
GSCALER: Synthetically Scaling A Given Graph

J.W. Zhang
National University of Singapore

jiangwei@nus.edu.sg

Y.C. Tay
National University of Singapore

dcstayyc@nus.edu.sg

ABSTRACT
Enterprises and researchers often have datasets that can be
represented as graphs (e.g. social networks). The owner
of a large graph may want to scale it down to a smaller
version, e.g. for application development. On the other
hand, the owner of a small graph may want to scale it up to
a larger version, e.g. to test system scalability. This paper
investigates the Graph Scaling Problem (GSP):

Given a directed graph G and positive integers ñ

and m̃, generate a similar directed graph G̃ with
ñ nodes and m̃ edges.

This paper presents a graph scaling algorithm Gscaler
for GSP. Analogous to DNA shotgun sequencing, Gscaler,
decomposes G into small pieces, scales them, then uses the

scaled pieces to construct G̃. This construction is based on
the indegree/outdegree correlation of nodes and edges.

Extensive tests with real graphs show that Gscaler is

scalable and, for many graph properties, it generates a G̃
that has greater similarity to G than other state-of-the-art
solutions, like Stochastic Kronecker Graph and UpSizeR.

1. INTRODUCTION
The emergence of online social networks, like Facebook

and Twitter, has attracted considerable research. However,
their enormous sizes make any experiment on the entire
graph impractical. It is therefore often necessary to obtain
a smaller version of the graph for experiments. We call this
the scaling down problem.

At the other end of the scale, a new social network service
provider may have a small graph, but wants to test the scal-
ability of their system. They may therefore want to have
a larger (and necessarily) synthetic version of their current
empirical graph. We call this the scaling up problem.

These two problems arise in other contexts as well, e.g.
where the graph represents router topology or web links.
They illustrate the Graph Scaling Problem (GSP):

c©2016, Copyright is with the authors. Published in Proc. 19th Inter-
national Conference on Extending Database Technology (EDBT), March
15-18, 2016 - Bordeaux, France: ISBN 978-3-89318-070-7, on OpenPro-
ceedings.org. Distribution of this paper is permitted under the terms of the
Creative Commons license CC-by-nc-nd 4.0

Given a directed graph G and positive integers ñ

and m̃, generate a similar directed graph G̃ with
ñ nodes and m̃ edges.

There are many possible ways to define “similarity”, de-
pending on the context, but we believe the definitions must
all be in terms of graph properties, like indegree distribution,
clustering coefficient, effective diameter, etc.

However, it is impossible for G and G̃ to have exactly

the same properties; e.g. if G and G̃ have the same degree
distributions, then the larger graph must necessarily have
smaller density. One must therefore select the graph prop-
erties that are to be preserved when scaling. GSP facilitates
this selection by allowing ñ and m̃ to be specified separately.

Related work in the literature have objectives that are
different from GSP. There are many papers on graph sam-
pling, such as gSH, BFS, forest fire and frontier sampling
[1, 3, 18, 21, 23, 30, 35]. They can be viewed as examples of

scaling down, since they produce a G̃ that is a subgraph of
G; this can have data protection issues that do not arise if

G̃ is synthetic. Moreover, graph sampling cannot generate

a G̃ that is larger than G.
Other related work use generative models that can pro-

duce a G̃ that is smaller or larger than G. For example, an
Erdös-Rényi model generates a graph of any size n with a
specified edge probability p [9]; Chung and Lu’s model gen-
erates graphs with a specified degree distribution [4]; and
Stochastic Kronecker Graphs [19,20] are generated from an
initiator by applying Kronecker product. However, these do
not allow a choice of both ñ and m̃.

In contrast, we propose Gscaler, a solution to GSP that
deviates from previous work by using a technique that is
analogous to DNA shotgun sequencing [31]. The latter
breaks a long DNA strand into smaller ones that are easier
to sequence, then use these smaller sequences to reconstruct
the sequence in the original strand.

Similarly, Gscaler (i) breaks the given G into two sets

Sin and Sout of small pieces, (ii) scales them by size to S̃in

and S̃out; (iii) merges these pieces to give a set S̃bi of larger

pieces, then (iv) assembles G̃ from the pieces in S̃bi.
This paper makes the following contributions:

1. We present Gscaler, an algorithm for solving GSP.

2. We prove that Gscaler (i) does not generate multiple
edges between two nodes, and (ii) has small degree

distribution error even when the average degree of G̃
differs from that of G.

 

 

Series ISSN: 2367-2005 53 10.5441/002/edbt.2016.08

http://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2016.08


3. We present experiments that compare Gscaler to 4
other techniques, using 2 real graphs and 7 properties.

We begin by surveying related work in Sec. 2. We describe
Gscaler in Sec. 3, and prove that it does not generate mul-
tiple edges between any two nodes. Sec. 4 reviews the graph
properties, state-of-the-art algorithms and datasets that are
used for comparison. Sec. 5 then proves that Gscaler has
small error, and presents the experimental comparison to
other algorithms. We discuss the choice of ñ and m̃ in Sec. 6,
before Sec. 7 concludes with a summary.

2. RELATED WORK
The closest work in graph scaling from the literature are

graph sampling algorithms and generative models.
For graph sampling, the main approaches are node-based

sampling, edge-based sampling and traversal-based sampling
which produce a subgraph of the original graph G.

Node-based sampling selects a set of nodes Vsub from G,

then G̃ is just the induced graph of this set of nodes Vsub.
Authors in [32] pointed out that node-based sampling may
not preserve a power law degree distribution because of bias
induced by high degree nodes.

Similarly, traditional edge-based sampling selects edges
randomly. However, this might result in a sparsely con-

nected graph G̃ [21]. Some other edge-based sampling vari-
ants [1,16,21] sample the graph using edge selection/deletion
and combination with node selection/deletion.

Most graph sampling techniques focus on traversal-based
sampling [14]. Breadth first sampling (BFS) [3, 18, 35] and
random walk sampling (RW) [12, 30] are the most basic
and well-known algorithms. Similar to BFS, snow ball sam-
pling [13] (SBS) is widely used in sociology studies. Metropolis-
Hastings Random Walk (MHRW) [12,27] is a Markov-Chain
Monte Carlo algorithm which samples unbiased subgraph
in undirected social graphs. However, MHRW suffers from
sample-rejection problem. Later, rejection-controlled Metropolis-
Hastings (RCMH) [26] is proposed to reduce the sample-
rejection ratio.

Frontier sampling is a multi-dimensional random walk which
results in better estimators for some graph properties [30].
A probabilistic version of SBS, forest fire (FF ) [21,23] cap-
tures some important observations in real social networks,
e.g. small diameter.

Most traversal-based sampling requires random access to
a node’s neighbors, which might not be feasible for large
graphs (that cannot fit into memory). Hence, streaming
graph sampling algorithms are proposed, e.g. induced edge
sampling (ES-i) [2]. As mentioned previously, graph sam-
pling algorithms are limited to scaling down problem.

For generative models, the Erdös-Rényi model generates
a graph of any size n with a specified edge probability p [9].
There are variants of random models that generate graphs
with specific graph properties [4, 28], e.g. the Chung-Lu
model generates graphs with a specified degree distribution.

One group of generative models [5, 6, 11, 17] employ the
strategy of preferential attachment. They obey a simple
rule: a new node u attaches to the graph at each time step,
and adds an edge euv to an existing node v with a probability
p proportional to the degree of the node v.

Another type of generative models is recursive matrix
model [7, 19, 20], which recursively multiplies the adjacency
matrix. For example, Stochastic Kronecker Graph (SKG) [20]

Notation Description
G(V,E) original graph

G̃(Ṽ , Ẽ) scaled graph

n/ñ number of nodes in G/G̃

m/m̃ number of edges in G/G̃

fin/f̃in G/G̃’s indegree distribution

fout/f̃out G/G̃ graph’s outdegree distribution

fbi/f̃bi G/G̃ graph’s bidegree distribution

fcorr/f̃corr G/G̃ graph’s edge correlation distribution

Sin/S̃in set of pieces with incoming edges in G/G̃

Sout/S̃out set of pieces with outgoing edges in G/G̃

S̃bi set of pieces with incoming and outgoing edges in G̃
ct∆ count function of the pieces in set ∆, ∆ can be

Sin, S̃in and so on.
I(α′)/O(α′) total number of available incoming/outgoing edges

for nodes with bidegree α′

D(f, f̃) KS-D statistics of between f and f̃

Table 1: Notation

recursively multiplies the graph initiator K1 through Kro-
necker product, which results in a self-similar graph. SKG
captures most social network properties, such as small di-
ameter and power law degree distribution.

Scaling problem appears in other fields as well. For ex-
ample, UpSizeR is a pioneer tool which synthetically scales
a relational dataset [33]. UpSizeR’s focus is on preserving
correlation among tuples from multiple tables. In relational
terms, GSP requires preservation of correlation among tu-
ples in a single table (for the edges).

For Resource Description Framework (RDF), the AO bench-
mark [8] is the first tool that scales down an RDF dataset.
Later, RBench [29] is proposed to both scale down and up.
However, these two benchmarks are evaluated with differ-
ent metrics (dataset coherence, relationship specialty, literal
diversity), so it would be unfair to use them for comparison.

3. GRAPH SCALER (Gscaler)
Given a graph G(V,E), |V | and |E| may need to scale by

different factors to maintain similarity for certain properties
(e.g. density). Hence, Gscaler allows the user to specify
the target ñ and m̃. As shown in Fig.1, the scaling has the
following 4 steps:

DECOMPOSE SCALING

N
O

D
E

S
Y

N
T

H
E

S
ISEDGE 

SYNTHESIS

Figure 1: The 4 steps in Gscaler.

Gscaler first decomposes G into 2 sets Sin and Sout. Sin
consists of pieces, where a piece is a node with its incoming
edges (minus the source nodes). Similarly, Sout consists of

54



Algorithm 1: Gscaler(G, ñ, m̃)

1 Sin, Sout, fbi, fcorr = DECOMPOSE(G)

2 S̃in = SCALING(Sin, ñ, m̃)

3 S̃out = SCALING(Sout, ñ, m̃)

4 S̃bi = NODE SYNTHESIS(S̃in, S̃out, fbi)

5 G̃ = EDGE SYNTHESIS(S̃bi, fcorr)

pieces, where a piece is a node with its outgoing edges (minus
the target nodes). Each node in G generates 2 pieces, one
in Sin and one in Sout.

After that, Gscaler scales Sin and Sout to get the scaled

sets of pieces S̃in and S̃out with ñ nodes and m̃ edges.

In node synthesis, S̃in and S̃out are used to form a set S̃bi
of larger pieces. Each new piece has a node with incoming
edges (with no source nodes) and outgoing edges (with no

target nodes); it will generate one node in G̃.

The last step (edge synthesis) is to link pieces in S̃bi which

finally results in G̃. Edge synthesis is similar to a jigsaw puz-
zle, where you want to fit the small pieces together. Algo. 1
summaries the workflow for Gscaler.

In the following, we will explain each step in detail, and

use a running example to show how G is scaled to G̃ in Fig.1.
As presented in Fig.1, n = 3, ñ = 6, m = 3, m̃ = 7.

3.1 DECOMPOSE

This step is straightforward, and Fig. 1 shows the pieces
in Sin and Sout from decomposing G.

3.2 SCALING

To simplify the explanation, we just use Sin for demon-
stration. Let N = {0, 1, 2, 3, . . .}. We use the count function
ct to denote k pieces in ∆ has property x:

ct∆(x) = k, k ∈ N (1)

For example, ctSin(x) = k means k pieces in Sin have inde-
gree x. For both Sin and Sout, the scaling process takes the
following three steps:

• node scaling. For indegree x, let Ax = ctSin(x)× ñ
n

. As

Ax might not be an integer, we round-off S̃in as follows:

ctS̃in(x) =

{
dAxe with probability Ax − bAxc
bAxc with probability dAxe −Ax

(2)

For example, if Ax = 4.8, then with 0.8 probability,
ctS̃in(x) = 5, and with 0.2 probability, ctS̃in(x) = 4.
Hence, Eq.2 can be rewritten as

E[ctS̃in(x)] = ctSin(x)× ñ

n
(3)

Fig.2 shows the S̃in and S̃out that we get after this scaling.

• node adjustment. With randomness in node scaling

(Eq.2), we may have |S̃in| 6= ñ. If so, |ñ − |S̃in|| nodes

Figure 2: S̃in, S̃out after node scaling for G in Fig.1.

Algorithm 2: SCALING(Sin, ñ, m̃)

1 node scaling(Sin, ñ)

2 node adjustment(S̃in, ñ, Sin)
/* h0/l0 is the upper/lower bound where x

varies. By default, h0/l0 should be the

highest/lowest degree in the graph. h0/l0
will be further extended if needed. t is the

edge difference threshold where the loop

stops. ct(x) refers to ctS̃in(x). */

3 initialize h = h0, l = l0, t
55 while |

∑
x ct(x)× x− m̃| > t do

6 if l>=h then
7 l = l0; h = h0;

8 if m̃ >
∑
x ct(x)× x then

9 if ct(l)>0 then
10 ct(l)−−; ct(h) + +;
11 l + +; h−−;

12 else l + +;

13 else
14 if ct(h)>0 then
15 ct(l) + +; ct(h)−−;
16 l + +; h−−;

17 else h−−;

18 adjust |
∑
x ct(x)× x− m̃| edges

with random degree are added to or removed from S̃in.
For G in Fig. 1, such adjustment is not needed.

• edge adjustment. Next, the number of scaled edges
must equal to m̃, i.e.

∑
x ctS̃in(x)× x = m̃.

If
∑
x ctS̃in(x) × x < m̃, we increase the number of high

degree nodes, and decrease the number of low degree
nodes. If

∑
x ctS̃in(x) × x > m̃, we decrease the num-

ber of high degree nodes, and increase the number of low
degree nodes. The details are shown in Algo. 2.

In our running example,
∑
x ctS̃in(x) × x = 6 < 7 = m̃.

Hence, we increase the number of high degree nodes (in-
degree=2), and decrease the number of low degree (inde-
gree=1) nodes. Thus, we have 1 node with indegree=2

and 5 nodes with indegree=1 for S̃in. After the edge ad-

justment, the correct S̃in, S̃out are shown in Fig. 1.

3.3 NODE SYNTHESIS

Now we have S̃in and S̃out, and we match 1 piece in S̃in
to 1 piece in S̃out and merge them to give a larger piece.
This synthesis follows a bidegree distribution fbi : N2 →
[0, 1], where fbi(d1, d2) = z means a fraction z of nodes have
bidegree (d1, d2). We say a node u has bidegree (d1, d2) if
it has indegree=d1 and outdegree=d2. For G in Fig. 1, the
corresponding fbi is listed in Table 2.

Gscaler loops through fbi(d1, d2) to synthesize nodes.

However, for a desired bidegree (d1, d2), S̃in and S̃out may
not have the necessary pieces. Hence, a neighboring (d1

′, d2
′)

will be used. Gscaler uses a greedy heuristic that matches
pieces by minimizing the Manhattan distance

||(d1, d2)− (d1
′, d2

′)||1 = |d1 − d1
′|+ |d2 − d2

′|.

55



Algorithm 3: NODE SYNTHESIS(S̃in, S̃out, fbi)

1 while S̃in and S̃out not empty do
2 for fbi(d1, d2) do
3 while bfbi(d1, d2)× m̃c > 0 do
4 (d1

′, d2
′)←Manhattan(d1, d2)

5 S̃bi ← (d1
′, d2

′)

6 update S̃in, S̃out, fbi(d1, d2)

For Table 2, when Gscaler sees fbi(1, 0) = 1
3
, it will first

generate 1 node with bidegree (1, 0), and generate the other
node with bidegree (1, 1). Next, Gscaler sees fbi(1, 1) = 1

3
,

two nodes both having bidegree (1, 1) are generated. Lastly,
Gscaler sees fbi(1, 2) = 1

3
, and two nodes with bidegree

(1, 2), and (2, 2) are generated.
Algo.3 summarizes the node synthesis. The synthesized

pieces for S̃bi in G̃ are shown in Fig. 1. Note that each piece

in S̃bi maps to a node in G̃.

3.4 EDGE SYNTHESIS

Now we are almost done with the graph scaling, we only
need to link the edges. This is similar to a jigsaw puzzle,
we only need to make sure that each piece links to another

correctly. When linking the pieces from S̃bi, we link 1 out-

going edge from a source node vs ∈ S̃bi to 1 incoming edge

from a target node vt ∈ S̃bi. There are numerous ways of
joining the nodes. Gscaler synthesizes edges based on the
edge correlation function

fcorr : N2 ×N2 → [0, 1],

where fcorr(αs, αt) = z means a fraction z of the edges
have a source node with bidegree αs and a target node with
bidegree αt. The fcorr for G is listed in Table 3.

Instead of synthesizing edges one by one based on fcorr
directly, Gscaler undergoes Correlation Function Scaling

to scale fcorr to f̃corr for G̃. After a suitable f̃corr is found,

Gscaler links edges based on f̃corr.

3.4.1 Correlation Function Scaling
Gscaler loops through fcorr to produce f̃corr. For each

fcorr(αs, αt), it does the following Iterative Correlating:

Manhattan Minimization
Gscaler chooses the closest (αs

′, αt
′) for f̃corr by minimiz-

ing ||αs−αs′||1 + ||αt−αt′||1. For fcorr((1, 2), (1, 0)) = 1/3
in Table 3, Gscaler chooses (1, 2) for αs

′ and (1, 0) for αt
′.

Increment Probability Maximization

Gscaler increments f̃corr(αs
′, αt

′) by p, where p needs to
be the largest number that satisfies the following constraints:
C1. p ≤ fcorr(αs, αt).
C2. p ≤ min{O(αs

′)
m̃

, I(αt
′)

m̃
}, where I(αt

′) is the total num-
ber of available incoming edges for nodes with bidegree αt

′,
and O(αs

′) is the total number of available outgoing edges
for nodes with bidegree αs

′. C2 guarantees incremented
number of edges does not exceed the total available number
of edges of source nodes and target nodes.

C3. p ≤
ct
S̃bi

(αs
′)×ct

S̃bi
(αt
′)

m̃
− f̃corr(αs′, αt′). C3 ensures

fbi(1, 0) = 1
3

fbi(1, 1) = 1
3

fbi(1, 2) = 1
3

Table 2: Bidegree distribution for G in Fig. 1.

fcorr((1, 2), (1, 0)) = 1
3

fcorr((1, 2), (1, 1)) = 1
3

fcorr((1, 1), (1, 2)) = 1
3

Table 3: Edge Correlation for G in Fig.1.

the total number of edges from source nodes to target nodes
is not more than the maximal number of edges allowed from
source nodes to target nodes (no multiple edges).
For fcorr((1, 2), (1, 0)) = 1/3 in Table 3:
By C1, p ≤ 1/3.

By C2, p ≤ min{O((1,2))
7

, I((1,0))
7
} = min{ 2

7
, 1

7
} = 1

7
.

By C3, p ≤
ct
S̃bi

((1,2))×ct
S̃bi

((1,0))

7
− f̃corr((1, 2), (1, 0)) =

1×1
7
− 0.

Hence, the incremental value is p = min{ 1
3
, 1

7
, 1

7
} = 1

7
.

Value Update
Next, Gscaler updates the distributions:

• f̃corr(αs′, αt′) ← f̃corr(αs
′, αt

′) + p.
• O(αs

′) ← O(αs
′)− p× m̃.

• I(αt
′) ← I(αt

′) − p× m̃.
For fcorr((1, 2), (1, 0)) = 1/3 in Table 3, Gscaler gets

f̃corr((1, 2), (1, 0)) = 1/7, O((1, 2)) = 1, I((1, 0)) = 0. Ta-

ble 4 shows the resulting scaled f̃corr.
After iterative correlating, and due to the no multiple

edges constraint, it is possible that
∑
f̃corr(αs

′, αt
′) < 1,

which we fix by random swapping. This swap first ran-
domly permutes the leftover bidegree from I and O without
violating C3, then takes one element with bidegree γs

′ from
O and one element with bidegree γt

′ from I to swap with

generated f̃corr(αs
′, αt

′).
The idea is to break 1 edge from some source node vs with

bidegree αs
′ to some target node vt with bidegree αt

′, and
form 2 new edges: 1 edge pointing from some node with
bidegree γs

′ to the other node with bidegree αt
′, and 1 edge

pointing from some node with bidegree αs
′ to some node

with bidegree γt
′. If C3 allows, then update f̃corr as follows:

• f̃corr(αs′, γt′)← f̃corr(αs
′, γt

′) + 1
m̃

.

• f̃corr(γs′, αt′)← f̃corr(γs
′, αt

′) + 1
m̃

.

• f̃corr(αs′, αt′)← f̃corr(αs
′, αt

′)− 1
m̃

.

One successful swap thus increases f̃corr by 1
m̃

.
In the worst case (this did not happen in our experiments),

after random swaps,
∑
f̃corr(αs

′, αt
′) < 1 might still hold.

We just leave f̃corr as it is, and we will introduce some

dummy nodes to link these (1−
∑
f̃corr(αs

′, αt
′))×m̃ edges

f̃corr((1, 2), (1, 0)) = 1
7

f̃corr((1, 2), (1, 1)) = 1
7

f̃corr((1, 1), (1, 2)) = 1
7

f̃corr((2, 2), (1, 1)) = 2
7

f̃corr((1, 1), (2, 2)) = 2
7

Table 4: Edge Correlation for G̃ in Fig. 1.

56



21 3

A:

B:

Figure 3: Local linking of source and destination.

later in Sec.3.4.2.

3.4.2 Edge Linking
After f̃corr is generated, Gscaler links the p × m̃ edges

locally for each f̃corr(αs
′, αt

′) = p. Note that some linking
steps are related, since αs

′ might appear in a series of local
linking steps, such as

f̃corr(αs
′, αt1

′) = p1, . . . , f̃corr(αs
′, αtk

′) = pk

Hence, one must make sure that after f̃corr(αs
′, αt1

′) = p1 is

done, f̃corr(αs
′, αt2

′) = p2, . . . , f̃corr(αs
′, αtk

′) = pk are still
possible to be linked with no multiple edges. To emphasize
the importance of this step, we use the following example to
demonstrate both good and bad approaches.

In Fig.3, S̃bi and f̃corr are presented at the top. S̃bi has
2 pieces of bidegree (2, 2), 2 pieces of bidegree (1, 0), and 2
pieces of bidegree (0, 1). The dotted edges represent newly
linked edges at each step. If an edge has no source or target
node attached, then it has not linked any two nodes yet.
Example A demonstrates a failed strategy, while example B
demonstrates a successful strategy.

For f̃corr((0, 1), (2, 2)) = 1
3
, it corresponds to local linking

step 1©, which links two edges from (0, 1) to (2, 2). Both
examples link edges successfully. Example A links all 2 edges
to 1 target node with bidegree (2, 2), whereas example B
links 2 edges to 2 different target nodes with bidegree (2, 2).

For f̃corr((2, 2), (1, 0)) = 1
3
, it corresponds to local linking

step 2©, which links 2 edges from (2, 2) to (1, 0). Both ex-
amples link edges successfully. Example A links all 2 edges
from 1 source node with bidegree (2, 2). Example B links 2
edges from 2 different source nodes with bidegree (2, 2).

For f̃corr((2, 2), (2, 2)) = 1
3
, it corresponds to local linking

step 3©, which links edges from (2, 2) to (2, 2). Example
A produces multiple edges, which is not allowed, whereas
example B successfully produces the graph.

Apart from the multiple edge constraint, the algorithm
must be efficient as well. The naive idea of back tracking
previous edge linking processes is obviously not practical

for large graphs. Gscaler not only generates G̃ with no
multiple edges, it also links edges in linear time (see below).
Gscaler first selects the proper source nodes Ls and target
nodes Lt, and then link the edges from Ls to Lt.

Let Sαs′/Tαt′ be a queue of the source/target nodes with

bidegree αs
′/αt

′ from S̃bi. For each f̃corr(αs
′, αt

′) = p,
Gscaler dequeue&enqueue p × m̃ elements from Sαs′ to
Ls, and dequeue&enqueue p× m̃ elements from Tαt′ to Lt.
More specifically, whenever one element is dequeued from

Sαs′/Tαt′ , it will be put into Ls/Lt, and then been enqueued
to Sαs′/Tαt′ again. For example, if we dequeue&enqueue
7 elements from S(1,1) = [1, 2, 3, 4, 5] to Ls, then Ls =
[1, 2, 3, 4, 5, 1, 2], and S(1,1) = [3, 4, 5, 1, 2]. In general,

Ls = {u
d p×m̃|S

αs′
| e

1 , . . . , u
d p×m̃|S

αs′
| e

rs , u
b p×m̃|S

αs′
| c

rs+1 , . . . , u
b p×m̃|S

αs′
| c

|Sαs′ |
}, ∀ui ∈ Sαs′

Lt = {v
d p×m̃|T

αt
′ |
e

1 , . . . , v
d p×m̃|T

αt
′ |
e

rt , v
b p×m̃|T

αt
′ |
c

rt+1 , . . . , v
b p×m̃|T

αt
′ |
c

|Tαt′ |
},∀vj ∈ Tαt′

rs = p× m̃ mod |Sαs′ | , rt = p× m̃ mod |Tαt′ |, (4)

where vk1 means v1 appears k times in Lt, and k is called
the multiplicity of v1.

After Ls and Lt are generated, Gscaler links edges from
Ls to Lt. Before that, we prove a theorem for Compound
Multiplicity Reduction ; we later use this to show Gscaler
does not generate multiple edges between two nodes.

Theorem 1. [Compound Multiplicity Reduction]. Given

multisets U = {umu11 , . . . , u
muθ0
θ0

}, V = {vmv11 , . . . , v
mvθ1
θ1

},∑
ui∈U

mui = |U| = |V| =
∑
vj∈V

mvj , (5)

max
ui∈U

mui − min
ui∈U

mui ≤ 1, (6)

and max
vj∈V

mvj − min
vj∈V

mvj ≤ 1, (7)

there exists a multiset W = {wk|wk(0) ∈ U, wk(1) ∈ V}

such that U =
⋃
k

{wk(0)}, V =
⋃
k

{wk(1)}, (8)

max
wk∈W

mwk − min
wk∈W

mwk ≤ 1, (9)

∀wk ∈W,mwk ≤ d
|W|

θ0 × θ1
e. (10)

Proof. Reorder U,V to
U = (u1, . . . , u1, u2, . . . , u2, . . . , uθ0 , . . . , uθ0),
V = (v1, v2, . . . , vθ1 , v1, v2, . . . , vθ1 , v1, . . . ).

Construct W as follows: ∀wk ∈ W, wk = (U(k),V(k)),
where U(k) means the kth element in U. Therefore, Eq.8
is satisfied. Further, for any ui, let

Wui = ((ui,V(ci)), (ui,V(ci + 1)), . . . , (ui,V(di)))
be the sequence of all elements in W containing ui as first
coordinate. Consider Vui = (V(ci),V(ci + 1), . . . ,V(di)),
a sequence of elements in V pairing with ui. Note Vui is a
periodic sequence with period=θ1. Thus, the maximum mul-

tiplicity in Vui is d |Vui |
θ1
e, and similarly for Wui . Hence, the

maximum multiplicity of W is

max
wk∈W

mwk = max
1≤i≤θ0

d |Vui |
θ1
e (11)

It is trivial that

|Vui | = mui , ∀i, 1 ≤ i ≤ θ0 (12)

Moreover, by Eq.6, we will have

∀ui ∈ U,mui ≤ d
|U|
θ0
e (13)

Hence, by Eq.11, Eq.12, Eq.13, we will have

max
wk∈W

mwk = max
1≤i≤θ0

d |Vui |
θ1
e ≤ d

d |U|
θ0
e

θ1
e = d |U|

θ0 × θ1
e (14)

57



Since |U| = |W|, therefore

max
wk∈W

mwk ≤ d
|W|

θ0 × θ1
e, (15)

so Eq.10 holds. Similarly, the minimum multiplicity of W is

min
wk∈W

mwk = min
1≤i≤θ0

b |Vui |
θ1
c ≥ b |W|

θ0 × θ1
c (16)

Eq.9 follows from Eq.15 and Eq.16. We call such a W a
compound multiset.

For edge linking between Ls and Lt, Gscaler links u1 ∈
Ls to v2 ∈ Lt to form one edge (u1, v2) in Le (edge set). By
Eq.4, Ls/Lt satisfies U/V in Theorem 1 respectively, and it
is easy to see that Le is the compound W in Theorem 1.

Theorem 2. Given non-empty Ls(U) dequeued&enqueued
from Sαs′ , and non-empty Lt(V) dequeued&enqueued from
Tαt′ , the maximum multiplicity for edge set Le(W) as de-
scribed in Theorem 1 is 1.

Proof. If |Ls| ≤ |Sαs′ |, then every element in Ls is
unique. Hence, the maximum multiplicity for elements in
Ls is 1, so Le has maximum multiplicity of 1. The case is
similar for |Lt| ≤ |Tαt′ |.

If |Ls| > |Sαs′ | and |Lt| > |Tαt′ |, then Ls has |Tαs′ | dis-
tinct elements, and Lt has |Tαt′ | distinct elements. By The-
orem 1, the maximum multiplicity of elements in Le is

d |Le|
|Sαs′ | × |Tαt′ |

e (17)

Since |Ls| = |Le|, and Ls has f̃corr(αs
′, αt

′) × m̃ elements,
the maximum multiplicity of elements in Le is

d f̃corr(αs
′, αt

′)× m̃
|Sαs′ | × |Tαt′ |

e

Moreover, by C3 in Sec.3.4.1, we know that

f̃corr(αs
′, αt

′)× m̃ ≤ |Sαs′ | × |Tαt′ |, (18)

so d |Le|
|Sαs′ | × |Tαt′ |

e = d f̃corr(αs
′, αt

′)× m̃
|Sαs′ | × |Tαt′ |

e ≤ 1 (19)

Hence, by Theorem 2, there are no multiple edges from Ls
to Lt. Therefore, Gscaler successfully produces a graph
without multiple edges.

Moreover, the generation runs in linear time: For each

f̃corr(αs
′, αt

′), the generation for Ls and Lt is in linear time:
After Ls, Lt are generated, the Le is formed by sequentially
matching the elements in Ls and Lt as described in Theo-
rem 1. Hence, the total edge linking time is linear. Given

the edge correlation f̃corr in Table 4, Gscaler generates G̃
as presented in Fig. 1.

Finally, as stated at the end of Sec.3.4.1, there might be

some small possibility that
∑
f̃corr(αs

′, αt
′) < 1 holds. This

is the theoretical worst case (which has not happened in
our experiments). To resolve this, Gscaler introduces ε

dummy nodes into G̃ for the purpose of maintaining de-
gree distribution similarity. After the dummy nodes are in-

troduced, all the 1 −
∑
f̃corr(αs

′, αt
′) edges are linked to

Algorithm 4: EDGE SYNTHESIS(S̃bi, fcorr )

1 f̃corr ← correlation function scaling(S̃bi, fcorr)

2 while f̃corr(αs
′, αt

′) = p do
/* produce the Ls and Lt */

3 Ls, Lt ← local set(αs
′, αt

′, p, m̃)
/* link the edges from Ls to Lt */

4 G̃← edge linking(Ls, Lt)

5 add dummy nodes to G̃ (if necessary)

these dummy nodes. To avoid multiple edges, we can set
ε = maxα{I(α), O(α)}; this ε is obviously not the small-
est possible. However, such an ε is already small(negligible)

compared to |G̃|, and such a scenario is rare. Algo.4 sum-
marizes the edge synthesis.

4. EVALUATION
We first review the graph properties that we use for sim-

ilarity measurement.

4.1 Graph Properties
There are numerous graph properties that can be chosen

as the similarity measurement criteria, e.g. degree distri-
bution, diameter, k-core distribution, etc. We choose the 7
most common graph properties used in the literature. Let
N = {0, 1, 2, 3, . . .} and consider the following local and
global graph properties:

1. Indegree distribution fin : N → [0, 1]
fin(d) = z means a portion z of nodes have indegree d.

2. Outdegree distribution fout : N → [0, 1]
fout(d) = z means a portion z of nodes have outdegree d.

3. Bidegree distribution fbi : N2 → [0, 1]
Defined in Sec 3.3.

4. Ratio of largest strongly connected component
(SCC)
An SCC of G is a maximal set of nodes such that for ev-
ery node pair u and v, there is a directed path from u to
v and another from v to u. The ratio is the number of
nodes in the SCC divided by |V |.

5. Average clustering coefficient (CC)
For node vi, let Ni be the set of its neighbors. The local
clustering coefficient [34] Ci for nodes vi is defined by

Ci =
|{(vj , vk) : vj , vk ∈ Ni, (vj , vk) ∈ E}|

|Ni|(|Ni| − 1)

The average clustering coefficient [15] C̄ =

∑
vi∈V

Ci

|V |

6. Average shortest path length (ASPL)
For u and v in V , the pairwise distance d(u, v) is the num-
ber of edges in the shortest path from u to v; d(u, v) =∞
iff there is no path from u to v (where∞ is some number
greater than |E|). The ASPL is∑

d(u,v)<∞ d(u, v)

|V | × (|V | − 1)
.

58



7. Effective diameter [21]
The effective diameter is the smallest k ∈ N that is
greater than 90% of all pairwise distances that satisfy
d(u, v) <∞.

4.2 Measuring Similarity
For a scalar graph property α, let αG denote the α value

for G and α
(i)

G̃
denote the α value for G̃ constructed with al-

gorithmA(i). We can compareA(1) andA(2) by the absolute

difference |α(i)

G̃
−αG| or the relative difference |α(i)

G̃
−αG|/αG

These are equivalent since

|α(1)

G̃
− αG| < |α(2)

G̃
− αG| ⇐⇒

|α(1)

G̃
− αG|
αG

<
|α(2)

G̃
− αG|
αG

However, an α like effective diameter is an integer, whereas a
property like average clustering coefficient has α < 1. Some
information on αG is thus lost if we plot relative differences,
so we will plot absolute differences instead.

For a degree distribution f : Nd → [0, 1], we follow Leskovec
and Faloutsos [21] and use a Kolmogorov-Smirnov (KS) D-
statistic to measure the difference between distributions fG
and fG̃. For d = 1, the statistic is defined as

sup
x
|FG(x)− FG̃(x)|

where FG and FG̃ are the cumulative distribution functions
(cdf) for fG and fG̃. For d > 1, defining the cdf is not

straightforward, since there are 2d − 1 possibilities. In this
paper, we adopt Fasano and Franceschini’s computationally
efficient variant [10] of the KS D-statistic.

4.3 Algorithms
We compare Gscaler to state-of-art algorithms (for graph

sampling, generative models, and database scaling) that have
been widely used as baselines for comparison.

• In Random Walk with Escaping (RW), a starting node
v0 is chosen uniformly at random. Each step in the
random walk samples an unvisited neighbor uniformly
at random, and there is a probability 0.8 (following [21])
that the walk restarts at v0. If the walk reaches a dead
end, the walk restarts with a new v0.

• In Forest Fire (FF) [21], a v0 is similarly chosen. At
each step, first choose a positive integer y that is ge-
ometrically distributed with mean pf (1− pf ), and let
x = dy×ce, c ∈ [0, 1]. (We follow Leskovec and Falout-
sos and set pf = 0.7 and c = 1.) Pick uniformly at
random neighbors w1, . . . , wx that are not yet sam-
pled, then recursively repeat these steps at each wi.

• In Stochastic Kronecker Graph (SKG) [20], SKG first
trains a N1 by N1 matrix K1, where N1 is typically set
as 2. Then recursively multiply K1 through Kronecker
product. Thus, d multiplication of Kronecker product
results in a graph of Nd

1 nodes. In our experiment, we
use the Nd

1 closest to ñ as the target number ñ.

• UpSizeR was designed to synthetically scale a rela-
tional dataset by maintaining the degree distribution [33].
However, UpSizeR does not allow free choice of m̃. For
our experiments, we transform the graph to relational
tables so UpSizeR can scale it.

4.4 Datasets
We pick 2 real directed graphs from Stanford’s collection

of networks [24]. They are large enough that it makes sense
for scaling down, but small enough for global properties like
diameter to be determined in reasonable time. These two
graphs were also used by previous authors [20–22,25].

• Epinions (|V | = 75879, |E| = 508837) for the website
Epinions.com, where an edge (x, y) indicates user x
trusts user y.

• Slashdot is a website for technology-related news, where
users tag others as friend or foe. The graph contains
friend/foe links between the users of Slashdot. The
dataset Slashdot0811 (|V | = 77360, |E| = 828161) was
from November 2008.

Given the space constraint, we choose to compare more
properties for 2 graphs, instead of comparing fewer prop-
erties for more graphs.

5. RESULTS AND DISCUSSION
All experiments are done on a Linux machine with 128GB

memory and AMD Opteron 2.3GHz processor. For SKG,
we use the C++ implementation [24]. For UpSizeR, we
use the authors’ C++ implementation 1. For FF, RW and
Gscaler, we implemented them in Java.

These algorithms use the number of nodes n to specify
sample size or scale factor, so we define s = ñ/n. In our ex-
periments, we set s = 1

5
, 1

7.5
, 1

10
, 1

12.5
, 1

15
, 1

17.5
, 1

20
for scaling

down, and s = 2, 3, 4, 5, 6 for scaling up.
Gscaler allows the user to specify the number of edges

m̃. However, an m̃ that is arbitrarily small or arbitrarily

large will make it impossible for G̃ to be similar to G. To
be fair, we choose an m̃ for Gscaler that yields the best
results. We will revisit this issue in Sec.6.

For each s value, we run each algorithm 10 times (using
different seeds) on each dataset. The average of these 10
runs is then plotted as one data point.

5.1 Execution Time
For a fair comparison, we exclude the I/O time for all

algorithms.
Execution time for SKG has two parts: training time

and running time. SKG needs to train the graph initiator
matrix K1, where K1 is a 2 by 2 matrix in our case; K1

can be pre-computed. After K1 is trained, SKG uses K1 to
generate a graph with 2k nodes.

To get a better understanding of SKG’s time complexity,
we plot both training time and running time. SKG-Train
represents the time needed for training K1, while SKG-Run
represents the running time of graph generation given K1.

Fig.4 and Fig.5 show the execution time for all algorithms
using log scale.

For both datasets, SKG-Train is very large for training the
graph initiator K1. However, after K1 is trained, graph gen-
eration is fast (seconds), so SKG-Run is small. That aside,
Gscaler has the smallest execution time, which is faster
than SKG-Train by about 2 orders of magnitude, and faster
than RW,FF,UpSizeR by about 1 order of magnitude.

1http://www.comp.nus.edu.sg/∼upsizer/

59



 1

 10

 100

 1000

 10000

1/20
1/17

1/15
1/12.5

1/10
1/7.5

1/5 2 3 4 5 6

tim
e 

(s
ec

on
ds

)

scale s

Execution Time

FF
RW

SKG-Run
SKG-Train

UpSizeR
GSCALER

Figure 4: Execution time (log scale) for Slashdot.
FF and RW do not work for s > 1.

 1

 10

 100

 1000

 10000

1/20
1/17.5

1/15
1/12.5

1/10
1/7.5

1/5 2 3 4 5 6

tim
e 

(s
ec

on
ds

)

scale s

Execution Time

FF
RW

SKG-Run
SKG-Train

UpSizeR
GSCALER

Figure 5: Execution time (log scale) for Epinions.
FF and RW do not work for s > 1.

5.2 Theoretical Bounds of Degree Distribution
Before looking at the similarity comparison, we first show

theoretically that Gscaler performs well on varying m̃ and
ñ for indegree/outdegree distribution. To save space, we
just consider indegree distribution throughout this section.
The proof for the outdegree distribution is similar.

Theorem 3. Given original graph G’s indegree distribu-

tion is fin, and Gscaler scales G to G̃, where m̃ and ñ

scale by the same ratio s. Then, E[D(fin, f̃in)] = 0.

Proof. As explained in Sec.3.2, Gscaler scales Sin with
the following criterion:

E[ctS̃in(x)] = ctSin(x)× ñ
n

Now, consider the current scaled number of nodes |Ṽ | and

number of edges |Ẽ|. After node scaling,

E[|Ṽ |] = E[
∑
x

ctS̃in(x)] =
∑
x

E[ctS̃in(x)] =
∑
x

ctSin(x)× s

= n× s = ñ.

E[|Ẽ|] = E[
∑
x

ctS̃in(x)× x] =
∑
x

E[ctS̃in(x)× x]

=
∑
x

E[ctS̃in(x)]× x =
∑
x

ctSin(x)× s× x

=
∑
x

ctSin(x)× x× s = m× s = m̃.

Hence, no edge adjustment is expected in Sec.3.2. Thus,

∀x,E[f̃in(x)− fin(x)] = 0.

Consequently, E[D(fin, f̃in)] = 0.

However, a Gscaler user may want to have a G̃ with av-
erage degree different from G, i.e. m̃ and ñ scale by different
factors. In this case, Gscaler can still produce a similar de-
gree distribution with small and bounded error.

Theorem 4. Given an original graph G’s indegree distri-

bution is fin, and Gscaler scales G to G̃, where ñ = n× s,
m̃ = m× s× (1 + r) and r 6= 0. Then,

E[D(fin, f̃in)] ≤ 2m|r|
n× d∗

where d∗ is approximately the largest degree of G.

Proof. As shown in the proof of Theorem 3, after node

scaling, E[|Ṽ |] = n× s = ñ and E[|Ẽ|] = m× s 6= m̃.

Hence, edge adjustment is needed, as stated in Sec.3.2.
In total, we are expecting m × s × (1 + r) edges. Hence,
|m× rs| edges are expected to be added/removed. We refer
to ctS̃in(x) as ct(x) if there is no ambiguity.

Consider r > 0, so m× rs edges are to be added. This is
done by the edge adjustment operation as stated in Algo.2:
(i) ct(l) − −, ct(h) + +, (ii) l + +, h − −. The net effect is
to add h− l edges per adjustment.

Let dm be the maximum degree of G. We assume l is
initiated as 0, while h is initialized as dm.
Case ct(l) > 0 for all the first k adjustment:
Then Gscaler will add

dm, dm− 2, dm− 4 . . . , dm− [(k− 1) mod ddm
2
e]× 2 (20)

edges for the first k adjustments. Let Tk be the total number
of edges added by first k adjustments, then

Tk ≥
dm
2
× k (21)

Since m× rs edges are expected to be added, the expected
number of adjustments k satisfies

k ≤ m× rs
dm
2

=
2m× rs
dm

(22)

Moreover, each edge adjustment changes f̃in by

(i) decrementing 1
ñ

for some f̃in(xi), where xi <
dm
2

(ii) incrementing 1
ñ

for some f̃in(xj), where xj >
dm
2

Thus, the expected total decremental changes made to f̃in
is 1

ñ
× k. By Eq.22,

1

ñ
× k ≤ 1

ñ
× 2m× rs

dm
=

2m× rs
sn× dm

=
2mr

n× dm
(23)

Since D(fcorr, f̃corr) measures largest difference between the

cumulative function of fcorr, f̃corr. Hence, by Eq.23,

E[D(fcorr, f̃corr)] ≤
2mr

n× d∗ , where d
∗ = dm (24)

Case ∃lj , ct(lj) = 0. Assume at the ith adjustment, ct(l0) =
0 for some l0, where i is the smallest.
Then Gscaler shifts l to l0+1, and try to decrease ct(l0+1).
Assume ct(l0 + 1) > 0, then we can do ct(l0 + 1)−−.

1. l0 + 1 6= h: By Eq.20, the number of edges added at
ith step is dm − [(i − 1) mod d dm

2
e] × 2 − 1. Hence,

Ti = Ti−1 +dm−[(i−1) mod d dm
2
e]×2−1. By Eq.21,

Ti + 1 ≥ dm
2
× i (25)

60



Then, Ti ≥ dm
2
× i− 1 = dm−1

2
× i+ ( i

2
− 1)

Since T1 = dm−1 ≥ dm−1
2

, then Ti ≥ dm−1
2
× i ∀i ∈ N

2. l0 + 1 = h: Then l will be reset to 0, and h will be
reset to dm, so the number of edges at ith adjustment
is obviously larger than dm−[(i−1) mod d dm

2
e]×2−1.

Hence, Eq.25 will hold as well.

Therefore, during the first k adjustments, if we encounter
w different l0, l1, . . . , lw−1, such that ct(lj) = 0, ∀0 ≤ j < w,
then by mathematical induction, one can still conclude that

Ti ≥
dm − w

2
× i.

Hence, let d∗ = dm−w and follow the proof after Eq.21; then

E[D(fcorr, f̃corr)] ≤ 2mr
n×d∗ , where d∗ is close to dm in general.

The proof for r < 0 is similar

5.3 Experimental Results
All figures in this section (except Figs.7, 9, 11,12) plot the

similarity measures (Sec. 4.2) comparing G and G̃, where

• the horizontal axis is scale factor s = ñ
n

;

• the vertical axis is KS D-statistic for indegree, outde-
gree and bidegree distributions;

• the vertical axis is absolute error for the other 5 prop-
erties (effective diameter, largest SCC ratio, etc.);

• the true value for all datasets’ graph properties are
provided above each figure;

• we choose m̃ to give best results for Gscaler; the
other algorithms do not allow a free choice of m̃.

We first look at scaling down for all the algorithms. As
mentioned in Sec.1, scaling down in GSP has an objective
that is different from graph sampling. However, we use
graph sampling algorithms for comparison because GSP is a
new problem, so there is no other algorithms for comparison
except UpSizeR and SKG.

FF
RW
SKG

UpSizeR
GSCALER

 0
 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

 0.35
 0.4

 0.45

1/20
1/17.5

1/15
1/12.5

1/10
1/7.5

1/5

Slashdot

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

1/20
1/17.5

1/15
1/12.5

1/10
1/7.5

1/5

Epinions

Figure 6: KS-D statistics for Indegree Distribution

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0  2  4  6  8  10  12  14

R
at

io

Indegree

Slashdot

FF
RW

SKG
UpSizeR

GSCALER
Real

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0  2  4  6  8  10  12  14

R
at

io

Indegree

Epinions

FF
RW

SKG
UpSizeR

GSCALER
Real

Figure 7: Indegree Distribution Plot

FF
RW
SKG

UpSizeR
GSCALER

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

1/20
1/17.5

1/15
1/12.5

1/10
1/7.5

1/5

Slashdot

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

1/20
1/17.5

1/15
1/12.5

1/10
1/7.5

1/5

Epinions

Figure 8: KS-D statistics for Outdegree Distribution

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0  2  4  6  8  10  12  14

R
at

io

Indegree

Slashdot

FF
RW

SKG
UpSizeR

GSCALER
Real

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0  2  4  6  8  10  12  14

R
at

io

Indegree

Epinions

FF
RW

SKG
UpSizeR

GSCALER
Real

Figure 9: Outdegree Distribution Plot

5.3.1 Indegree Distribution
For the indegree distribution, Fig. 6 shows that both Gscaler

and UpSizeR perform very well for Slashdot, with error
< 0.01. For Epinions, UpSizeR has an error of 0.05 on
average, whereas Gscaler again has a small error < 0.01.

For more details, Fig. 7 plots the indegree distribution for
s = 0.2, where the x-axis is the indegree, and the y axis is
the ratio of nodes having that indegree. We only show the
plot up to indegree = 15, which covers more than 87% of
all nodes.

The plot shows that Gscaler and UpSizeR mimics G’s
indegree distribution very well. Although all algorithms pro-
duce power law shaped distributions, only UpSizeR and
Gscaler give a close fit for the empirical distribution.

5.3.2 Outdegree Distribution
For the outdegree distribution, Fig. 8 similarly shows that

both Gscaler and UpSizeR perform very well for Slashdot,
with error < 0.03 on average. For Epinions, UpSizeR has
an error of 0.05 on average, whereas Gscaler still has an
error < 0.01.

The outdegree distributions are plotted in Fig. 9. We ob-
serve that Gscaler and UpSizeR also closely match G’s
outdegree distribution. Again, although all algorithms pro-
duce power law shaped distributions, UpSizeR and Gscaler
give the best fit for the empirical outdegree distribution.

5.3.3 Bidegree Distribution

FF
RW
SKG

UpSizeR
GSCALER

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

1/20
1/17.5

1/15
1/12.5

1/10
1/7.5

1/5

Slashdot

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

1/20
1/17.5

1/15
1/12.5

1/10
1/7.5

1/5

Epinions

Figure 10: KS-D statistics for Bidegree Distribution

61



Original Gscaler UpSizeR

SKG RW FF

Figure 11: Bidegree distribution for Slashdot

Original Gscaler UpSizeR

SKG RW FF

Figure 12: Bidegree distribution for Epinions

Even though UpSizeRmatches the empirical indegree and
outdegree distributions, it is not able to capture the bide-
gree distribution that describes the correlation between inde-
gree and outdegree. Such correlation is especially important
for social network graphs. For example, in Epinions, the
number of people he/she trusts and the number of people
who trust him/her are correlated. As shown in Fig.10, only
Gscaler captures such correlation very well.

For a detailed look at the bidegree distributions, we give
2-dimensional plots Fig. 11 and Fig. 12. We transform the
bidegree distribution to a k × k matrix B. Each cell i, j
represents the portion of nodes with bidegree (i, j). In other
words, B[i, j] = fbi(i, j). When visualizing B, we use a gray
scale intensity plot for cell i, j to indicate B[i, j]. The larger
fbi is, the darker the cell (i, j) is. In our case, we set k = 50
which covers more than 90% of total nodes.

Fig. 11 and Fig. 12 show indegree is positively correlated
to outdegree. For both Slashdot and Epinions, Gscaler
is the best algorithm in capturing this indegree/outdegree
correlation. We also observe that UpSizeR tends to have in-
degree and outdegree negatively correlated. SKG has very
concentrated and similar-shaped plots for both datasets. We
suspect this is because of the self-similar matrix operation,
Kronecker product. For FF , it captures the bidegree corre-
lation for Slashdot’s bidegree, but not for Epinions.

FF
RW
SKG

UpSizeR
GSCALER

 0

 1

 2

 3

 4

 5

 6

 7

1/20
1/17.5

1/15
1/12.5

1/10
1/7.5

1/5

Slashdot [5]

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

1/20
1/17.5

1/15
1/12.5

1/10
1/7.5

1/5

Epinions [6]

Figure 13: Absolute Error for Effective Diameter

FF
RW
SKG

UpSizeR
GSCALER

 0
 0.005
 0.01

 0.015
 0.02

 0.025
 0.03

 0.035
 0.04

 0.045
 0.05

1/20
1/17.5

1/15
1/12.5

1/10
1/7.5

1/5

Slashdot [0.052]

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

1/20
1/17.5

1/15
1/12.5

1/10
1/7.5

1/5

Epinions [0.106]

Figure 14: Absolute Error for Average CC

5.3.4 Effective Diameter
Fig. 13 shows that, for Slashdot, Gscaler produces ex-

actly the real effective diameter; for Epinions, it produces
an effective diameter with an absolute error no larger than
1. Overall, Gscaler, FF , SKG are the best algorithms in
producing similar effective diameters.

5.3.5 Average Clustering Coefficient
For both datasets, Gscaler significantly reduces the er-

ror for average clustering coefficient. Fig. 14 shows that, for
Slashdot, the average error for the other algorithms are be-
tween 0.03 and 0.045. This corresponds to a relative error
of 60% to 90%. However, Gscaler only has an absolute
error 0.005 on average, which corresponds to a relative error
< 10%. Similarly, for Epinions, Gscaler also improves the
relative error from 70% to 10% on average.

5.3.6 Largest SCC Ratio

FF
RW
SKG

UpSizeR
GSCALER

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

1/20
1/17.5

1/15
1/12.5

1/10
1/7.5

1/5

Slashdot [0.909]

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

1/20
1/17.5

1/15
1/12.5

1/10
1/7.5

1/5

Epinions [0.425]

Figure 15: Absolute Error for Largest SCC Ratio

FF
RW
SKG

UpSizeR
GSCALER

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

1/20
1/17.5

1/15
1/12.5

1/10
1/7.5

1/5

Slashdot [3.74]

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1

1/20
1/17.5

1/15
1/12.5

1/10
1/7.5

1/5

Epinions [2.22]

Figure 16: Absolute Error for ASPL

62



For largest SCC ratio, Fig. 15 shows that FF , UpSizeR,
and Gscaler have the best performance for Slashdot. For
Epinions, SKG is the best performing algorithm, whereas
Gscaler only loses to SKG by an error < 0.01.

Note that, Gscaler and FF are the best performing al-
gorithms which produce best similar largest SCC ratio for
both datasets on average.

5.3.7 Average Shortest Path Length
Fig. 16 shows that Gscaler is the best algorithm in pro-

ducing similar ASPL for the scaled graph.
For Slashdot, Gscaler has relative error < 10%, whereas

the second best performing algorithm UpSizeR has the av-
erage relative error 40%

For Epinions, Gscaler is the most stable and accurate
algorithm, with a consistent absolute error < 0.25. RW
performs well for large s, but does badly for small s.

5.3.8 Scaling Up
To save space, Fig.17 plots performance of both Slashdot

and Epinions for each graph property.
Similar to scaling down, Gscaler improves the accuracy

of indegree/outdegree/bidegree distribution significantly. For
effective diameter, Gscaler and SKG are the best perform-
ing algorithms. Gscaler is the best algorithm which pro-
duces the most accurate results for average clustering coef-
ficient, largest SCC ratio, and average shortest path length.

5.3.9 Summary of Comparisons
For indegree, outdegree and bidegree distributions, Gscaler

reduces the error from about 0.1 for the other algorithms to
about 0.01. This is expected since Gscaler uses fbi to con-

struct G̃, and agrees with the theoretical bound in Sec. 5.2.

Gscaler only uses Psub = {fbi, fcorr} to construct G̃, but
measures similarity to G with a larger set P of both local
and global properties listed in Sec. 4.1. The results show
that enforcing Psub suffices to induce similarity for P.

6. LIMITATION
Unlike the other algorithms, a user can choose both ñ and

m̃ for Gscaler. Table 5 illustrates Gscaler’s accuracy for
Slashdot, using different ñ and m̃.

However, Gscaler cannot guarantee similarity for arbi-
trary choices of ñ and m̃ — the error bound in Theorem 4
becomes loose for large |r|. For example, if n = 1000 and
m = 5000, but ñ = 2000 and m̃ = 500000, one cannot

expect to find any G̃ similar to G.
There is a Densification Law [23] that says, ifG1, G2, G3, . . . ,

are snapshots of a growing graph, then

E(Gi) ∝ V (Gi)
α for some 1 ≤ α ≤ 2

If G̃ follows such a law, then (m̃/m) = (ñ/n)α. If ñ = sn
and m̃ = (1 + r)sm, then

m̃

ñα
=

(1 + r)sm

(sn)α
=

m

nα
1 + r

s(α−1)
,

Therefore, for G̃ to follow the Densification Law, the user
must choose r > 0 for s > 1, and r < 0 for s < 1. In other
words, m̃ > mñ/n for ñ/n > 1, and m̃ < mñ/n for ñ/n < 1.

Note that modeling the evolution of n and m is an inter-
esting problem that is relevant, but orthogonal to GSP.

Slashdot Effective Largest ASPL CC
Diameter SCC

n = 77360 m = 828161 5 0.909 3.74 0.052
ñ = 4421 m̃ = 32179 5 0.916 3.59 0.058
ñ = 4421 m̃ = 33831 5 0.916 3.52 0.053
ñ = 4421 m̃ = 34399 5 0.916 3.62 0.058
ñ = 15472 m̃ = 141583 5 0.916 3.57 0.053
ñ = 15472 m̃ = 144895 5 0.916 3.51 0.060
ñ = 15472 m̃ = 147849 5 0.916 3.45 0.059
ñ = 154720 m̃ = 1669903 5 0.917 3.71 0.055
ñ = 154720 m̃ = 1671288 5 0.917 3.71 0.062
ñ = 154720 m̃ = 1672057 5 0.917 3.70 0.062
ñ = 386800 m̃ = 4182213 5 0.917 3.89 0.058
ñ = 386800 m̃ = 4186353 5 0.917 3.89 0.048
ñ = 386800 m̃ = 4190908 5 0.917 3.89 0.053

Table 5: Gscaler accuracy for different ñ and m̃.

7. CONCLUSION
We considered the problem of synthetically scaling a given

graph. Our solution Gscaler first breaks G into pieces,
scales them, then merges them using the degree and corre-
lation functions from G.

Different from previous approaches, Gscaler gives user
a choice for ñ and m̃. We proved that Gscaler does not
produce multiple edges between two nodes, and has a small

distribution error even when the average degree of G̃ differs
from the original graph G.

Experiments with 2 well-known real datasets show that

the G̃ constructed by Gscaler is more similar to G for
most properties than random walk, forest fire, UpSizeR and
Stochastic Kronecker Graph.

Our current work aims to extend Gscaler to scale rela-
tional databases by representing the tables as graphs.

8. REFERENCES
[1] N. K. Ahmed, N. Duffield, et al. Graph sample and

hold: A framework for big-graph analytics. In Proc.
KDD, pages 1446–1455, 2014.

[2] N. K. Ahmed, J. Neville, and R. Kompella. Network
sampling: From static to streaming graphs. TKDD,
8(2):7, 2014.

[3] Y.-Y. Ahn, S. Han, et al. Analysis of topological
characteristics of huge online social networking
services. In Proc. WWW, pages 835–844, 2007.

[4] W. Aiello, F. Chung, and L. Lu. A random graph
model for power law graphs. Experimental
Mathematics, 10(1):53–66, 2001.

[5] R. Albert and A.-L. Barabási. Statistical mechanics of
complex networks. Reviews of Modern Physics,
74(1):47, 2002.

[6] A.-L. Barabási and R. Albert. Emergence of scaling in
random networks. Science, 286(5439):509–512, 1999.

[7] D. Chakrabarti, Y. Zhan, and C. Faloutsos. R-mat: A
recursive model for graph mining. In SDM, volume 4,
pages 442–446. SIAM, 2004.

[8] S. Duan, A. Kementsietsidis, K. Srinivas, and
O. Udrea. Apples and oranges: a comparison of rdf
benchmarks and real rdf datasets. In Proc. SIGMOD,
pages 145–156. ACM, 2011.

[9] P. L. Erdös and A. Rényi. On the evolution of random
graphs. In Publication of the Mathematical Institute of

63



 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

2 3 4 5 6

Indegree Distribution

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

2 3 4 5 6

Outdegree Distribution

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

2 3 4 5 6

Bidegree Distribution

 0

 1

 2

 3

 4

 5

 6

2 3 4 5 6

Effective Diameter

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

2 3 4 5 6

Average Clustering Coefficient

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

2 3 4 5 6

Largest SCC Ratio

 0

 1

 2

 3

 4

 5

 6

2 3 4 5 6

Average Shortest Path Length

Slashdot-SKG
Slashdot-UpSizeR

Slashdot-GSCALER
Epinions-SKG

Epinions-UpSizeR
Epinions-GSCALER

Figure 17: Scaling Up Experiments (s values on horizontal axes; legend format is dataset-algorithm.)

the Hungarian Academy of Science, pages 17–61, 1960.

[10] G. Fasano and A. Franceschini. A multidimensional
version of the Kolmogorov-Smirnov test. Monthly
Notices Royal Astronomical Society 255(1), 1987.

[11] A. D. Flaxman, A. M. Frieze, and J. Vera. A
geometric preferential attachment model of networks
ii. Internet Mathematics, 4(1):87–111, 2007.

[12] M. Gjoka, M. Kurant, et al. Walking in Facebook: A
case study of unbiased sampling of OSNs. In Proc.
INFOCOM, pages 2498–2506, 2010.

[13] L. A. Goodman. Snowball sampling. The Annals of
Mathematical Statistics, pages 148–170, 1961.

[14] P. Hu and W. C. Lau. A survey and taxonomy of
graph sampling. CoRR, abs/1308.5865, 2013.

[15] A. Kemper. Valuation of Network Effects in Software
Markets. Physica, 2010.

[16] V. Krishnamurthy, M. Faloutsos, et al. Reducing large
Internet topologies for faster simulations. In Proc.
NETWORKING, pages 328–341, 2005.

[17] R. Kumar, P. Raghavan, et al. Extracting large-scale
knowledge bases from the web. In VLDB, volume 99,
pages 639–650, 1999.

[18] S. Lee, P. Kim, and H. Jeong. Statistical properties of
sampled networks. Physical Review E 73(1), 2006.

[19] J. Leskovec, D. Chakrabarti, et al. Realistic,
mathematically tractable graph generation and
evolution, using kronecker multiplication. In Proc.
PKDD 2005, pages 133–145. Springer, 2005.

[20] J. Leskovec, D. Chakrabarti, et al. Kronecker graphs:
An approach to modeling networks. J. Machine
Learning Research, 11:985–1042, 2010.

[21] J. Leskovec and C. Faloutsos. Sampling from large
graphs. In Proc. KDD, pages 631–636, 2006.

[22] J. Leskovec, D. Huttenlocher, and J. Kleinberg. Signed
networks in social media. In Proc. SIGCHI, pages
1361–1370, 2010.

[23] J. Leskovec, J. Kleinberg, and C. Faloutsos. Graphs
over time: densification laws, shrinking diameters and
possible explanations. In KDD, pages 177–187, 2005.

[24] J. Leskovec and A. Krevl. SNAP Datasets: Stanford

large network dataset collection.
http://snap.stanford.edu/data, June 2014.

[25] J. Leskovec, K. J. Lang, et al. Community structure in
large networks: Natural cluster sizes and the absence
of large well-defined clusters. Internet Mathematics,
6(1):29–123, 2009.

[26] R.-H. Li, J. Yu, L. Qin, R. Mao, and T. Jin. On
random walk based graph sampling. In ICDE, pages
927–938, 2015.

[27] N. Metropolis, A. W. Rosenbluth, et al. Equation of
state calculations by fast computing machines. The
Journal of Chemical Physics, 21(6):1087–1092, 1953.

[28] S. Mussmann, J. Moore, J. J. P. III, and J. Neville.
Incorporating assortativity and degree dependence
into scalable network models. In Proc. AAAI, 2015.

[29] S. Qiao and Z. M. Özsoyoğlu. Rbench:
Application-specific rdf benchmarking. In Proc.
SIGMOD, pages 1825–1838. ACM, 2015.

[30] B. Ribeiro and D. Towsley. Estimating and sampling
graphs with multidimensional random walks. In Proc.
IMC, pages 390–403, 2010.

[31] R. Staden. A strategy of dna sequencing employing
computer programs. Nucleic Acids Research,
6(7):2601–2610, 1979.

[32] M. Stumpf, C. Wiuf, and R. May. Subnets of scale-free
networks are not scale-free: Sampling properties of
networks. PNAS 102(12), pages 4221–4224, 2005.

[33] Y. C. Tay, B. T. Dai, D. T. Wang, E. Y. Sun, Y. Lin,
and Y. Lin. Upsizer: Synthetically scaling an empirical
relational database. Inf. Syst., 38(8):1168–1183, 2013.

[34] D. J. Watts and S. H. Strogatz. Collective dynamics of
’small-world’ networks. Nature, 393(6684):409–10.

[35] C. Wilson, B. Boe, et al. User interactions in social
networks and their implications. In Proc. EuroSys,
pages 205–218, 2009.

64


	GSCALER: Synthetically Scaling A Given GraphJ.W. Zhang, Y.C. Tay

