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ABSTRACT
User-generated content on the Web increasingly has a geospa-
tial dimension, opening new opportunities and challenges in
location-based services and location-based social networks
for mining and analyzing user behaviors and patterns. The
applications of such analysis range from recommendation
systems to geo-marketing. Motivated by these needs, query-
ing and analyzing spatio-textual data has received a lot of
attention over the last years. In this paper, we address the
problem of matching point sets based on the spatio-textual
objects they contain. This is highly relevant for users associ-
ated with geolocated photos and tweets. We formally define
this problem as a Spatio-Textual Point-Set Join query, and
we introduce its top-k variant. For the efficient treatment
of such queries, we extend state-of-the-art algorithms for
spatio-textual joins of individual points to the case of point
sets. Finally, we extensively evaluate the proposed meth-
ods using large scale, real-world datasets from Flickr and
Twitter.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—
Spatial databases and GIS

General Terms
Algorithms

Keywords
spatio-textual join, spatio-textual point sets, similarity search

1. INTRODUCTION
Social media platforms such as Twitter, Flickr, Facebook

and Foursquare have attracted billions of active users. In
the case of Twitter 500 million tweets are exchanged every
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u1, o1, {shop,jeans}

u2, o2, {football,match,stadium}

u3, o3, {shop,market}

u2, o5, {hurry, tube, time}

u1, o4, {tube,ride}

u3, o6, {thames,bridge}

u3, o7, {bus,ride}

spatial threshold

u2, o8, {football,derby}

Figure 1: STPSJoin query scenario. Multiple objects are
spatially or textually similar, but only users u1 and u3 have
objects which are mutually similar.

day from 100 million active users. User activities in these
platforms generate content that has textual component, e.g.,
status updates, short messages, or tags, and, following the
widespread adoption of GPS in mobile devices, a geospatial
component, e.g., geotagged tweets, photos, and user check-
ins. Thus, the actions of users are documented by their
messages in social networks and as such generate “traces”,
which consist of spatio-textual objects.

Efficient indexing and querying of spatio-textual data has
received a lot of attention over the past years, due to the
high importance of such content in location-based services,
such as nearby search and recommendations. In particu-
lar, multiple types of spatio-textual queries have been ex-
tensively studied, including boolean range queries, top-k
queries, k-nearest neighbor queries, and more recently, spatio-
textual similarity joins [11, 7]. Nevertheless, in existing
works, spatio-textual entities are typically treated as isolated
observations. A typical example query is to find nearby
restaurants or hotels matching certain criteria.

The work in [7] deals with finding pairs of entities that
are both spatially close and textually similar. Example use
cases are de-duplicating Points-of-Interest across datasets,
or finding matching photos taken at roughly the same loca-
tion and having similar tags.

Now consider looking for similar users in social networks.
Here, a user is characterized by the messages they generate
and, if available, respective location information. As such,
each message can be considered a spatio-textual object, e.g.,
a geotagged photo or tweet. With each user being character-
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ized by a set of spatio-textual objects, to find similar users,
one needs to examine the similarity of these respective sets.
Effectively, this characterizes users by what and where they
tweet. An example of such a scenario is depicted in Figure 1.
To that effect, this work addresses the problem of similarity
search for spatio-textual entities, with an entity being char-
acterized by a set of spatio-textual objects. We introduce the
Spatio-Textual Point-Set Similarity Join (STPSJoin) query.
Given sets of spatio-textual objects, each one belonging to
a specific entity, this query seeks pairs of entities that have
similar spatio-textual objects.

The STPSJoin can naturally model the search for entities
exhibiting similar behavior according to the spatio-textual
objects they generate. With social media users posting mes-
sages at various locations, the STPSJoin allows us to dis-
cover users that exhibit similar “geo-textual” behavior. This
holds especially true for location-based social media sites,
e.g., Foursquare, where users report on the places they visit.
Following the general observation that spatio-textual object
sets can be used to define the context of a user, e.g. has fam-
ily because of frequent toy store visits, the STPSJoin can be
used to discover such groups of similar users.

To efficiently process (top-k) STPSJoin, we adapt and ex-
tend the state-of-the-art algorithms for processing similarity
joins for single points [7]. The proposed algorithms make use
of spatio-textual indexes in conjunction with an early ter-
mination and a filter-and-refinement strategy to effectively
prune the search space, thus reducing the execution time by
orders of magnitude. More specifically, the contributions of
our work are as follows.

• We formally define the spatio-textual point set simi-
larity join (STPSJoin) query, which extends and gen-
eralizes the spatio-textual similarity join for the case
of point sets, and its top-k variant.

• We first derive a baseline algorithm for the STPSJoin

query by adapting the state-of-the-art PPJ-C algorithm
[7] to work for point sets. Then, we propose two opti-
mized algorithms, S-PPJ-B and S-PPJ-F, which apply
an early termination and a filter-and-refinement strat-
egy, respectively, to drastically prune the search space.
This significantly reduces the number of comparisons
required, both in terms of pairs of entities and in terms
of individual points for each candidate pair.

• In addition, we present an alternative version of S-

PPJ-F, denoted as S-PPJ-D, which relies on an R-tree
instead of a grid for the spatial indexing.

• We adapt our methods to efficiently treat the top-k
STPSJoin query. We provide a direct adaptation of our
best performing algorithm, and extended it in order to
allow additional pruning of the search space.

• Finally, we perform an extensive experimental evalu-
ation using three large, real-world datasets. The re-
sults of the experimental evaluation demonstrate that
the proposed algorithms achieve an order of magni-
tude and above improvement in terms of execution
time when compared to the baseline method.

The remainder of this work is structured as follows. Sec-
tion 2 reviews related work. The STPSJoin query and its
top-k variant are formally introduced in Section 3. The

algorithms for the efficient evaluation of (top-k) STPSJoin

queries are presented in Section 4. Section 5 presents an ex-
perimental evaluation of the proposed approaches. Finally,
Section 6 gives conclusions and directions for future work.

2. RELATED WORK
First, we review recent advances on spatio-textual search,

which exploit spatial and textual characteristics in order to
efficiently prune the search space while searching for similar
objects. Then, we detail the state-of-the-art in similarity
joins, in order to establish the basis for our work on point
set joins. Finally, we present related literature on user rec-
ommendations using location histories.

2.1 Spatio-Textual Search
A large amount of web documents nowadays contain both

spatial and textual information, characteristics which are ex-
ploited by modern applications to provide enhanced location-
based services. Such applications rely on spatio-textual in-
dexing for efficient computation.

Spatio-textual indexes. Current research enables the
combination of spatial and textual indexes into hybrid spatio-
textual indexes that explicitly support geographically aware
search. Established spatial indexes, such as R-trees [22],
regular grids, and space-filling curves, are integrated with
textual indexes, such as inverted files or signature files. For
example, SPIRIT [36] uses regular grids as spatial indexes
and inverted files for the indexing of the documents. [43]
proposed different approaches to hybrid indexing that em-
ploy R*-trees [6] for spatial indexing and inverted files for
textual indexing. [12] follows a similar approach, but uti-
lizes space-filling curves for spatial indexing. [15] combines
R-trees with signature files, which are stored internally in
the nodes of the tree. The IR-tree index [13, 26], lever-
ages inverted files for each node of the tree, in order to keep
aggregate information of the textual characteristics of the
relevant objects, while [33] uses aR-Trees [30] in combina-
tion with inverted files. Spatio-textual search is employed in
order to answer a range of queries. An overview of the per-
formance of the most commonly used spatio-textual indexes
in such queries can be found in [11].

Spatial group keyword queries. Another type of spatio-
textual queries is spatial group keyword queries [40, 41, 9,
29]. These aim at finding groups of spatio-textual objects
that collectively satisfy a number of given keywords, while
minimizing the collective distances between points in the
group and the given query point.

Although the aforementioned queries involve searching for
groups of objects, they differ from the problem addressed
in this paper. The STPSJoin query is not constrained by
an input query point nor a given textual description. In
addition, groups of objects are predefined according to the
user they are associated with. STPSJoin considers spatial
and textual distances of objects across groups, rather than
within groups. Finally, STPSJoin deals with the problem
of spatio-textual join, which is fundamentally different from
range and kNN queries.

2.2 Similarity Joins
Similarity joins seek to identify pairs of objects from given

sets that satisfy a predefined similarity threshold.
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Set similarity joins. The set similarity join task is compu-
tationally challenging; a naive approach requires the consid-
eration of the similarity between every possible pair of ob-
jects across sets. Set similarity joins have been extensively
studied, especially with respect to textual characteristics,
and multiple optimizations have been proposed. [34] uses
an inverted index based probing method to reduce the num-
ber of potential candidates. [10] observes that the prefixes
of potential candidates must satisfy a minimal overlap. The
ALL-PAIRS algorithm proposed by [5] further optimizes the
size of the inverted index. [37] presents Adapt-Join and [38]
proposes PPJOIN+ which are the state-of-the-art algorithms
for set similarity joins. PPJOIN+ builds on ALL-PAIRS and
introduces a positional filtering principle which exploits the
ordering of tokens, and operates both on the prefix and the
suffix of the tokens of objects. PPJOIN+ is internally used as
the final step of our algorithms in order to efficiently com-
pute textual similarity joins. An experimental analysis and
evaluation on string similarity joins can be found in [24].

Spatial joins. Data structures and algorithms for spatial
joins have been widely studied in the literature. A relevant
survey can be found in [23]. Spatial joins have been used
in combination both with space partitioning as well as with
data partitioning structures. The state of the art algorithm
for spatial joins has been proposed in [8]. We utilize this
algorithm to prune the search space when searching for spa-
tially relevant users using an R-Tree (see Section 4.1.4).

The problem of spatial joins over point sets has not re-
ceived much attention. Adelfio et al. [2, 1] focus on similar-
ity search for a collection of spatial point set objects based
on the Hausdorff distance. The motivation behind their
work is highly relevant to the STPSJoin query. However,
there are important differences. We consider web objects
with spatio-textual characteristics and measure the distance
among point sets using a different similarity measure. The
Hausdorff distance measures the maximum discrepancy be-
tween two point sets, whereas in our work we use a mea-
sure inspired by the Jaccard coefficient which focuses on the
amount of objects from different point sets that are similar.

Spatio-textual joins. Spatio-textual joins have attracted
some attention recently with a specific focus on joins for
spatio-textual points. This process is primarily executed
for the purpose of duplicate detection. The work in [3] is
one of the first examples of spatio-textual join methods.
They propose the SpSJoin query that follows the MapRe-
duce paradigm for scalable computation of spatio-textual
join queries. The spatio-textual join query has been also
studied in the form of spatial regions associated with tex-
tual descriptions ([27, 28, 20]). Pruning strategies, based
on spatial and textual signatures of objects, are employed
to filter the number of candidates. [32] presents grid and
quad tree based indexes in order to efficiently partition the
database either in a local or global fashion. They also ex-
plore different dimensions of the problem, including the use
of PPJOIN+ and All-Pairs for text similarity joins, as well
as single and multi-threaded approaches.

Bouros et al. [7] propose the state of the art spatio-textual
join algorithms. Their work builds on top of PPJ, a base-
line method that extends PPJOIN+ to account for objects
with spatio-textual characteristics and a given spatial dis-
tance threshold. The algorithms PPJ-C and PPJ-R extend
PPJ by leveraging a grid and an R-Tree based index respec-

tively. These methods provide the basis for our work; thus,
we revisit them in more detail in Section 4.1.1.

Work on spatio-textual joins is highly relevant to our ap-
proach. However, the focus is different. To the best of
our knowledge, current research in the field has focused
on spatio-textual similarity joins among points. On the
contrary, our work introduces spatio-textual similarity joins
among point sets. Point sets are relevant when objects are
grouped with respect to a common characteristic. In this
case, the focus is on identifying similarities among groups,
rather than single elements. For instance, in the case of web
objects, a group consists of objects associated with the same
user. In this case, point-set joins identify user similarity in-
stead of object similarity.

2.3 User Recommendation Systems
Matching users based on their location history is one of

the main tasks of recommendation engines in location-based
social networks [4]. User location histories have been used
for identifying local experts, recommending friends, and ex-
tracting local communities. It has been revealed by several
studies that location information plays a vital role in deter-
mining such relationships [14, 16].

Typically, these approaches take into consideration ad-
ditional information, such as location ratings, semantics of
location descriptions and tags, sequence of visit or dura-
tion of stay. [25] identifies users with similar traveling pat-
terns based on matching sequences of locations visited by
the users. Similar works ([25, 42, 39]) deal with finding
users with similar patterns in behavior. [21] study several
features to identify users that are similar to a given user.
Their methods are based on a logistic regression model. Ac-
cording to their work, a single and in many cases imprecise
user location feature (such as city or country) is not effective.

In this paper, we focus on multiple geo-tagged objects for
each user, which may provide a better insight into location-
based user similarity.

3. PROBLEM DEFINITION
We assume a database D of spatio-textual objects created

by different users U . A spatio-textual object o ∈ D is a
triple o = 〈u, loc, doc〉, where u ∈ U is the user associated
with this object, loc = 〈x, y〉 is a spatial point and doc is a
set of keywords. We refer to the user, location and keywords
associated with an object o using the notation o.u, o.loc and
o.doc respectively. In addition, we use Du to denote the set
of objects belonging to user u.

The spatial distance δ(o, o′) between two objects is calcu-
lated as the Euclidean distance between their spatial loca-
tions. Moreover, the textual similarity τ(o, o′) is measured
according to the Jaccard similarity of their keywords:

τ(o, o′) =
|o.doc ∩ o′.doc|
|o.doc ∪ o′.doc| .

Given a spatial threshold εloc and a textual threshold εdoc ,
we say that two objects o, o′ ∈ D match if their spatial dis-
tance is below εloc and their textual similarity is above εdoc .
Matching between objects is defined using the predicate µ:

µ(o, o′) =

{
True if δ(o, o′) ≤ εloc and τ(o, o′) ≥ εdoc
False otherwise.

For brevity, we overload µ to account for matching an object
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with a set of objects D ⊆ D:

µ(o,D) =

{
True if there exists o′ ∈ D such that µ(o, o′)
False otherwise.

Furthermore, let two spatio-textual point-sets D and D′.
Function M (D,D′) returns the set of objects in D that
match with at least one object in D′:

M(D,D′) = {o ∈ D such that µ(o,D′)} .

We then use M to define the similarity of point-sets D and
D′. In particular, this is measured as the fraction of the
matched points from one set to the other divided by the
total number of points in the two sets. Formally:

σ(D,D′) =
|M(D,D′)|+ |M(D′, D)|

|D|+ |D′| .

The employed measure is inspired by the Jaccard similarity,
which is not directly applicable since it does not support par-
tial similarity between elements. More elaborate similarity
metrics over point sets can be found in [19, 31].

We can now define the Spatio-Textual Point Set Join query
(STPSJoin). STPSJoin identifies all pairs of users U which
are associated with sets of spatio-textual objects that have
a match higher than a specified threshold εu. We assume a
total ordering over U (i.e. ≺U ) to avoid returning duplicate
pairs. Formally, the STPSJoin query is defined as follows.

Definition 1. Given a database D of spatio-textual ob-
jects belonging to a set of users U , the STPSJoin query is
a tuple Q = 〈εloc , εdoc , εu〉 which returns a set R contain-
ing all pairs of users (u, u′) such that u, u′ ∈ U , u ≺ u′,
and σ(Du, Du′) ≥ εu with respect to the spatial and textual
thresholds εloc and εdoc.

An extension of the STPSJoin query in which we seek only
the k best pairs of users, in terms of spatial and textual simi-
larity of their objects, is the top-k STPSJoin query. Formally,
the top-k STPSJoin query is defined as follows.

Definition 2. Given a database D of spatio-textual ob-
jects belonging to a set of users U , the top-k STPSJoin query
is a tuple Q = 〈εloc , εdoc , k〉 which returns a set R contain-
ing k pairs of users (u, u′) such that u, u′ ∈ U , u ≺ u′, and
for any pair of users (v, v′) 6∈ R it holds that σ(Du, Du′) ≥
σ(Dv, Dv′) for each (u, u′) ∈ R with respect to the spatial
and textual thresholds εloc and εdoc.

4. ALGORITHMS
This section presents algorithms for the evaluation of the

STPSJoin query and the top-k STPSJoin query. First, we
present a baseline algorithm, and then we introduce methods
that exploit a filter and refine strategy in combination with
spatio-textual indexes in order to direct the search. Then,
we explain how our methods can be adapted to account for
the top-k STPSJoin query.

4.1 Algorithms for STPSJoin

4.1.1 Baseline Approach
Preliminaries. The straightforward method for evaluating
an STPSJoin query is to find, for every pair of users, the set
of matching objects, and then to check whether the resulting
similarity score σ exceeds the specified threshold εu. Thus,

16 17 18 19 20

11 12 13 14 15

6 7 8 9 10

1 2 3 4 5

(a) PPJ-C traversal.

16 17 18 19 20

11 12 13 14 15

6 7 8 9 10

1 2 3 4 5

(b) PPJ-B traversal.

Figure 2: PPJ-C and PPJ-B grid traversal strategies ex-
amples. Objects associated with user u (u′) are depicted
by squares (diamonds). Matched objects are painted black,
objects that do not match are painted white, while objects
whose state has not been determined are painted grey. PPJ-
B has determined the state of every object in cells 1 to 15,
while PPJ-C only the objects until cell 10.

for a pair of users (u, u′), the problem can be cast as a
spatio-textual similarity join query, ST-SJOIN(D, εloc , εdoc),
which has been studied in [7]. This query returns all pairs
of objects (o, o′) in D such that o, o′ ∈ D, δ(o, o′) ≤ εloc
and τ(o, o′) ≥ εdoc . Based on this, we can find the objects
of u that match with those of u′, and vice versa, and then
proceed with computing the score σ for this pair of users.

For this purpose, we adapt the PPJ-C algorithm from
[7] for the purposes of ST-SJOINs. PPJ-C uses a grid to
partition the space, in order to limit the search to those
candidates that can satisfy the spatial predicate of the join.
The grid is constructed dynamically at query time, using
cells that have an extent in each dimension that equals the
spatial distance threshold εloc . The cells are assigned ids in
a row-wise order from bottom to top (see Figure 2a).

PPJ-C visits the cells in ascending order of their ids, tak-
ing advantage of the spatial filtering, since the objects in
each visited cell c need to be joined only with those in c and
in the cells adjacent to c. In fact, to avoid duplicates, only
the adjacent cells with ids lower than c need to be examined.
Thus, for each cell, one self-join operation and at most four
non-self join operations need to be performed. These are
performed using the PPJ algorithm, that in turn extends
the set similarity join algorithm PPJOIN [38] by including
an additional check on the spatial distance of two objects.

The S-PPJ-C algorithm. Using PPJ-C as basis, we can de-
rive a baseline algorithm, denoted as S-PPJ-C (Set-PPJ-C),
for the STPSJoin query. S-PPJ-C is presented in Algorithm 1.
During the construction of the grid, we maintain the follow-
ing additional information: (a) for each cell c, we maintain
the contained objects in separate lists according to the user
they belong to; we denote by Du

c the set of objects of user
u that are contained in c; (b) for every user u, we maintain
a list of cells Cu that contain objects belonging to u; Cu is
sorted according to cell ids in ascending order.

The S-PPJ-C algorithm loops through all pairs of users,
taking into consideration the total ordering ≺U of the user
set U . For each pair of users (u, u′), S-PPJ-C executes a non-
self join version of the PPJ-C algorithm from [7] presented
above. The difference with the standard PPJ-C, lies in the
fact that in this case pairs with objects from both users are
returned. To do so, first the lists Cu and Cu′ containing
the cells for u and u′ respectively are gathered. Next, the
algorithm iteratively selects from either list the cell c with
the lowest id that has not been selected yet. Assume that
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Algorithm 1: S-PPJ-C Algorithm

Input: D, U , εdoc , εloc , εu
Output: Pairs of matched users R

1 R← ∅
2 selectedUsers ← ∅
3 G← createGridIndex (D,U, εloc)
4 foreach u1 ∈ U do
5 foreach u2 ∈ selectedUsers do
6 r ← PPJ-C(u1, u2, εdoc , εloc)

7 σ ← |r|
|Du1

|+|Du2
|

8 if σ ≥ εu then
9 R.add(〈u2, u1〉)

10 selectedUsers.add(u1)

11 return R

the next selected cell c is from the list of user u. For every
cell c′ in Cu′ with c′.id ≥ c.id , a non-self join version of PPJ
is executed with input the spatio-textual point sets Dc

u and

Dc′
u′ . Since Cu and Cu′ may both contain the cell c, we avoid

the duplicate execution of PPJ for c.
The results of PPJ-C are used to compute the user similar-

ity score σ (line 6-7). Pairs of users that achieve a similarity
score above the threshold εu are collected in the result set.

4.1.2 The S-PPJ-B Algorithm
The drawback of the S-PPJ-C algorithm is that for each

pair of users it finds all their matching points and computes
the exact value of their similarity score σ before checking
whether this exceeds the given threshold. Instead, since we
are only interested in finding those pairs with a similarity
that exceeds εu, we can reduce the execution time of the
algorithm by terminating the computation for a pair of users
as soon as it can be decided that their similarity is below
εu. Following this observation, we derive a more efficient
algorithm, denoted as S-PPJ-B (where B stands for bound).
S-PPJ-B operates in the same manner as S-PPJ-C, with

the only difference that it replaces the execution of PPJ-C

with a modified process, denoted as PPJ-B. PPJ-B leverages
the use of an upper bound on the number of unmatched
objects for a pair of users to effectively prune the search
on the spatial grid. More specifically, the intuition behind
PPJ-B is the following. While examining two users, PPJ-B
leverages the user similarity threshold εu and the number of
objects belonging to each user in order to compute an upper
bound on the number of unmatched objects between the two
users, above which the user similarity cannot exceed εu. In
the following, we first derive this upper bound, and then we
explain the process followed by PPJ-B in order to allow for
early termination during the examination of two users.

For a pair of users (u, u′), let βu,u′ denote the number of
objects from user u and user u′ that do not match with the
other user, i.e.:

βu,u′ = |Du|+ |Du′ | − |M(Du, Du′)| − |M(Du′ , Du)|

An upper bound for βu,u′ is derived as follows.

Lemma 1. For a pair of users (u, u′), if βu,u′ > (1− εu) ·
(|Du|+ |Du′ |) then σ(Du, Du′) < εu.

Proof. The proof is derived from the definition of the

cell/leaf tokens users

shop u1 u3

jeans u1
football u2

users objects
u1
u2
u3

o1
o2 o8
o3

match u2

stadium u2

market u3
u2, o5, {hurry, tube, time}

u1, o4, {tube,ride}

u3, o6, {thames,bridge}
u3, o7, {bus,ride}

spatial threshold

derby u2u3, o3, {shop,market}

u2, o8, {football,derby}

u1, o1, {shop,jeans}

u2, o2, {football,match,stadium}

Figure 3: Spatio-textual structure for S-PPJ-F and S-PPJ-D.

similarity score between two users, as follows:

σ(Du, Du′ ) ≥ εu ⇒
|M(Du, Du′ )|+ |M(Du′ , Du)|

|Du|+ |Du′ |
≥ εu ⇒

|Du|+ |Du′ | − βu,u′

|Du|+ |Du′ |
≥ εu ⇒ 1−

βu,u′

|Du|+ |Du′ |
≥ εu ⇒

βu,u′ ≤ (1− εu) · (|Du|+ |Du′ |)

Upon traversing a cell c, PPJ-C checks for potential matches
in cells with ids lower than c.id . Therefore, we cannot be
certain that objects that have not been matched so far will
also not match with objects in cells with higher ids (i.e. in
the next cell or row). Therefore, the bound may be used
within PPJ-C, but only with respect to the objects discov-
ered from the beginning of the grid until the previous row.
The objects that were traversed in the current row have to
be excluded from calculation.

To that end, PPJ-B devises a different grid traversal strat-
egy that allows the pruning mechanism to utilize every ob-
ject appearing in cells traversed when the bound evaluation
is executed. Specifically, this strategy traverses the rows
from bottom to top (considering the id of the bottom row
as 1), and depending on whether the id of a row is odd or
even, different treatment is followed. If a cell ci,j belongs to
a row with odd id, i.e. j is odd, then the objects contained
in it are matched with objects from all surrounding cells,
except the cell directly on the right, i.e. ci+1,j . Matching
is done by executing PPJoin. Otherwise, if the cell belongs
to an even row, then we match its objects only with objects
from the other user from the cell that is directly on the left,
i.e. ci−1,j . This process is illustrated in Figure 2b.

Following this traversal strategy, PPJ-B allows for early
termination using the bound β, while still maintaining the
property of PPJ-C to avoid duplicate examination of the
same pair of cells. Indeed, when PPJ-B traverses the last
cell of an odd row, it has considered every potential match
for any object it has encountered up to that point. Thus,
it checks whether the number of objects that have not been
matched exceeds the calculated bound β. If so, the search
stops, since it is impossible to result in a user similarity score
that exceeds εu. Note that, in practice, since the grid may be
rather sparse, some rows may be empty. In that case, when
the next visited cell belongs to a row that is not directly
above the previous one, the same check can be performed,
even if the last examined row was even, since previously
encountered objects cannot have any future matches.

4.1.3 The S-PPJ-F Algorithm
The S-PPJ-B algorithm presented above exploits an up-

per bound on the number of unmatched objects between two
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users in order to allow for early termination when comparing
each pair of users. In the following, we present the S-PPJ-F

algorithm that further increases efficiency by following a fil-
ter and refine strategy that concentrates the search on those
pairs of users that are promising candidates, while pruning
others that can not exceed the similarity threshold εu.

Algorithm 2: S-PPJ-F Algorithm

Input: D, U , εdoc , εloc , εu
Output: Pairs of matched users R

1 R← ∅
2 G← initialiseSTGridIndex (D, εloc)
3 foreach u ∈ U do
4 foreach c ∈ Cu do
5 T ← calculateTokens(u, c)

6 foreach c′ ∈ G.getRelevantCells(c) do
7 foreach t ∈ T do
8 foreach u′ ∈ G.getTokenUsers(c′, t) do

9 Mu
u′ .add(c), Mu′

u′ .add(c′)

10 G.addUser(u)

11 foreach u′ ∈M.keys() do

12 m←
∑

c∈Mu
u′
|Dc

u|+
∑

c′∈Mu′
u′
|Dc′

u′ |

13 σ̄ ← m
|Du|+|Du′ |

14 if σ̄ ≥ εu then
15 σ ← PPJ-B(Du, Du′ , G, εdoc , εloc , εu)
16 if σ ≥ εu then
17 R.add(〈u′, u〉)
18 return R

S-PPJ-F is outlined in Algorithm 2. It operates on top
of a spatio-textual index structure that is constructed at
runtime. In every iteration, the algorithm selects a new
user u, searches for potential matches with the users that
have been selected in previous steps, and updates the spatio-
textual index with the objects in Du.

The spatio-textual index is a dynamic grid enhanced with
an inverted index for every cell. This list maintains for ev-
ery token that appears in objects in a cell, the users that
are associated with these objects. An example is depicted
in Figure 3. The grid structure additionally maintains the
objects associated with every user within a cell.

The search for matches follows the filter and refine prin-
ciple. After a user u is selected, the algorithm traverses
through every cell c ∈ Cu which contains objects associated
with u, and calculates the set of tokens T that appear in any
one of these objects. This set is then utilized to identify can-
didate users in c and its surrounding cells (lines 6-9). Every
user u′ with objects that appear in one of these cells that at
least one keyword from T is considered to be a candidate.
Mu

u′ maintains cells that contain objects from u that po-
tentially match (both spatially and textually) with objects

from u′. Respectively, Mu′
u′ maintains the relevant for u′.

For every user u and candidate user u′, the algorithm
calculates an upper bound σ̄ of their user similarity score
(lines 12-13). This is performed by assuming that all of
their objects which are contained in the same or adjacent
cells match. Formally, σ̄ is computed as follows:

σ̄ =

∑
l∈Mu

u′
|Dl

u|+
∑

l′∈Mu′
u′
|Dl′

u′ |

|Du|+ |Du′ | .

If σ̄ < εu, then this pair can be safely pruned. Otherwise,
a refinement step follows, during which the PPJ-B algorithm
is executed to identify whether the exact similarity score for
the pair exceeds the user similarity threshold.

4.1.4 The S-PPJ-D Algorithm
In the following, we consider databases that are already

partitioned by a data partitioning scheme. In particular,
we consider data partitioning schemes induced by an R-tree
structure combined with a textual index similar in fashion
to the index outlined with respect to S-PPJ-F. The main
difference is that instead of indexing grid cells, in this case,
we index the leaf nodes of the R-tree.
S-PPJ-D implements a filter and refinement strategy sim-

ilar to S-PPJ-F, based on a given data partitioning and a
spatio-textual index I that is constructed at runtime. I
maintains an entry for every leaf node l in the tree. This
entry holds an inverted list that maps a token t U l

t (i.e.
users with objects in l that contain t). In addition, every
leaf node l maintains a mapping between users and their
objects within l, denoted by Dl

u. Finally, the intersections
among the extended MBRs of the leaf nodes in the tree are
precomputed by performing a spatial join using the process
described in [8].

The filter step iterates over the leaf nodes Lu of a user u.
For every leaf node l, it calculates the set of tokens T that ap-
pear in objects within l that are associated with u (i.e. Dl

u).
These tokens are then used to probe the spatio-textual index
and identify the candidate users that are associated with ob-
jects containing tokens from T . This is performed for each
leaf node that intersects with the εloc-extended bounding
box of l. To avoid duplicates, we only search for candidate
users which are higher in the user ordering. M maintains
for every candidate u′ the leaf nodes of u′ containing objects
that can potentially match objects associated with user u

Mu′

u′ , as well as the leaf nodes of the relevant objects from u
Mu

u′ . S-PPJ-D calculates for every candidate u′ a bound on
the similarity score between u and u′. This is calculated by

considering the extreme case in which all objects from Mu′

u′

and Mu
u′ match. The refinement step uses PPJ-D in order to

calculate the exact similarity between candidate users.
Algorithm 3 outlines PPJ-D. PPJ-D leverages the spatio-

textual index in combination with an appropriate leaf node
traversal strategy in order to return the similarity score be-
tween two users. PPJ-D functions similar to PPJ-B for the
context of a data-driven partitioning scheme. Given two
users u1 and u2, two lists L1 and L2 are maintained for
their leaf nodes ordered with respect to a predefined order-
ing (e.g. in ascending order of their ids). The algorithm
proceeds iteratively, and selects the lowest (with respect to
the ordering) unvisited leaf node l from L1 and L2.

Let user u be the user from which the element was se-
lected, and u′ the other user. The index is used to identify
every leaf node l′ that is spatially relevant to l, and contains
objects from u′. Spatially relevant leaf nodes are nodes with
intersecting εloc-extended MBRs. For every l′ we execute
PPJoin to identify the exact similarity between the objects

Dl
u and Dl′

u′ . This is performed by focusing only on objects
that belong within the intersection A of the εloc-extended
MBRs of l and l′ (lines 11-12, 18-19). This optimisation is
based on the observation that objects which are not con-
tained in A do not satisfy the spatial threshold εloc .
PPJ-D follows a similar pruning strategy with PPJ-B. The
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Algorithm 3: PPJ-D Algorithm

Input: Du1 , Du2 , I, εdoc , εloc , εu
Output: Similarity score for users u1, u2

1 β ← (1− εu) · (|Du1 |+ |Du2 |)
2 J ← ∅ // joined objects

3 L1 ← I.getLeafs(u1) // sorted

4 L2 ← I.getLeafs(u2)
5 i1 ← 0, i2 ← 0
6 t← 0

7 while ii < |L1| or i2 < |L2| do
8 if L1[ii] ≤ L2[i2] then
9 foreach l2 ∈ I.getRelevantLeafs(l1) do

10 if l2 ≥ l1 and l2 ∈ L2 then
11 A← I.extend(l1, εloc) ∩ I.extend(l2, εloc)

12 PPJoin(Dl1
u1
∩A,Dl2

u2
∩A, J)

13 t← t+ |Dl1
u1
|

14 else if Lu2 [i2] ≤ L1[i1] then
15 l2 ← L2[i]

16 foreach l1 ∈ I.getRelevantLeafs(l2) do
17 if l1 > l2 and l1 ∈ L1 then
18 A← I.extend(l1, εloc) ∩ I.extend(l2, εloc)

19 PPJoin(Dl1
u1
∩A,Dl2

u2
∩A, J)

20 t← t+ |Dl2
u2
|

21 if t− |J | > β then
22 return 0

23 if L1[ii] <= L2[i2] then i1 ← i1 + 1

24 if L2[i2] <= L1[i1] then i2 ← i2 + 1

25 σ ← |J |/(|Du1 |+ |Du2 |)
26 if σ ≥ εu then return σ
27 else return 0

objects of every leaf node for user u are evaluated against
every potential candidate from Du′ that falls within a leaf
node that is higher in the given ordering. Therefore, after an
iteration that visits an object, candidate matches from leaf
nodes, both higher and lower in the ordering, are considered.
This observation is the basis of a pruning step (lines 21-22)
that calculates the number of objects t−|J | that are already
found to fail to satisfy the thresholds. If this number is lower
that a computed bound, the search is pruned since the users
fail to satisfy the user similarity threshold.

4.2 Algorithms for top-k STPSJoin
Next, we extend our methods to support the top-k STPSJoin

query. The main intuition behind our approach is that the
algorithm must keep track of the top-k pairs identified thus
far, and utilise the exact user similarity score of the kth best
pair to update the user similarity threshold.

4.2.1 TOPK-S-PPJ-F
Algorithm 4 outlines TOPK-S-PPJ-F, which modifies S-

PPJ-F for the purposes of the top-k STPSJoin query. The
main modifications with respect to S-PPJ-F relate to the
maintenance of intermediate results and the update of the
user similarity threshold. Results are stored in a fixed ca-
pacity priority queue of size k, which is updated whenever a
pair that is better than the kth pair in the queue is identi-
fied. The user similarity threshold εu is set as the similarity
score of the kth best pair in the queue. Accordingly, the

Algorithm 4: TOPK-S-PPJ-F Algorithm

Input: D, U , εdoc , εloc , k
Output: Top-k Pairs of matched users R

1 R← ∅
2 εu ← −1

3 G← initialiseSTGridIndex (D, εloc)

4 foreach u ∈ sorted(U) do
5 foreach c ∈ Cu do
6 T ← calculateTokens(u, c)

7 foreach c′ ∈ G.getRelevantCells(c) do
8 foreach t ∈ T do
9 foreach u′ ∈ G.getTokenUsers(c′, t) do

10 Mu
u′ .add(c), Mu′

u′ .add(c′)

11 G.addUser(u)

12 foreach u′ ∈M.keys() do

13 m←
∑

c∈Mu
u′
|Dc

u|+
∑

c′∈Mu′
u′
|Dc′

u′ |

14 σ̄ ← m
|Du|+|Du′ |

15 if σ̄ > εu then
16 σ ← PPJ-B(Du, Du′ , G, εdoc , εloc , εu)
17 if σ > εu then
18 R.update(〈u′, u〉)
19 if |R| = k then
20 εu ← R.getTail()

21 return R

threshold εu is updated whenever a new pair is introduced
in the results queue (lines 18-20). The user similarity thresh-
old is used in the filtering phase of the algorithm in a similar
manner with S-PPJ-F. The same principle can be straight-
forwardly applied to S-PPJ-D. Pseudocode for the resulting
algorithm is omitted due to lack of space.
TOPK-S-PPJ-F orders users in an ascending order of the

size of their object-sets. This strategy is based on the obser-
vation that the treatment of users with larger object-sets
requires more computations than the evaluation of users
with fewer objects. By the time the algorithm reaches the
most computationally demanding users, the user similarity
threshold has been updated to reflect the best pairs identi-
fied so far, increasing the possibility that pairs that do not
belong to the top-k result set are filtered out.

4.2.2 TOPK-S-PPJ-S
TOPK-S-PPJ-S operates similarly with TOPK-S-PPJ-F. How-

ever, it uses a heuristic strategy in order to decide the order
by which users are evaluated. User objects are placed in a
spatial grid and each cell in the grid c is given a score by
counting the amount of users whose object-sets belong to
c or its adjacent cells. Users are then assigned a score by
summing, for every object o associated with them, the score
of the cell that o is contained in. Formally, cell scores sc are
calculated as follows:

sc = | ∪c′∈G.getRelevantCells(c) G.getUsers(c′)|

where G is the spatial grid, c is a cell in the grid, G.getUsers
returns the users with objects in c and G.getRelevantCells(c)
returns the cells that are adjacent to c (including c).

Accordingly, users are assigned scores su according to the
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following formula:

su =
∑

o∈Du

soc

Du denotes the object-set for user u and oc describes the
cell that object o is located in.

Therefore the rationale behind TOPK-S-PPJ-S is to start
the search with users whose objects are placed in popular
areas. This strategy aims at quickly identifying high scor-
ing pairs, in order to increase the user similarity threshold
quickly, and improve the efficiency of the filtering step.

4.2.3 TOPK-S-PPJ-P
The TOPK-S-PPJ-P algorithm introduces an additional fil-

tering step. Users are selected in ascending order of the size
of their object-sets. For every user u, we calculate an upper
bound on the similarity score between u and any user u′ that
was selected in a previous iteration. To do so, we identify
the objects from Du that match with any object from DU′ ,
i.e. the union of the objects of every user that was selected
in previous iterations. This is denoted as M(Du, DU′). This
allows the calculation of an upper bound on σ(u, u′) for ev-
ery u′ that was selected prior to u. Formally, this bound is
calculated as follows:

σ̄u =
|
⋃

u′∈U′ M(Du, Du′)|+ maxu′∈U′ |Du′ |
|Du|+ maxu′∈U′ |Du′ |

If the users are selected in an ascending order of the size
of their object-sets, we show that σ̄u is an upper bound on
the similarity score between u and a user u′ with fewer or
equal objects.

Lemma 2. Let a user u and a set of users U ′. If for every
user u′ ∈ U ′ |Du′ | ≤ |Du|, then it holds that σ(u, u′) ≤ σ̄u.

Proof. Let for any user u′ ∈ U , mu = |
⋃

u′′∈U′ M(Du, Du′′)|,
mu′

u = |M(Du, Du′)|, mu
u′ = |M(Du′ , Du)|, du = |Du| and

dU′ = maxu′′∈U′ |Du′ |. Then, since mu ≥ mu′
u and du′ ≥

mu′ it holds that

mu + du′

du + du′
≥ σ(u′, u) .

We show that:

σ̄u =
mu + du′′

du + du′′
≥
mu + du′

du + du′
.

mu + du′′

du + du′′
≥
mu + du′

du + du′
⇒

mu · du +mu · du′+du′′ · du + du′′ · du′ ≥
mu · du +mu · du′′+du′ · du + du′ · du′′ ⇒

(du′′ − du′ ) · du ≥(du′′ − du′ ) ·mu, .

This holds since du′′ ≥ du′ and du ≥ mu.

In order to avoid the computation of exact similarity scores
among user objects, and speed up the bound calculation pro-
cess, we follow the same principle with the filtering step from
the S-PPJ-F algorithm. We utilise the spatio-textual index
described in Figure 3 and place in M(Du, DU′) every object
with a token that appears (due to a previously selected user)
in the same or adjacent cell. This process provides a fast es-
timation of the σ̄u bound. Since this process overestimates,
the resulting score is still an upper bound on the actual user

similarity score and can be used to prune the search space.
This process yields relaxed bounds, which are irrelevant for a
fixed user similarity threshold (as in the case of STPSJoin).
However, it is useful with respect to the top-k algorithms
that quickly increase the user similarity threshold.

5. EXPERIMENTAL EVALUATION
Next, we present our experimental evaluation of the pro-

posed algorithms. We first describe the datasets used and
the parameters involved, and then we present the results.

5.1 Experimental Setup
Datasets. We have used three real-world datasets of spatio-
textual web objecs for our experiments. The Flickr dataset
is derived from the Flickr Creative Commons dataset pro-
vided by Yahoo [35]. The whole dataset contains about 99.3
million images, about 49 million of which are geotagged. For
our experiments, we concentrate on objects from the geo-
graphical boundaries of London, UK and we filtered out im-
ages that do not contain coordinates or tags as well as those
that are created by stationary users. The resulting dataset
contains 11,306 users and 1,116,348 objects. The GeoText
dataset [18] is a geotagged microblog corpus available on-
line.1 It comprises 377,616 posts by 9,475 different users
within the US. Finally, the Twitter dataset is a collection
of geotagged tweets from the geographical area of London,
UK, that we have collected and is part of the dataset used
in [17]. It contains 9,724,579 tweets generated by 40,000
different users in 2014.

The NLTK toolkit2 was employed to identify named enti-
ties from the text associated with the objects. The extracted
named entities were used in combination with other related
information, such as tokens, hashtags and mentions, as key-
words associated with the respective objects. The charac-
teristics of the three datasets are summarized in Table 1.

Evaluation measures and parameters The purpose of
the experimental evaluation is to compare the performance
of the proposed algorithms in terms of the execution time
in different settings. For the case of the STPSJoin query, we
investigate the effect of the following parameters: (a) the
dataset size N in terms of number of users, (b) the query
thresholds for spatial distance (εloc), textual similarity (εdoc)
and user similarity (εu) and (c) the fanout parameter of the
R-tree structure. The effect of these parameters on the re-
sults of the STPSJoin query in the experimental datasets
are described in Table 2. The largest deviation is observed
on the Flickr dataset. This is consistent with the nature of
this dataset, since popular POIs are often described using
similar textual descriptions as well as photographs depicting
these POIs are usually captured in nearby locations. On the
contrary, the other datasets contain tweets, which are signif-
icantly more diverse both with respect to spatial locations
and textual descriptions. For the top-k STPSJoin query, we
investigate the effect of the parameter k on execution time.

All algorithms were implemented in Java, and the exper-
iments were executed on a machine with an Intel Core i5
2400 CPU and 16GB RAM, running on Ubuntu Linux. Dur-
ing the experiments, 15GB of memory were allocated to the
JVM. All plots report running time in a logarithmic scale.

1http://www.ark.cs.cmu.edu/GeoText/
2http://www.nltk.org/
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Dataset Objects Users Tokens per Object Objects per Token Objects per User

Twitter 9,724,579 40,000 2.08 (1.43) 6.25 (141.80) 243.11 (344.86)
Flickr 1,116,348 11,306 8.04 (8.15) 26.41 (1,191.09) 98.73 (419.92)
GeoText 165,733 9,461 1.64 (1.01) 3.53 (39.36) 17.52 (12.99)

Table 1: Experimentation datasets, number of objects and users, and mean (standard deviation) for descriptive metrics.

Figure 4: Scalability results for the GeoText, Flickr and Twitter datasets (parameter defaults: GeoText: εloc = 0.001,
εdoc = 0.3, εu = 0.3; Flickr εloc = 0.001, εdoc = 0.6, εu = 0.6; Twitter: εloc = 0.001, εdoc = 0.4, εu = 0.4).

GeoText Flickr Twitter

Scalability 27.00 (8.51) 54.20 (46.22) 13.50 (6.54)
Tuning 18.00 (36.90) 326.00 (633.89) 14.14 (9.98)

Table 2: Mean (std-dev) of result-set sizes

5.2 Scalability
The scalability experiments evaluate the performance of

our methods in datasets of different sizes. We divided the
Twitter, Flickr and GeoText datasets for variable numbers
of users. The resulting datasets range from 4,000 users with
72,094 objects to 40,000 users with 9,724,579 objects. Dif-
ferent parameter values are used for different datasets, in or-
der to account for different sizes and token selectivity across
datasets. Lower thresholds are set for the GeoText dataset
in order to avoid empty result sets, whereas higher thresh-
olds are set for the Flickr dataset to account for the higher
similarity between user objects. This is due to the fact that
a large amount of Flickr photos represent popular POIs that
are described by similar textual content and are geo-located
close to the location of the corresponding POIs.

Figure 4 shows the scalability evaluation results. The re-
sults clearly show that S-PPJ-F outperforms the other meth-
ods by several orders of magnitude. This is consistent for
all datasets, irrespective of size. The efficiency of S-PPJ-F
compared to the other approaches is attributed to the effect
of the filter and refinement scheme, in combination with the
suitability of the dynamic grid partitioning over the objects.
The grid partitioning is tailor made to the spatial threshold
parameter εloc , which allows the search for matching objects
to be limited exclusively in adjacent cells. Additionally, the
inverted lists maintained within each cell of the grid, allow
the effective filtering of candidate user pairs associated with
spatially similar, but textually diverse, objects.

The performance of S-PPJ-B does not compare favourably
against S-PPJ-F. This result is expected since S-PPJ-F builds
on S-PPJ-B by leveraging the filter and refinement scheme.

Nevertheless, the comparison between S-PPJ-B and S-PPJ-C

allows the evaluation of the early termination strategy, as
well as the traversal mechanism, differentiating S-PPJ-B from
S-PPJ-C. The results indicate that S-PPJ-B offers a consis-
tent improvement in execution time compared to S-PPJ-C,
confirming that the proposed techniques manage to prune
the search space for similarity search among two point sets.

Finally, the results show that S-PPJ-D outperforms the
baseline methods, but it is not comparable to the grid-based
S-PPJ-F, which follows the same principles. The discrepancy
in execution time can be attributed to the use of different
spatial indexes. The data driven-partitioning imposed by
the R-tree is independent of the spatial threshold given as a
parameter to the STPSJoin query. As a result, the imposed
partitioning leads to an ineffective division of the database.
Inspection of the performance of S-PPJ-D shows that both
partition size and overlap may lead to subpar performance,
since objects within large partitions tend to be spatially ir-
relevant, and overlaps require the evaluation of multiple join
operations. We revisit this issue in Section 5.4.

5.3 Effect of similarity thresholds
In the following experiments, we vary the parameters and

evaluate the proposed algorithms for different combinations
of textual, spatial and user similarity thresholds. Similar
to the scalability experiments, different ranges in threshold
values are used across datasets.

Figure 5 presents the results. We observe that the dom-
inant parameter is the spatial threshold εloc . High values
on εloc result in significantly higher execution times. This
is particularly obvious for the Flickr and Twitter datasets,
which contain significantly larger amounts of objects. When
the spatial distance threshold reaches metropolitan level dis-
tances, the majority of the objects fall into adjacent parti-
tions. As a result, the filtering step of S-PPJ-F and S-PPJ-D

returns a high number of candidates. In these cases, the
overhead imposed by the additional indexing maintained by
S-PPJ-F and S-PPJ-D is apparent. We observe a peak in
the case of S-PPJ-D, especially with respect to the Flickr
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Figure 5: Results for varying similarity thresholds (GeoText: 6, 000 users, 107, 941 objects; Flickr: 6, 000 users, 597, 008
objects; Twitter: 20, 000 users, 4, 988, 090 objects).

dataset. In this case, inspection shows that the R-tree par-
titioning does not manage to result in an efficient partition
of the object database.

This does not apply for GeoText, mainly due to the fact
that the objects in GeoText are scattered in the significantly
larger area of the whole of USA. The results show that the
proposed pruning strategies are highly functional in com-
bination with a grid-based partitioning scheme. S-PPJ-F

outperforms the other methods in every scenario, and apart
from the case of the Flickr dataset with εloc = 0.01, its per-
formance is independent of the parameter values.

5.4 Effect of Fanout on S-PPJ-D
An important parameter for data partitioning schemes

based on R-trees is the fanout parameter. This parame-
ter is associated with the number of objects that reside in a
node of the R-tree. The effect of the fanout parameter on
the performance of S-PPJ-D is twofold. First of all, S-PPJ-D
executes a spatial distance join in order to identify spatial
relations among the leaf nodes of the tree, which are treated
by the algorithm as spatial data partitions. Since the fanout
parameter affects both the depth and the breadth of the R-
tree, it also affects the performance of the spatial join. Sec-
ond, S-PPJ-D is built on top of the partitioning imposed by
the leaf nodes. Therefore, the fanout affects both the num-
ber and the size of leaf nodes, which are relevant to S-PPJ-D.

In order to experimentally evaluate the effects of the fanout
parameter, experiments with values ranging from 50 to 250
were conducted. The results are shown in Figure 6. The
results verify that S-PPJ-D is sensitive to the fanout value.
Even though no single fanout value achieves the best results
in all datasets, we observe that an appropriate fanout value
for STPSJoin queries falls within the range of 100 to 200.

Figure 6: Tuning the R-Tree fanout parameter.

5.5 Evaluation of top-k STPSJoin
In the following, we evaluate the proposed algorithms for

the top-k STPSJoin query. We vary the result size k in order
to study the behaviour of the algorithms. Figure 7 shows
the results of the experiments. The baseline TOPK-S-PPJ-F

is competitive and is the better performing algorithm in
the Flickr dataset. The poor performance of TOPK-S-PPJ-S
shows that the simple ordering of the users based exclusively
on the size of their object-sets is more efficient than the sta-
tistical approach that it follows, compared to the overhead
that the additional computation imposes. TOPK-S-PPJ-P ex-
ploits an additional pruning step and offers a better perfor-
mance in the cases of GeoText and Twitter. In the case
of Flickr, while it is outperformed by TOPK-S-PPJ-F, it re-
mains competitive. This is due to the fact the the Flickr
dataset contains objects with very high similarity, mainly
because of the nature of the Flickr service (ie. people de-
scribe popular places with nearly the same keywords). The
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Figure 7: Results for the top-k STPSJoin algorithms on GeoText, Flickr and Twitter datasets with varying k (GeoText:
εloc = 0.001, εdoc = 0.3, εu = 0.3; Flickr εloc = 0.001, εdoc = 0.6, εu = 0.6; Twitter: εloc = 0.001, εdoc = 0.4, εu = 0.4).

very high textual similarity between objects leads to high
user similarities. Therefore, the additional filtering step of
TOPK-S-PPJ-P cannot disqualify large numbers of user pairs.

5.6 Parameter Tuning
The STPSJoin query requires εloc, εdoc, and εu to be pro-

vided as input. The values of these thresholds define what
is “near” in terms of spatial, textual and user similarity,
and are determined by the nature of the data and task in
hand. In order to tackle situations in which there is no prior
knowledge that can be used to determine the values of these
thresholds, we present an automated process in order to dis-
cover sensible thresholds. In this case, the necessary input
is an acceptable result set size.

The tuning algorithm is initialised with relaxed initial
thresholds. Our experiments show that these can be prede-
fined values regardless of the dataset. The only requirement
is that they are relaxed enough to guarantee a result-set
larger than the input value. Threshold steps are calculated
as fractions of the initial values.

The algorithm follows a greedy strategy. Initially, it exe-
cutes S-PPJ-F using the starting thresholds and populates a
result-set. Then, the process traverses the parameter com-
bination space in a depth-first manner. At any given step
the algorithm selects probabilistically which parameter to
tighten (an alternative strategy is to modify the least mod-
ified threshold). Tightening the parameters monotonically
decreases the results-set that was the outcome of the pre-
vious step. As a result, S-PPJ-F is not executed again for
the different parameters. Instead, PPJ-C is used to iden-
tify which pairs from the previous step adhere to the new
thresholds. If the result set size reaches the desired value,
the algorithm stops and the current threshold values are
returned. If a step brings about thresholds that yield no
results, the process backtracks to the previous step, and an
alternative threshold is tightened.

S-PPJ-F Tuning

Result size 5 25 50

GeoText 2,229 145 (8) 124 (4) 110 (3)
Flickr 24,363 738 (23) 693 (17) 1,066 (10)
Twitter 82,412 1,278 (10) 3,085 (7) 1,439 (2)

Table 3: Parameter tuning including S-PPJ-F time and tun-
ing time in ms (number of iterations) for varying result-sets.

Table 3 shows the time required for parameter tuning after
the initial execution of S-PPJ-F. Initial thresholds were the
minimum thresholds used in Section 5.3, and the datasets
were those with the minimum number of users used in Sec-
tion 5.2. It is worth noting that the initial running time of
S-PPJ-F consumes a significant amount of the overall time.

5.7 Summary
Our experimentation verifies the superiority of the pro-

posed algorithms for the treatment of the STPSJoin query,
in terms of execution time for all datasets used. The prun-
ing strategy employed by S-PPJ-F manages to significantly
boost the algorithm’s performance. Furthermore, the S-PPJ-D
algorithm which induces data partitioning is efficient enough
to be considered as a viable choice in cases when the data are
already partitioned with an R-tree (or any other data parti-
tioning method). Our experimentation shows that S-PPJ-F

can be directly modified to efficiently handle the top-k STPSJoin
query variant. Nevertheless, we propose an additional prun-
ing strategy in top-k STPSJoin that performs even better
with datasets of lower degrees of similarity. Even in the case
of the Flickr dataset, which does not fall into this category,
TOPK-S-PPJ-P achieves competitive results. The experimen-
tal analysis is conducted on three real datasets of varied size
(the two of them are publicly available) and different pa-
rameter settings have been examined in order to reach to
the optimum configurations. The results show that the al-
gorithms scale well in very large databases and can therefore
be used effectively in real-world scenarios.

6. CONCLUSIONS
This paper studies the problem of similarity search on

spatio-textual point sets. We formally define this problem
as STPSJoin and present its top-k variant. STPSJoin queries
identify pairs of similar users, with respect to web documents
such as tweets and photographs associated with these users.

In order to efficiently process (top-k) STPSJoin queries, we
propose algorithms that leverage different spatio-textual in-
dexes, and integrate early termination pruning mechanisms
with filter and refinement approaches. We conducted large-
scale experiments on real-world datasets for multiple val-
ues on the problem parameters. The better performing al-
gorithm S-PPJ-F is orders of magnitude more efficient in
terms of execution time than the baseline methods. Finally,
S-PPJ-D shows improvement over the baseline methods for
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the case of data-driven partitioned databases, even though
it is significantly outperformed by S-PPJ-F. For the case
of the top-k STPSJoin query, the TOPK-S-PPJ-P algorithm
offers the best results in the majority of the datasets, but
also remains competitive in the case of the Flickr dataset,
which contains significantly larger amounts of similar spatio-
textual objects.

In the future, we plan to focus on distributed architectures
in order to further enhance the efficiency of our methods.
Furthermore, we intend to integrate additional character-
istics in STPSJoin queries, which are often associated with
web objects, such as temporal information.
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