option(A): When Dataset R is small, i.e., storage of the leaf

nodes of the HA-Index does not dominate the space of the HA-
Index, the HA-Index maintains the leaf nodes as in Figure 3.
Next, the Map function partitions Dataset S into N parts, i.e.,

S =
N⋃
i=1

Si. Then, it duplicates the global HA-Index for Dataset

R and broadcasts to each server. The Map function computes the
Hamming-join for Partition Si and the replicated HA-Index of R.
Specifically, before launching the MapReduce Job, the master node
broadcasts the pivots Pv, the hash function H , and the global HA-
Index of R to various servers. The main task of the mapper in the

368



second MapReduce Job is to map high-dimensional data into bi-
nary codes, then partition dataset S into N partitions. Next, each
reducer performs the Hamming-join between a pair of HA-Index
and Ŝi, and output the Hamming-join results.

Option(B): If Dataset R is big, e.g.,the number of tuples |R|
is more than millions, the storage of leaf nodes of the HA-Index
dominates the space usage of the HA-Index. Therefore, the HA-
Index of Dataset R does not maintain leaf nodes, and is duplicated
to each server. By this way, the H-Search Algorithm 3 only re-
turns the qualifying binary codes for Hamming-select, and a post-
precessing step is carried out to find the tuple IDs for the qualify-
ing binary codes. Take query tuple t6 in Table 2a as an example.
The H-Search algorithm computes binary codes from Table 2b, i.e.,
“101100010" and “101010010", which have a Hamming distance
of 3 from t6. In order to find the tuple IDs for those qualifying bi-
naries, one post-processing step is invoked. Naturally, if Dataset R
fits into memory, then the qualifying binaries are joined with R’s
hash table in memory. On the other hand, if Dataset R is too large
to fit in memory, MapReduce hash-join [23] for Dataset R and the
qualifying binaries is applied.

5.4 Shuffle Cost Analysis
The performance of MapReduce Hamming-join depends on the

running time of Hamming-select as well as on the data shuffling
cost. Let |R| = m and |S| = n, respectively, d be the data dimen-
sion, and N be the number of partitions. In the previous work [4],
Dataset R is duplicated and broadcast to each server, and the data
shuffling cost is approximate to O(mNd + nd). In this work,
instead of duplicating the whole dataset R, only the HA-Index,
is broadcast to each server. Hence, the data shuffling cost is re-
duced toO(|HA|N +n), where |HA| is the size of the HA-index.
As introduced in Section 4, the space storage of HA is bound to
[O(
√
m), O(

4
√
m3)]. Therefore, the shuffling cost is bounded in

[O(
√
mN + n), O(

m
√
n3N + n)].

6. PERFORMANCE EVALUATION
We implement all the algorithms in Java. The experiments for

Hamming-select are performed on an Intel(R) Xeon (R) E5320
1.86 GHz 4-core processor with 8G memory running Linux. The
experiments on MapReduce are performed on a cluster of 16 nodes
of Intel(R) Xeon (R) E5320 1.86 GHz 4-core machines with 8GB
of main memory running Linux. We use Hadoop 0.22 and apply
the default cluster environment setting. We evaluate the perfor-
mance of the proposed techniques using the following three high-
dimensional real datasets: (1) NUS-WIDE2 is a web image dataset
containing 269,648 images. We use 225-D block-wise color mo-
ments as the image features, thus obtaining a 225-dimension data.
(2) Flickr3 is a an image hosting website. We crawled 1 million im-
ages and extracted 512 features via the GIST Descriptor [24] (the
data dimension is 512). (3) DBPedia4 data aims to extract struc-
tured content from Wikipedia. We extract 1 million documents,
and then apply standard NLP techniques to pre-process the doc-
uments, e.g., to remove stop words. We use the Latent Dirichlet
Allocation (LDA) [25] model to extract topics, and we keep 250
topics for each document.

To evaluate the performance on larger data sizes, we syntheti-
cally generate more data while maintaining the same distribution
as the original data distribution, e.g., as in [9, 10]. Suppose that the
original dataset D has k dimensions. First, we get the frequencies
2http://lms.comp.nus.edu.sg/research/NUS-WIDE.htm
3htttp://www.flickr.com
4http://wiki.dbpedia.org/About

of values in each dimension, and then sort the data in ascending
order of their frequencies. Therefore, k copies of the dataset D are
generated, one copy per dimension, e.g.,Dj one copy of the dataset
that is sorted based on the j-th dimension. Then, for each tuple, say
t, in Dataset D, t ∈ D, we create a new tuple, say t̂, according to
the position of each component of t in the corresponding sorted
copy Dj . For example, t = (t1, . . . , tj , . . . , td) and t′j is the first
value larger than tj in copy Dj , then t̂ = (t′1, . . . , t

′
j , . . . , t

′
d). If

tj is the largest element in Copy Dj , then t̂j = tj . We use“×s" to
denote the increase in dataset size, where s ∈ [5, 25] is the increase
or scale factor. We consider the following approaches to evaluate
Hamming-select:

(1) Nested-Loops is the naive approach to linearly XOR and
count the binary data to perform the Hamming-distance compu-
tation. (2) MultiHashTable [4] is the state-of-the-art to search bi-
nary codes for similarity hashing that uses multiple-hash tables to
reduce the linear search cost. While a large number of hash tables
can achieve better performance, we limit ourselves to just 4 and
10 hash tables to avoid memory overflow. For short, we refer to
these two possibilities, as MH-4 and MH-10. (3) HEngines [8] is
the most recent work to improve the MultiHashTable approach in
query time and memory usage. (4) Radix-Tree is the approach in-
troduced in Section 4.2. (5) Static HA-Index (SHA-Index) and
Dynamic HA-Index (DHA-Index) are the approaches introduced
in Sections 4.3 and 4.4, respectively. SHA-Index(32) or DHA-
Index(32) means that the length of the binary code is 32 bits.

We further evaluate the following approaches for kNN-select,
and show how the approximate kNN-select can benefit from the en-
hancement of HA-Index searching over binary codes: (1) Locality-
Sensitive Hashing(E2LSH) [18] is the state-of-the-art implemen-
tation for the data-independent LSH. We use 20 hash tables for
E2LSH. (2) LSB-TREE [26] uses the Z-order curve to map high-
dimensional data into one-dimensional Z-values, and index the Z-
values using a B-tree. In our experiments, we build the LSB-Tree
with 25 trees to compare the performance.

Also, we evaluate the following approaches to test the Self-
Hamming-join, and verify how our approach of Map-Reduce
Hamming-join can speedup the state-of-art algorithm for exact
Self-kNN-join: (1) Parallel-exact-KNN-join (short as PGBJ) [10]
is the state-of-the-art approach for performing exact kNN-join over
multi-dimensional data in MapReduce, and it is 10 times speedup
over the Z-order curve based approach [11]. We get the imple-
mentation generously provided by the authors [10]. (2) Parallel
Hamming-join via MultiHashTable (PMH, for short) that han-
dles approximate batch queries for web page duplicate identifica-
tion [4]. PMH-10 means that 10 hash tables are used. (3) Parallel
Hamming-join via Dynamic HA-Index (MRHA-Index, for short)
is the approach introduced in Section 5. Specifically, in terms of
the Hamming-join phase, if Option A is used, we term it MRHA-
Index-A, and if Option B is used, we term it MRHA-Index-B.

The performance measures for each algorithm include the query
time, the index update time, the index building time, memory us-
age, and the data shuffling cost. All performance measures are av-
eraged over eight runs. Some running times are not plotted because
they would use more than five hours. Unless mentioned, the default
value of k is 50, and the Hamming-distance threshold ĥ is 3. We
choose the state-of-the-art Spectral Hashing [2] as the hash func-
tion in our experiments, but our approach is not limited to this hash
function.

6.1 Results for Hamming-select

6.1.1 Effectiveness of the HA-Index

369



(a) NUS-WIDE (b) Flickr (c) DBPedia

Figure 6: Effect of the Hamming-distance threshold on Hamming select.

5 10 15 20 25

10
−1

10
0

10
1

Data Size(times the original)

S
h

u
ff

li
n

g
 c

o
st

(G
B

)l
o

g

 

 

PGBJ

PMH−10

MRHA−INDEX−A

MRHA−INDEX−B

(a) NUS-WIDE

5 10 15 20 25

10
−1

10
0

10
1

Data Size(million)

S
h

u
ff

li
n

g
 c

o
st

(G
B

)l
o

g

 

 

PGBJ

PMH−10

MRHA−INDEX−A

MRHA−INDEX−B

(b) Flickr

5 10 15 20 25

10
−1

10
0

10
1

Data Size(million)

S
h

u
ff

li
n

g
 c

o
st

(G
B

)l
o

g

 

 

PGBJ

PMH−10

MRHA−INDEX−A

MRHA−INDEX−B

(c) DBPedia

Figure 7: Shuffling cost of Hamming-join and kNN-join.

Table 4 summarizes the query time, index update time, and mem-
ory space usage by the various approaches. Specifically, index up-
date corresponds to the operation to delete one tuple first, then in-
sert the same tuple back into the index. From Table 4, we have the
following observations: 1) The Radix-Tree and HA-index-based
approaches outperform the naive nested-loop and state-of-the-art
methods [4, 8] on query time for the three datasets, mainly because
the new proposed approach avoids many redundant Hamming-
distance computations, and avoids scanning all the underlying data
when they are hashed into the same bucket; 2) The HA-Index-based
approach, i.e., the Static and Dynamic HA-Indexes, outperforms
the Radix-Tree approach. The speedup is around 10 times be-
cause the Radix-Tree behaves as a prefix tree when many of the
binary codes do not share long common prefixes, and hence can-
not avoid the redundant Hamming distance computations; 3) The
Static HA-Index shows better index-update time than that of the
Dynamic HA-Index because the static segmentation enables us to
track different binary segmentations directly, thus, we can search
the paths of binary codes more efficiently; 4) The Radix-Tree and
the HA-Index-based approaches save more memory than the state-
of-the-art methods [4, 8] because the HA-Index-based approaches
do not need to duplicate tuples and can share common FLSSs
and FLSSeqs for different binary codes. This can reduce memory
usage further; 5) For the Dynamic-HA-Index, if only the internal
nodes of the HA-Index are kept, the memory usage can be reduced
further. For instance, the memory usage for the Flickr and DBpedia
datasets is reduced from 251MB and 225MB to 63MB and 47MB,
respectively.

6.1.2 Effect of Hamming-Distance Threshold
We evaluate whether the running time of proposed approach is

sensitive to the query threshold ĥ. Figure 6 gives the data query
time when varying the Hamming-distance threshold. Notice that
the query time of both the HA-Index-based approaches increases
relatively slowly as the threshold increases. The reason is that the
searching process in the HA-Index usually terminates early in the

0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04
50

60

70

80

90

100

110

120

Window length

R
u
n
n
in

g
 t

im
e(

m
s)

 

 

depth=7

depth=6

depth=5

depth=4

(a) Building Time

0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04
0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

Window length

R
u

n
n

in
g

 t
im

e(
m

s)

 

 

depth=7

depth=6

depth=5

depth=4

(b) Query Processing Time.

Figure 8: DHA-Index building time and query processing when
varying the window size.

upper-level nodes, and this can improve the query speed. On the
other hand, the searching path length of the Radix-Tree is not under
control, and it tends to reach each leaf node when the Radix-Tree
shares very little and changes to a prefix-tree-like format. How-
ever, state-of-the-art methods [4, 8] are sensitive to the Hamming-
distance threshold because both approaches have to scan interme-
diate data to filter out non-qualifying tuples. Hence, the bigger ĥ is,
the more intermediate results that need to be scanned. This directly
degrades the performance.

6.1.3 Effect of HA-Index Parameters
We study the effects of the window length and the index depth

of the dynamic HA-Index w.r.t. the index building and query pro-
cessing times. The window length is normalized by the number of
tuples in the dataset. Figure 8a illustrates that the building time for
the HA-index drops as the depth decreases. The reason is that in-
dex construction stops early while the depth is small. Meanwhile,
the HA-Index building time grows as the window size increases be-
cause the time to extract the same subpatterns for binaries of one
window depends on the number of tuples inside the window. Mean-
while, the query processing time demonstrates stable growth as the

370



Table 4: Overall comparative study for Hamming-select: The dynamic-HA-Index is the most efficient in terms of query time and space
usage, the binary code length is 32 bits. Notice for DHA-Index, 28/11 means 28MB and 11MB space usage for internal and leaf nodes were
kept or only internal nodes, respectively.

(a) NUS-WIDE

method query
time(ms)

update
time(ms)

space
usage

Nested-Loops 16.42 15.22 /
MH-4 6.22 0.21 475
MH-10 4.91 0.25 531
HEngines 3.53 0.45 210
Radix Tree 1.61 0.19 39
SHA-Index 0.87 0.16 29
DHA-Index 0.68 0.18 28/11

(b) Flickr

query
time(ms)

update
time(ms)

space
usage

42.97 41.19 /
16.09 0.60 712
14.03 0.83 1204
14.75 1.14 820
3.98 0.64 365
1.75 0.52 254
0.74 0.58 251/63

(c) DBPedia

query
time(ms)

update
time(ms)

space
usage

59.16 53.53 /
40.28 0.45 819
34.46 0.64 1364
36.91 1.91 763
17.64 0.44 352
3.54 0.43 239
1.07 0.51 225/47

window size and index depth increase. Observe that the window
size increases four times and the query processing time only grows
by less than 10%. Thus, the HA-Index is not sensitive to these
parameters.

6.1.4 Comparison of Approaches for kNN-Select
As introduced in Section 2, Hamming-select is a core operation

for evaluating approximate kNN-select. In this section, we demon-
strate the performance gains when using the HA-Index to speedup
approximate kNN-select. Table 5 illustrates the runtime for data
querying and index construction for LSH, LSB-Tree, and the HA-
Index-based approaches. Observe that the HA-Index-based ap-
proach outperforms the state-of-the-art methods on all tasks when
the binary code length is relatively large (i.e., 32 or 64 bits).
Compared to the LSH approach, both HA-index-based approaches
achieve two orders of magnitude speedup. The reason is that the
LSH approach assumes uniformity in the distribution of the under-
lying data while real datasets are not uniform. In addition, the LSB-
Tree can improve the query time compared to the LSH approach.
However, the time to build the LSB-Tree index is expensive (more
than 24 hours). In addition, the query and index building times
for the HA-Index-based approach increases relatively smoothly as
the binary code length increases. This demonstrates that the HA-
Index approach is robust with the binary code length. Finally, the
LSB-Tree consumes extensive disk space to store the index, LSB-
Tree uses more than 20GB to store the index for the Flickr data,
while the HA-Index-based approach only takes less than 300MB.
This significantly reduces disk I/O time for the HA-Index-based
approach.

6.2 Results of Hamming-join in MapReduce.

6.2.1 Shuffling Cost
We measure the effect of data size on the shuffling cost for PGBJ,

PMH and the MRHA-Index. Figure 7 gives the data shuffle costs
when the data size varies. The shuffle cost is plotted in logarith-
mic scale. The smaller the shuffle costs, the better the performance
is. We observe that the shuffle costs for approximate kNN-join ap-
proach, i.e., PMH and MRHA-INDEX, are 10 times smaller when
compared to the PGBJ approach. The reason is that the hashing
technique maps the high-dimensional data into binary codes, and
hence the data shuffling cost does not depend on the dimensions
of the data. Notice that the data shuffling cost for PGBJ increases
linearly with the data size. This is two orders of magnitude worse
when compared to the data shuffling cost for the MRHA-INDEX
approach. Duplicating and distributing the HA-Index into different
nodes can improve the data shuffle cost 10 times less than that of

Table 5: Comparison with the state-of-the-art kNN-select ap-
proaches, when the dataset size is set to 300k tuples.

Dataset Algorithm Query
time(ms)

Index
build time

NUS-WIDE

LSH 2400 680(s)
LSB-Tree(25) 47 37(Hr)
SHA-Index(32) 2.74 68(s)
SHA-Index(64) 4.78 97(s)
DHA-Index(32) 1.64 87(s)
DHA-Index(64) 2.43 103(s)

Flickr

LSH 340 1080(s)
LSB-Tree(25) 63 50(Hr)
SHA-Index(32) 2.21 176(s)
SHA-Index(64) 3.54 189(s)
DHA-Index(32) 2.17 210(s)
DHA-Index(64) 2.88 244(s)

DBpedia

LSH 266 340(s)
LSB-Tree(25) 59 44(Hr)
SHA-Index(32) 2.94 150(s)
SHA-Index(64) 4.88 290(s)
DHA-Index(32) 2.18 230(s)
DHA-Index(64) 3.85 310(s)

the PMH approach. On the other hand, the larger shuffle cost would
stop the PGBJ approach from achieving a linear speedup and its
corresponding execution time shows quadratic increase. The corre-
sponding running times are given below. Finally, for the Hamming-
join step in the HA-Index-based approach, Option B saves more
data shuffling cost than Option A because the former does not need
to duplicate the whole dataset into each server, and hence the space
usage of the HA-Index remains relatively small.

6.2.2 Scalability and Speedup
We investigate the scalability of the three approaches in Figure 9.

The figure presents the results by varying the data size from 1 to 25
times of the original dataset sizes. From the figure, the overall ex-
ecution time of PGBJ shows quadratic increase when the data size
increases. For example, PGBJ’s running time is almost 13 hours
when the data is DBPedia×15, which is excessively slow. The ap-
proximate kNN-join via similarity hashing always outperforms the
PGBJ approach. Comparing with the state-of-the-art PMH-10 ap-
proach, the running time of the HA-Index outperforms PMH-10 by
5 times.

6.2.3 Effect of Data Sampling

371



5 10 15 20 25
0

1

2

3

4

5

6

Data Size(times the original)

R
u
n
n
in

g
 t

im
e(

x
 1

0
3
 s

)

 

 

PGBJ

PMH−10

MRHA−INDEX−A

MRHA−INDEX−B

(a) NUS-WIDE

5 10 15 20 25
0

2

4

6

8

10

12

14

Data Size(million)

R
u

n
n

in
g

 t
im

e(
x

 1
0

3
 s

)

 

 

PGBJ

PMH−10

MRHA−INDEX−A

MRHA−INDEX−B

(b) Flickr

5 10 15 20 25
0

5

10

15

20

Data Size(million)

R
u
n
n
in

g
 t

im
e(

x
 1

0
3
 s

)

 

 

PGBJ

PMH−10

MRHA−INDEX−A

MRHA−INDEX−B

(c) DBPedia

Figure 9: Speedup and scalability: Running time of Mapreduce Hamming-join and kNN-join.

(a) Query cost

0.05 0.1 0.15 0.2 0.25 0.3
0

0.1

0.2

0.3

0.4

0.5

0.6

Sampling percentage

P
re

ci
si

o
n

 a
n

d
 R

ec
al

l

 

 

Precision

Recall

(b) Precision and Recall

Figure 10: Effect of sampling on query processing time, and preci-
sion/recall when varying the sampling data size.

Figure 10a gives the query execution time for the various pro-
cessing phases of Hamming-join. From the Figure, more sam-
pling of the data reflects the global data distribution more clearly,
and this helps the sampling data pivot to partition different regions
more evenly, and hence, improves the parallel HA-Index building
and Hamming-join query time. The hash function learning usually
takes more time, but for real-world applications, we only need to
learn the hash function again when a certain amount of the new data
is updated, which can save the time. Figure 10b illustrates how data
sampling affects the query quality. Observe that the precision and
recall can moderately improve as the sampling data size increases.
However, the recall value is low.

7. CONCLUDING REMARKS
In this paper, we study the problem of efficiently performing

the Hamming-select and Hamming-join operations. The proposed
HA-Index approach executes the Hamming-distance-based similar-
ity operations while avoiding unnecessary Hamming-distance com-
putations. Extensive experiments using real datasets demonstrate
that the proposed approaches outperforms the state-of-the-art tech-
niques by two orders of magnitude. In future, it would be interest
to explore hamming-distance similarity operation for relational op-
eration i.e.,intersection [27].

8. REFERENCES
[1] J. Song, Y. Yang, Y. Yang, Z. Huang, and H. T. Shen, “Inter-media hashing for

large-scale retrieval from heterogeneous data sources,” ser. SIGMOD ’13.
New York, NY, USA: ACM, 2013, pp. 785–796.

[2] Y. Weiss, A. Torralba, and R. Fergus, “Spectral hashing,” in NIPS’08, 2008, pp.
1753–1760.

[3] M. M. Bronstein, E. M. Bronstein, F. Michel, and N. Paragios, “Data fusion
through crossmodality metric learning using similaritysensitive hashing,” in in
Proc. CVPR, 2010.

[4] G. S. Manku, A. Jain, and A. Das Sarma, “Detecting near-duplicates for web
crawling,” ser. WWW ’07. New York, NY, USA: ACM, 2007, pp. 141–150.

[5] M. S. Charikar, “Similarity estimation techniques from rounding algorithms,” in
Proceedings of the Thiry-fourth Annual ACM Symposium on Theory of
Computing, ser. STOC ’02. New York, NY, USA: ACM, 2002, pp. 380–388.

[6] M. Marvin and A. P. Seymour, “Perceptrons,” MIT Press, 1969.
[7] D. Greene, M. Parnas, and F. Yao, “Multi-index hashing for information

retrieval,” in Foundations of Computer Science, 1994 Proceedings., 35th
Annual Symposium on, Nov 1994, pp. 722–731.

[8] A. Liu, K. Shen, and E. Torng, “Large scale hamming distance query
processing,” in 2011 IEEE 27th International Conference on Data Engineering
(ICDE), April 2011, pp. 553–564.

[9] R. Vernica, M. J. Carey, and C. Li, “Efficient parallel set-similarity joins using
mapreduce,” ser. SIGMOD ’10. New York, NY, USA: ACM, 2010, pp.
495–506.

[10] W. Lu, Y. Shen, S. Chen, and B. C. Ooi, “Efficient processing of k nearest
neighbor joins using mapreduce,” Proc. VLDB Endow., vol. 5, no. 10, pp.
1016–1027, Jun. 2012.

[11] C. Zhang, F. Li, and J. Jestes, “Efficient parallel knn joins for large data in
mapreduce,” ser. EDBT ’12. New York, NY, USA: ACM, 2012, pp. 38–49.

[12] H. Kllapi, B. Harb, and C. Yu, “Near neighbor join,” in Data Engineering
(ICDE), 2014 IEEE 30th International Conference on, March 2014, pp.
1120–1131.

[13] F. Gray, “Pulse code communication,” in U.S. Patent 2,632,058, 1953.
[14] X. Zhang, J. Qin, W. Wang, Y. Sun, and J. Lu, “Hmsearch: An efficient

hamming distance query processing algorithm,” in Proceedings of the 25th
International Conference on Scientific and Statistical Database Management,
ser. SSDBM. New York, NY, USA: ACM, 2013, pp. 19:1–19:12.

[15] Y. N. Silva, W. G. Aref, P.-Å. Larson, S. Pearson, and M. H. Ali, “Similarity
queries: their conceptual evaluation, transformations, and processing,” VLDB J.,
vol. 22, no. 3, pp. 395–420, 2013.

[16] C. Yu, B. C. Ooi, K.-L. Tan, and H. V. Jagadish, “Indexing the distance: An
efficient method to knn processing,” ser. VLDB ’01, San Francisco, CA, 2001,
pp. 421–430.

[17] R. Weber, H.-J. Schek, and S. Blott, “A quantitative analysis and performance
study for similarity-search methods in high-dimensional spaces,” ser. VLDB
’98, San Francisco, CA, 1998, pp. 194–205.

[18] A. Andoni and P. Indyk, “Near-optimal hashing algorithms for approximate
nearest neighbor in high dimensions,” Commun. ACM, vol. 51, no. 1, pp.
117–122, Jan. 2008.

[19] D. R. Morrison, “Patricia;practical algorithm to retrieve information coded in
alphanumeric,” J. ACM, vol. 15, no. 4, pp. 514–534, Oct. 1968.

[20] C. Faloutsos, “Multiattribute hashing using gray codes,” in Proceedings of the
ACM SIGMOD International Conference on Management of Data, ser.
SIGMOD ’86. ACM, 1986, pp. 227–238.

[21] J. Dean and S. Ghemawat, “Mapreduce: Simplified data processing on large
clusters,” Commun. ACM, vol. 51, no. 1, pp. 107–113, Jan. 2008.

[22] J. S. Vitter, “Random sampling with a reservoir,” ACM Trans. Math. Softw.,
vol. 11, no. 1, pp. 37–57, Mar. 1985.

[23] S. Blanas, J. M. Patel, V. Ercegovac, J. Rao, E. J. Shekita, and Y. Tian, “A
comparison of join algorithms for log processing in mapreduce,” ser. SIGMOD
’10. New York, NY, USA: ACM, 2010, pp. 975–986.

[24] A. Oliva and A. Torralba, “Modeling the shape of the scene: A holistic
representation of the spatial envelope,” International Journal of Computer
Vision, vol. 42, pp. 145–175, 2001.

[25] A. K. McCallum, “Mallet: A machine learning for language toolkit,” 2002,
http://mallet.cs.umass.edu.

[26] Y. Tao, K. Yi, C. Sheng, and P. Kalnis, “Efficient and accurate nearest neighbor
and closest pair search in high-dimensional space,” ACM Trans. Database Syst.,
vol. 35, no. 3, pp. 20:1–20:46, Jul. 2010.

[27] W. J. A. Marri, Q. M. Malluhi, M. Ouzzani, M. Tang, and W. G. Aref, “The
similarity-aware relational intersect database operator,” in 7th International
Conference Similarity Search and Applications, SISAP, 2014, pp. 164–175.

372


