
Natural Language Specification and Violation Reporting of
Business Rules over ER-modeled Databases

Mika Cohen
FOI, Stockholm, Sweden
mika.cohen@foi.se

Michael Minock
KTH Royal Institute of
Technology, Stockholm

minock@kth.se

Daniel Oskarsson
FOI, Stockholm, Sweden

daniel.oskarsson@foi.se

Björn Pelzer
FOI,Stockholm, Sweden
bjorn.pelzer@foi.se

ABSTRACT

This paper presents our work on adapting and extending
natural language interface (NLI) to database technology to
support the specification and violation reporting of business
rules. The resulting system allows non-technical users to au-
thor and manage a rulebook in controlled natural language
– serving as a single point of definition that can be compiled
into SQL to generate violation reports. To achieve this we
represent business rules in tuple calculus, handle negation
in our query re-writing algorithms and add support for nat-
ural language reflexives (e.g. ‘its’, ‘themselves’, etc.). Our
results show a large class of business rules can be captured
with these extensions. Although our approach is general,
we present it applied to compliance checking of regulations
over a materiel capability development information system
at the Swedish Defence Materiel Administration. At EDBT
we will also demonstrate this work over a more generic pack-
age delivery domain. While there has been recent effort in
pursuing Semantics for Business Vocabulary and Business
Rules (SBVR) in the semantic web and description logic
communities, to our knowledge ours is the first attempt to
provide this capability for ER-modeled relational databases.

Keywords

SBVR, Business Rules, NLIs to databases

1. INTRODUCTION
Large organizations typically maintain a wide range of

information systems each with their own interfaces and
schemas. Much effort in recent years has been expended
to aggregate overall information systems into federated
databases (or enterprise information systems) so that over-
all activities can be monitored, analyzed and, if required,
remedied. While an individual department can often ensure
that its data sources conform to its own rules, violations

c⃝ 2015, Copyright is with the authors. Published in Proc. 18th Inter-
national Conference on Extending Database Technology (EDBT), March
23-27, 2015, Brussels, Belgium: ISBN 978-3-89318-067-7, on OpenPro-
ceedings.org. Distribution of this paper is permitted under the terms of the
Creative Commons license CC-by-nc-nd 4.0
.

of organization wide rules often occur when all the sources
are federated. For example while it is not be permitted for
a clerk to enter an order with no purchase item specified,
other compliance level ’constraints’, such as ensuring that
those who ordered an item have authority to use it, are dif-
ficult to enforce in legacy systems. Even at the local level,
there may be reasons not to enforce constraints too strictly,
such as to monitor states that are not outright errors but
nonetheless deviate from expectations in noteworthy ways.

An approach to relaxing constraint enforcement to accom-
modate these cases is to check for compliance retroactively.
Operational staff are given the rights to enter data, and
then, during compliance checking, rules are checked against
the federated database, looking for violations of regulations,
incompleteness in data sources, breakdowns in operations,
etc. With such violation reports, errors may either be cor-
rected, or, based on discretion, tolerated. This temporal
decoupling of compliance checking from data entry also al-
lows for a wider spectrum of rule specificity, enabling vaguer,
high-level business rules in addition to specific data-level
constraints. Rules will then originate from stakeholders at
various levels across the organization who build up rulebooks
in natural language, which are subsequently mapped to low-
level, machine-executable implementations, such as SQL.

The translation of natural language rules to executable
form can be tedious and costly, and since it is typically done
by technical staff that are separate from the rule authors
(both organizationally and in terms of skills), the transla-
tion involves interpretation – a source of possible errors, es-
pecially in light of the ambiguity of natural language. Also,
keeping parallel representations (natural language and exe-
cutable code) of the rulebook introduces a burden of man-
agement to maintain consistency over time. Finally, if the
natural language formulations are overly verbose, stakehold-
ers in more remote parts of the organization will find it dif-
ficult and burdensome to understand the rules.

Based on these shortcomings, recent efforts have focused
on Semantics for Business Vocabulary and Business Rules
(SBVR) [8]. SBVR argues that the specification of busi-
ness rules should be based on a clear conceptual model of
the domain. Moreover the business rules and the concep-
tual domain must be based on a controlled natural language
syntax, so as to reduce or eliminate ambiguity, increasing
the probability that all the stakeholders will understand the
rules. Finally there is the potential that natural language
rules may be automatically mapped to executable form.

541 10.5441/002/edbt.2015.53

http://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2015.53

While SBVR is now an OMG standard, implementation
work is still in its infancy (see [1] for references to current
efforts). Most, if not all, of the tools are focused on real-
izing SBVR over description logics and semantic web tech-
nology (for example [9, 3]). Approaches mapping all the
way to SQL are promising, but still quite preliminary[7].
Our work seeks to seat SBVR1 in classical ER-modeled re-
lational databases. Given the dearth of existing tools, to
achieve this, we decided to adapt and extend an existing nat-
ural language interfaces to database system, C-Phrase[6]
https://code.google.com/p/c-phrase/.

In section 2 we introduce the domain in which we are ap-
plying our work work – The SKTS at FMV, the Swedish
Defence Materiel Administration. Section 2 gives an ER
model and several prototypical business rules drawn from
our corpus, which we can interpret, paraphrase and report
the violations of. Section 3 discusses the extensions of C-

Phrase that were required to achieve this. Beyond repre-
senting rules, we were required to extend our treatment of
negation in paraphrases and were forced to extend the sys-
tem to support reflexives. Section 4 gives our demonstration
plan for EDBT. Finally section 5 discusses the broader rel-
evance and future directions of our work.

2. THE SKTS AT FMV
Let us consider the simple real-world example, the SKTS2,

which is a description of the organization of technical sys-
tems (i.e. equipment of non-trivial technical complex-
ity) by the Swedish Armed Forces and managed by the
Swedish Defence Materiel Administration FMV (Försvarets
materielverk). SKTS describes the relations between sys-
tems as well as their deployment, their life-cycle phases and
the associated decision making processes. Our non-classified
extract of SKTS has the same schema as the full version. See
Figure 1 for a simplified ER model of the SKTS.

Figure 1: Simplified ER model of SKTS

The central entity in SKTS is the system, representing
about 1,600 types of technical systems, ranging from am-
munition and tools to vehicles and buildings. In our simpli-

1Technically it is SBVR-SE (SBVR Structured English), a
subset of SBVR, that we seek to support.
2Systemkarta tekniska system, Swedish for “system map (of)
technical systems”

fied schema a system type is identified by a single attribute
name. Two special relationships between systems are:

• system type S1 integrates system type S2: S2 is a com-
ponent of S1, like a tank integrating an engine;

• system type S1 interacts with system type S2: S1 co-
operates with S2 (without integration), like artillery
interacting with a forward observer vehicle to obtain
target data;

The unit and project entities represent the actors employ-
ing technical systems, i.e. military units during active use
and research projects during the earlier life-cycle phases.
Systems are assigned to such users via the respective rela-
tionships uses and develops.

The usage of systems is constrained by weak entity sets
life-cycle phases and milestones. A life-cycle phase repre-
sents an interval, and thus it has attributes specifying its
start date and end date, and its type attribute is one of
concept, development, production, use, maintenance or re-
tirement. A system can have multiple life-cycle phases as-
sociated with it – ideally one of each type. A milestone
represents an event like a deadline, so it has only a single
date attribute. Numerous values are possible for its type at-
tribute, since up to three different milestones govern each
life-cycle phase of a system: a deadline by which the FMV
must have decided on the start and end dates of the phase,
a planned decision date when the FMV intends to make this
decision, and a decision date when the decision is actually
made.

The FMV wants to apply SBVR-formulated business rules
to an SKTS-database to ensure that its regulations are not
violated within the organization. Five prototypical rules
drawn from our initial corpus of hundreds of rules are:

1 “It is forbidden that a system has a use phase that
begins before its use decision.”

2 “It is obligatory that a system that is in a use phase
be used by some unit.”

3 “It is obligatory that a system that interacts with an-
other system with a use phase must also have a use
phase.”

4 “Every system that is assigned to some unit must be
currently operational.”

5 “It is obligatory that a life-cycle phase which is not a
concept phase and which has a start date no later than
the current date be subsequent to some other life-cycle
phase.”

Applying such rules to SKTS should produce a detailed
list of violations, allowing an analyst to identify the best
method to handle each problem – be it a simple database
flaw or an actual breach within the organization, like a unit
employing a system not cleared for use.

3. EXTENDING C-PHRASE TO SBVR
We have extended the C-Phrase NLI to database system

to enable users to state business rules of the form above (as
well as many other rules and alternative phrasings), receive
paraphrases of such business rules (in case of ambiguity),

542

and receive reports of the violations of such rules that give an
indication of how an instance violated the rule. C-Phrase

is discussed elsewhere [6], but in short it uses a semantic
grammar to map user utterances to (an extended) tuple cal-
culus. From this representation either a natural language
paraphrase or SQL may be generated. C-Phrase uses a the-
orem prover to evaluate when a natural language utterance
has mapped to more than one semantically distinct query.
In such a case of ambiguity, the system paraphrases all se-
mantically distinct interpretations back to the user so that
they may select the proper interpretation. The paraphras-
ing technique also heavily uses a theorem prover in finding
an equivalent re-writing of the paraphrased query using a
lexicon of elementary query expressions paired with associ-
ated words and phrases. Once a single interpretation of the
user’s utterance is determined, the tuple calculus expression
is evaluated over the database and answers are reported back
to the user.

For C-Phrase to handle business rules, several exten-
sions were required. First, it was necessary to extend
the tuple calculus representation to represent rules.
This was only necessary in the case of positive rules.
Negative rules expressed as “it is prohibited that A”,
may simply be represented as the tuple expressions
for A, leveraging C-Phrase’s existing semantic anal-
ysis mechanism. For example, the first example rule
above is represented in the tuple query expression3:
{x|System(x) ∧ (∃y1)(Life-Cycle-Phase(y1) ∧ x.name =
y1.system ∧ y1.type = ’use phase’ ∧ (∃y2)(milestone(y2) ∧
y1.start-date < y2.date∧ (∃y3) (System(y3) ∧ y2.system =
y3.name ∧ x = y3 ∧y3.type = ’use start decision’)))}. For
positive rules, expressed as “it is necessary that A are B”, we
introduced a :consequent marker, which specifies which
part of a tuple calculus expression is the right hand side of
a rule. For example the third rule above is represented as:
{x|System(x)(∃y1)(∃y2)(Interacts-With(y1)∧System(y2)∧
x.name = y1.interacts-with ∧ y1.system = y2.name ∧
(∃y3)(Life-Cycle-Phase(y3) ∧ y2.name = y3.system ∧
y3.type = ’use phase’))⟨: consequent System(x) ∧
(∃y4)(Life-Cycle-Phase(y4) ∧ x.name = y4.system ∧
y4.type = ’use phase’)⟩}. Finally, C-Phrase’s grammar
was extended to recognize a large set of variations of “it
is prohibited that” (or “it is obligatory that”), to insert
the :consequent marker in the positive case, and then to
branch to the proper rule handler with the resulting tuple
calculus expression.

Although our semantic grammar avoids the pathological
ambiguity of more linguistically-oriented approaches (e.g.
“time flies like an arrow”), we do still confront ambiguity.
For example in rule specification 5 above, there is a hidden
ambiguity in ‘subsequent’. ‘Subsequent’ in this domain may
mean immediately subsequent. Or subsequent with a possi-
ble time gap. There are thus two semantically distinct rules
that rule 5 above maps to. Thus the user must pick between
them. And to pick, the user must understand the nuances in
these formulas. And for that, among other reasons, we para-
phrase rules back to the user in natural language. At the
end of this interaction, we will have one single semantically
meaningful rule to pass to the rule handler.

The rule handler converts the rule into one or more viola-
tion queries which identify violation cases for the rule. This

3Queries are defined over the schema that is the standard
translation of the ER model in figure 1.

occurs in a two step process. First, a core violation query
is calculated. Then this core violation query is extended to
the (full)violation query, which includes supporting informa-
tion indicating why matching answers to the core violation
query are rule violators. In the negative case, the core vi-
olation query is simply the query representing the rule. In
the positive case, the core violation query is the query with
the consequent negated. In cases where the consequent is
a conjunction, we apply De Morgan’s law, followed by a
simple rewriting to generate a set of core violation queries.
Extending core violation queries to full violation queries is a
capability inherited from C-Phrase’s answer strategy mech-
anism. In short, the theorem prover finds the most specific
answer strategy that subsumes the core violation query and
then augments the core violation query with the associated
answer value bindings. For example, assume that the lexi-
con contains the answer strategy ⟨{x|System(x)∧x.name =
c1 ∧ (∃y1)(Life-Cycle-Phase(y1) ∧ y1.system = x.name ∧
y1.type = ’use phase’ ∧ y1.start-date = c2 ∧ y1.start-date =
c3)} :“The system c1 has a use phase starting c2 and end-
ing c3”⟩. Then a core violation query that is subsumed by
this answer strategy, and by no more specific answer strat-
egy, will be augmented with the additional bindings, and
an answer fitting the template will be generated (The re-
ported answers in Figure 2 apply this answer template).
The translation of the full violation query to SQL is trivial.
The report presented to the user consists of a paraphrase
of the rule, followed by a paraphrase of the core violation
query, followed by the answers to the full violation query.
The report for rule 2 above is shown in Figure 2.

Figure 2: Report for rule 2.

Given that paraphrases of rules or violation queries nec-
essarily contain negation of existential quantification, and
given that our techniques of generating paraphrases in-
volves finding equivalent re-writings of queries using elemen-
tary logical expressions, we were forced to confront a diffi-
cult non-conjunctive query rewriting problem. As a sim-
ple example, consider that the expression {x|System(x) ∧
¬(∃y1)(∃y2)(Interacts-with(y1) ∧ Sytem(y2) ∧ y1.system =
x.name ∧ y1.interacts-with = y2.name ∧ y2.name =
“HMS Gavle”)} should be rewritten using the three lexi-
con entries ⟨{x|System(x)} :“systems”⟩, ⟨{x|System(x) ∧
¬(∃y1)(∃y2)(Interacts-with(y1) ∧ Sytem(y2) ∧ y1.system =
x.name ∧ y1.interacts-with = y2.name ∧ ϕ(y2))} :“does not
interact with ref(ϕ(y2)”⟩ and ⟨{x|System(x) ∧ x.name =
c1} :“c1”⟩ to yield an equivalent rewrite, and in turn the

543

templates may be used to generate the paraphrase “systems
not interacting with HMS Gavle”. Although we have not yet
formalized our approach to the point where we can prove
its completeness, we have considerably extended our query
rewriting algorithms to handle negation.

A final extension to C-Phrase that should be noted is
support for reflexives. Normally in NLIs to databases one
does not confront reflexives. A contrived example could be,
“give the systems interacting with themselves”. In business
rules however, we have witnessed a fair number of cases in
our corpus that require this. For example the ’its’ in the first
rule above is a reflexive. Our approach to reflexives is similar
to that for :consequent. We insert a marker :reflexive in
at parse time when reflexives are recognized. This leads to
a tuple calculus expression which is later resolved, finding
bindings of the reflexive variables with the same entity type.
The semantic representation of rule 1 presented above shows
the results of this with the tuple equality condition x = y3.
In cases of multiple possibilities, all possibilities are passed
on for interactive ambiguity resolution. The paraphrasing
mechanism was trivially extended to generate reflexives.

4. DEMONSTRATION
Our demonstration plan at EDBT is to first show the live

operation of the system in interactive mode, where a user
states business rules over the SKTS schema above, receives
paraphrases of rules, and then receives a detailed report on
the violations of the rules over our declassified database in-
stance. We will demonstrate all the rules in section 3 as well
as additional rules in our corpus. We will also present rules
that still give us problems due to either linguistic or con-
ceptual complexity. In addition to the live demonstration,
we will generate a series of videos that illustrates how we
configured C-Phrase to handle this task. Moreover we will
demonstrate the same technology over a prototypical use
case in the package delivery domain. All configuration files
and source code for our demonstration will be open sourced
to let others verify, replicate and build on our results.

5. RELEVANCE AND CONCLUSIONS
It has been noted many times [2, 6, 4, 5] that natural

language interfaces to critical systems must include a para-
phrasing mechanism which communicates back to the user
how their utterance is interpreted. Without such a mecha-
nism how could anyone ever rely upon such a system? With-
out such a capability how would one let users resolve am-
biguity? This is particularly true with the interpretation
and reporting of business rules which, arguably, are more
complex than information seeking queries. Given that para-
phrasing is critical, and that even very simple business rules
may be reported in either positive or negative forms, inter-
pretation and paraphrasing mechanism must be extended
to handle negation over existential quantifiers; NLI systems
restricted to conjunctive query representations, will simply
not suffice. Our first contribution in this work is to demon-
strate that such negation may be built into NLI systems
to adequately handle this requirement. In addition we ob-
served in our work the importance of supporting reflexives
in the specification of business rules; others attempting to
achieve the same will likewise need to cover reflexives. Fi-
nally we argue that the use of a theorem prover is critical to
determining semantic equivalence and greatly simplifies the

proper reporting of violations of business rules.
There are still types of business rules in our corpus that we

do not cover. For example cardinality type queries are not
yet covered. Nor do we yet support offsets in time expres-
sions. So the rule, “It is prohibited that a project develops a
system that interacts with at least three other systems whose
retirement phases begin less than two years after the start
date of its use phase.” is currently beyond our grasp and
will require both syntactic and semantic extensions. These
extensions are currently being explored. Moreover, we are
investigating the building up of complex rules, and rules with
exceptions, as multiple step interactions. In some domains,
sufficiently detailed rules can probably not be specified as
single shot sentences.

While it is necessary to configure C-Phrase over the ER
modeled database, one side benefit is that one gets an NLI
access interface as an added bonus, justifying in part the ad-
ditional cost. Moreover, because a C-Phrase configuration
can be tailored by database administrators with limited lin-
guistic training, the configuration may be extended to cap-
ture domain dependent idiosyncratic phrasings. As database
administration staff build out the natural language interface
over the ER modeled database, we envision stakeholders en-
gaging in the process of proposing and organizing business
rules that may be shared, understood and most importantly
executed across the organization. Our work takes a step
toward realizing this vision.

6. REFERENCES
[1] I. S. Bajwa, M. G. Lee, and B. Bordbar. SBVR

business rules generation from natural language
specification. In AI for Business Agility, AAAI Spring
Symposium, 2011.

[2] E. Codd. Seven steps to rendezvous with the casual
user. In IFIP Working Conference Data Base
Management, pages 179–200, 1974.

[3] C. Fürber and M. Hepp. Towards a vocabulary for data
quality management in semantic web architectures. In
Proceedings of the 2011 EDBT/ICDT Workshop on
Linked Web Data Management, Uppsala, Sweden,
March 25, 2011, pages 1–8, 2011.

[4] G. Koutrika, A. Simitsis, and Y. E. Ioannidis.
Explaining structured queries in natural language. In
Proceedings of the 26th International Conference on
Data Engineering, ICDE 2010, March 1-6, 2010, Long
Beach, California, USA, pages 333–344, 2010.

[5] F. Li and H. V. Jagadish. Nalir: an interactive natural
language interface for querying relational databases. In
Proc. of SIGMOD 2014, pages 709–712, 2014.

[6] M. Minock. A STEP towards realizing Codd’s vision of
rendezvous with the casual user. In Proc. of Very Large
Data Bases (VLDB), pages 1358–1361, 2007.

[7] S. Moschoyiannis, A. Marinos, and P. Krause.
Generating SQL queries from SBVR rules. In Semantic
Web Rules, volume 6403 of LNCS, pages 128–143.
Springer, 2010.

[8] OMG. Semantics of Business Vocabulary and Rules
(SBVR) (version 1.2). November 2013.

[9] D. Solomakhin, E. Franconi, and A. Mosca.
Logic-based reasoning support for SBVR. In Proc. of
the 26th Italian Conference on Computational Logic,
pages 311–325, 2011.

544

