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ABSTRACT

The success of relational databases is due in part to the simplicity of
the tabular representation of data, the clear separation of the phys-
ical and logical view of data, and the simple representation of the
logical view (meta-data) as a flat schema. But we are now witness-
ing a paradigm shift owing to the explosion of data volume, variety
and veracity, and as a result, there is a real need to knit together
data that is naturally heterogeneous, but deeply interconnected. To
be useful in this world, we argue that today’s tabular data model
must evolve into a holistic data model that views meta-data as a
new semantically rich source of data and unifies data and meta-data
such that the data becomes descriptive. Furthermore, given the dy-
namicity of data, we argue that fundamental changes are needed in
how data is consolidated continuously under uncertainty to make
the data model naturally more adaptive. We further envision that
the entire query model must evolve into a context-aware model in
order to automatically discover, explore, and correlate data across
many independent sources in real-time within the context of each
query. We argue that enriching data with semantics and exploiting
the context of the query are the two key prerequisites for building
self-curating databases in order to achieve a real-time exploration
and fusion of enriched data at web scale. These needs highlight a
series of interesting challenges for database research and alter some
of the tenets of Codd’s rules for how we think about data.

1. INTRODUCTION

We believe that the relational database system will remain the de
facto standard for well-structured data. The success of relational
database theory is partly due to its simple tabular representation
over a predefined relational schema. Tabular data is manipulated
through a well-defined declarative relational algebra that is written
over the data schema (a logical view). Expressing queries over the
logical view has led to decades of query optimization in order to
transform queries written over logical views into efficient access
methods over the physical layout. As database engines advance,
the logical view remains constant, and this has been a key success
factor for relational database systems (i.e., data independence).

However, the tabular data represented by the relational schema is
limited to a flat schema for describing each table column.'! One may

1Although the database schema has remained a simple flat structure, there have been
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argue that the relational schema, in addition to forming a logical
view for querying the data, is nothing but a simple blueprint of how
to parse the data at the physical level. This blueprint ends at the
granularity of columns, which is why often it is referred to as a
table schema because it is not at the record level. Homogeneity
at the record level is also pre-assumed in the relational theory, in
fact, the Boyce-Codd normal forms to some extent already penalize
any column heterogeneity [6]. Similarly, NoSQL databases such
as key-value stores are still fundamentally tabular, but the “value”
column is now heterogeneous with a flexible schema [4]1.2

Although databases were designed for a system of records in or-
der to maintain corporate transactional data, the tabular data model
in databases can represent many types of non-transactional data.
However, it has certain fundamental limitations. The chief limita-
tion is that the tabular model does not natively capture instance-
level relations, which is why a whole class of functional depen-
dency (FD) and referential integrity (RI) constraints had to be de-
veloped to express schema-level relationships (e.g., RI) and to avoid
record-level inconsistencies (e.g., FDs). In general, integrity con-
straints are used to ensure that data instances conform to a given
schema while only limited knowledge (e.g., relation transitivity)
can be expressed using constraints because the primary role of con-
straints is to restrict the data as opposed to enriching the data [12].

We observe that today’s data is no longer limited to systems of
records; we now have a variety of data coming from thousands of
sources. Data is being generated at an astonishing rate of 2.5 billion
gigabytes daily, and further, 80% of data is unstructured and comes
in the form of images, video, and audio data to social media (e.g.,
Twitter, Facebook, Blogsphere) and from embedded sensors and
distributed devices [1]. The explosion is partly due to the Internet
of Things (IoT) that increasingly connects data sources (including
objects and devices) to form a complex network, a network that is
expected to exceed one trillion nodes [1].

These emerging data sources are heterogeneous by nature and
are independently produced and maintained, yet the data are inher-
ently related. For example, sales patterns correlate with the popu-
larity of the product in social media, and the popularity of the prod-
uct itself can be measured in terms of how often images or tweets
are posted of the product. Even if one considers only the “struc-
tured” data after the extraction from the unstructured data, the task
of integrating all these disparate data sources leaves islands of data
with thousands (if not millions) of tables and schemata that are sim-
ply impossible to understand and query by any individual.

Arguably data is a new natural resource in the enterprise world
with an unprecedented degree of proliferation and heterogeneity
and countless possible ways of aggregating and consuming it to find

attempts to at least model the data conceptually as a hierarchy, e.g., the entity-relation
(ER) or object-oriented models.

In fact, several NoSQL initiatives even motivate the need for a schema-less paradigm
[4] that is in a diametrically opposite position from our self-curating database vision.
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actionable insights [1]. However, this inherently interconnected
data is trapped in disconnected islands of information, which forces
analytics-driven decision making to be carried out in isolation and
on stale (and possibility irrelevant) data; thus, making today’s first-
ingest-then-process model insufficient and unnecessary at a time
when the cloud is disrupting the entire computing landscape.®> More
importantly, existing database technologies fail to alleviate the data
exploration challenges that continue to be a daunting process espe-
cially at a time when an army of data scientists are forced to manu-
ally and continuously refine their analyses as they sift through these
islands of disconnected data sources, a labor-intensive task occupy-
ing 50-80% of time spent [11].

We argue that today’s database systems need to be fundamen-
tally re-designed to capture data heterogeneity (within local and
external data sources) and the semantic relationship among data
instances (i.e., data interconnectedness) as first class-citizens. To
address these requirements, we propose a holistic data model to
capture all dimensions of the data, so that we can push the burden
of semantic enrichment and integration of the data in a systematic
and transparent way into the database engines. We view the data
fusion as a gradual curation process that transforms the raw data
into a new unified entity that has knowledge-like characteristics;
thereby, we envision the evolution of database systems into self-
curating databases to meet the continuous enrichment and integra-
tion challenges of the information explosion.

In moving from databases to self-curating systems, the schema is
no longer a table schema as a separate entity that is limited to nec-
essary information to only parse the data. Instead, the data schema
becomes part of the data in order to make the data self-descriptive.
Furthermore, it is expected that both the data and meta-data contin-
uously evolve either by ingesting new data sources or through the
process of context-aware query execution. By context-aware query
execution, we emphasize redefining the existing query model to en-
able the discovery of new data linkage and semantic relationships
in the specific context of a given query. Thus, while the query must
automatically be refined to enable discovery, the data will also be-
come sufficiently enriched in order to enable continuous integration
and adjustment of the interconnectedness of instances/types.

In short, our broader vision is a systematic methodology to ach-
ieve a real-time fusion and enrichment of data at web scale hosted
virtually. We argue for a unified view of semantically enriched
data by introducing a novel holistic data model (i.e., rethinking the
data model), so queries can be answered by an online consolida-
tion of the most up-to-date data from a variety of sources at query
time without the need for offline ingestion and curation. Further-
more, we envision that querying and analytics in general will be-
come explorative in nature to provide deeper and quicker insights
by proactively refining and raising new queries based on the con-
text of the query submitted by the user, making the query model
context-aware (i.e., rethinking the query model).

Thus far, we have provided the desired properties of self-curating
databases. In the subsequent sections, we elaborate on the specific
properties of self-curating databases and highlight the challenges
and short- and long-term research opportunities they bring in a sys-
tematic fashion. We further broadly classify our proposed state-
ments as either functional statements (for adding new capabilities)
or optimization statements (for improving system performance);
these open problems are summarized in Table 1.

2. RELATED WORK
Our vision is partly motivated by the recent shift towards seman-
tically enriched information retrieval. We observe a trend among

3We anticipate that in the near future all data sources and analytics computation will
be hosted virtually on the cloud [1]; thus, there is no need to first ingest data from one
computing infrastructure to another before querying the data.
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[ Statement | Description

FS.1 Continuous incremental entity resolution

FS.2 Formalism for assessing interconnectedness richness

FS.3 All-encompassing logical formalism for uncertainty

FS.4 Simplifying logical view of data

FS.5 A Unified language for relational, logical & numerical models
FS.6 Context-aware query refinement semantics

FS.7 Query refinement using query-by-example

FS.8 Incompleteness resolution through crowd

FS.9 Context-aware materialization of ranked & discovered data
FS.10 Parallel world semantics and representational model

FS.11 Concurrency controls for non-deterministic and enriched data model
0OS.1 Fine-grained dynamic data clustering

0S.2 Locality-aware multi-hop traversal representation

0S.3 Semantic query optimization

0S4 Data placement in distributed shared memory

Table 1: Open problems in self-curating databases

Web search engines such as Google and Bing in moving away from
a pure information retrieval system towards knowledge-based re-
trieval by not only retrieving a set of documents relevant to the
users’ queries, but also identifying entities and returning facts re-
garding the identified entities [13]. Another prominent initiative
is IBM Watson, which is an open-domain question answering sys-
tem for outperforming the best players in Jeopardy [7].  Such
knowledge-based retrieval has become possible through the use of
rich knowledge bases created by academic and community efforts
such as Freebase, DBpedia, and YAGO [13].

What we observe in all these emerging projects [13, 7] is that
moving forward, simple information retrieval will be insufficient,
and that information will continuously be expanded and semanti-
cally enriched as a result of the continuous integration of hetero-
geneous sources (i.e., the evolution of information to knowledge).
Consequently, we argue the need for the evolution of relational
databases to handle the challenges in this new enriched data era.
We envision that the database systems of the future will no longer
be solely responsible for the storage and retrieval of structured data,
but they will transform into self-curating databases that are capable
of real-time exploration and fusion of enriched data at web scale.

We acknowledge that we are not the first to argue for the high-
level concepts such as semantic enrichment or continuous integra-
tion; in fact, there are several existing efforts in Semantic Web tech-
nologies (e.g., [13]) and dataspaces and pay-as-you-go integration
models (e.g., [8]) that strive for similar high-level objectives. But
to achieve these objectives, we argue for a fundamental rethinking
of how we view the data and query. We envision the need for a new
holistic data model to unify the data and meta-data, and to view the
meta-data as a new semantically rich source of data. Furthermore,
we envision a simpler and more effective way to query and compute
answers by automatically refining the query and continuously dis-
covering new data sources within the context of each query, giving
rise to a novel context-aware query model. Further, what is unique
to our vision, in addition to extending past attempts in light of new
applications and possibilities (e.g., [7]), is systematically sketching
the requisite properties of a self-curating database and providing an
extensive list of the concrete research challenges and opportunities
needed to make such a vision a reality.

3. DATA MODEL: UNIFIED & ENRICHED

In our view, a self-curating database must have a hierarchy of
layers to transform raw data incrementally into a holistic data model
(depicted in Figure 1). First is the instance layer, to store the
raw data (or data instances) spanning both structured and unstruc-
tured. The second layer is the relation layer, a horizontal expan-
sion of data to formulate and capture the interconnectedness of
data instances within and across data sources (i.e., the fine-grained
instance-level linkage). In cases where the raw data layer is un-
structured, this layer may additionally capture the results of infor-
mation extraction. The third layer is the semantic layer, a vertical
expansion of data to conceptualize data instances and their rela-
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Figure 1: Holistic data model.

tions as semantic types and to formulate the interconnectedness of
archetypes and data instantiated types (e.g., ontology). The seman-
tic layer is a way of succinctly capturing conceptual relationships
among data instances. This final layer will bring an unprecedented
level of expressiveness power and discovery potentials. The last
two layers of self-curating databases can be viewed as meta-data,
but such a distinction no longer holds in a self-curating database as
meta-data is also seen as a rich source of data.

We argue that such a holistic approach is essential to efficiently
represent, enrich, manipulate, and query both data and meta-data.
Our running example of an enriched data model is extracted from
the life science domain, as illustrated in Figure 2. This example
is motivated by the overwhelming challenge to unify and enrich
data from a variety of heterogeneous sources to develop an assisted
diagnosis and personalized treatment and medicine [7].

3.1 Instance Layer: Raw Data

The first layer is what today’s relational database systems heav-
ily rely on to represent structured data. But future databases must
naively also support semi-structured data such as XML and JSON
(already supported by most commercial databases) and unstruc-
tured data such as text documents, images, audio, and video. In the
example shown in Figure 2, the data comes from different external
sources such as DrugBank that offers data about known drugs and
diseases, Comparative Toxicogenomics Database that provides in-
formation about gene interaction, and Uniprot that provides details
about the functions and structure of genes.

One may argue that the proposed instance layer shares similar
properties to those already found in the tabular representation of
the relational model. However, a deeper question here is whether a
tabular representation is an optimal choice for a holistic data model.
Analytical workloads, for instance, benefit greatly from a columnar
decomposition of tabular representation. In contrast, a self-curating
database must manage data and meta-data in a unified way, but it
is unclear what the optimal representation is for such systems. For
example, could the relational model be further decomposed in non-
linear and non-tabular form in order to cluster data based on the
instance relations and semantic relationships of higher layers?

OPTIMIZATION STATEMENT 1. Given the abundance of inst-
ance relations and semantic relationships, what are the data clus-
tering opportunities to improve retrieval, access locality, and com-
pression? Is it possible to develop dynamic instance-level, fine-
grained clustering in the presence of the enriched data model ?*

4Imagine a representation that could adapt to the locality of access for a workload
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Figure 2: An example of an enriched data model in the life science domain.

3.2 Relation Layer: Horizontal Expansion

A relational model has no notion of which columns refer to real
world entities (i.e., data instances). But a holistic data model must
possess a clear notion of what the entities are, and what relations
exist for each instance in order to capture the data interconnect-
edness. These may be relations to other entities, or the relations of
the attributes of the entity to data values. As an example, a database
might have a table for Drug, and have the columns Name, Targets,
Symptomatic Treatment. A rich data model has an identifier for a
real world drug Methotrexate, and captures its attributes such as
Molecular Structure, as well as relations to other entities including
Genes that Methotrexate targets (e.g., DHFR), and subsequently,
Conditions that it treats such as Osteosarcoma (bone cancer) that
are reachable through its target genes, as shown in Figure 2.

The key characteristics of the relation layer are to capture entity
interconnectedness and to establish the identity of an entity within
and across multiple data sources — a process we term horizontal
data expansion to transform data into information. An important
challenge of the relation layer is to uniquely identify similar enti-
ties even when external sources are dynamically changing. There is
a long history of entity resolution in the database literature, but the
real challenge in this layer is that there is no ability to rely on man-
ual ETL jobs to perform offline schema alignment, and it is not wise
to assume that as each source is added to the self-curating database,
an all-to-all entity resolution is performed comprehensively across
all data sources.

FUNCTIONALITY STATEMENT 1. A self-curating database mu-
st adaptively manage instance relations in light of new information.
How does one adapt existing entity resolution techniques so they
work across different schemata without requiring prior knowledge
about external data sources to enable efficient incremental schema
evolution in local data sources?

FUNCTIONALITY STATEMENT 2. Furthermore, what is the rig-
ht formalism to express and capture the interconnectedness in or-
der to assess and measure the richness of each data source based
on the connectivity and density? For example, information content
and capacity are a common measure for assessing the richness, and
graph-theocratic approaches are well suited for studying the con-
nectivity, flow properties, partitioning, and topology, but there is a
lack of general formalism to assess the interconnectedness of data.

based on the interconnectness of data. The frequently accessed data could be packed
together to be used efficiently in the limited, but fast-access memory of modern hard-
ware including CPU cache or GPU and FPGA on-chip memory.



Another challenge is how to efficiently manage relation inter-
connectedness. One may argue that a graph is the right abstraction
model, but it leaves open the question of how to provide fast traver-
sal abilities. Alternatively, one may argue that traditional indexes
(e.g., B-Tree) may improve lookup, but at the high-level, indexes
only provide one-hop away direct accesses, which are already cap-
tured in the explicit interconnectedness of the data. Thus, direct
access is no longer beneficial, but rather the open challenge is how
to improve the locality of multi-hop traversal.

OPTIMIZATION STATEMENT 2. Given that the instance inter-
connectedness already encompasses the benefit of one-hop away
direct access, what is an optimal representation that provides ef-
ficient locality-aware traversal that is tightly coupled with the in-
stance and semantic layers and is update-friendly?

3.3 Semantic Layer: Vertical Expansion

The instance layer together with relations between the instances,
as discussed thus far, constitute what is often conceptually referred
to as the ABox in the description logic and semantic web literature
[3]. That is, instances refer to individual entities in the real world,
relations among them are expressed in terms of semantic properties,
and each instance is a member of one or more concepts or types.
The concepts and semantic properties that are used in the ABox
constitute meta-data about the instance data. Concepts themselves
may have relationships to each other and semantic properties.

As a somewhat simple example, a Drug can be defined as a
chemical with an existential quantification over the relation has
Target. This means that if the actual instance data only stated that
Acetaminophen (Tylenol) is a Drug, a self-curating database could
infer that Acetaminophen has a target, even if the specific relation
has yet to be discovered and expressed as a relationship between
Acetaminophen and any particular gene. In fact Acetaminophen
targets PTGS?2 (even though it is not shown in Figure 2).

These richer semantic reasonings are formulated and expressed
in taxonomies or web ontology language (OWL), a subset of first-
order logic (FOL). Relationships among the concepts and proper-
ties are typically referred to in the semantic web as the TBox [3].
To formalize our discussion, we focus on a widely employed OWL-
DL language, which is based on the semantics of SHIN. The SHIN
semantics is defined as Z= (AZ, .7), where 7 refers to an interpre-
tation, AT is a non-empty set (the domain of the interpretation),
and .7 is the interpretation function that maps every atomic con-
cept C to a set CT C AT (Approved Drugs is an example of the
concept), every atomic role R to a binary relation RZ C AT x AT
(e.g., has Therapeutic Efficacy as a role), and every individual a to
af e AT

An RBox R is a finite set of transitivity axioms and role inclu-
sion axioms of the form R = P where R and P are roles. A Tbox
T is a set of concept inclusion axioms of the form C' C D, where
C and D are concept expressions (e.g., Neoplasms C Disease). An
Abox A is a set of axioms of the form a : C' (a is a member of the
concept C), R(a,b) (there is an R relationship between a and b),
e.g., has Target(Acetaminophen, PTGS2). Finally, an interpretation
7 is a model of an Abox A with respect to a Tbox 7 and a Rbox
R iff it satisfies all the axioms in A, R, and 7.

A key strength of knowledge representation (KR) formalisms
(such as OWL) derived from FOL stems from their capability to
represent complex information in a knowledge rich domain, e.g.,
the biomedical domain. Unfortunately, FOL is incapable of dealing
with inconsistency and uncertainty, which naturally arise when in-
formation from independent data sources is combined. The KR for-
malism should capture and aggregate information from both hard
and soft sources. Hard sources may have a clear mathematical
model of uncertainty, e.g., sensor data. Soft sources, on the other
hand, provide vague statements of truth (often fuzzy), such as “a
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sudden stomach bleed was attributed to the recent intake of Ibupro-
fen”. In contrast, there have been only isolated efforts to extend the
KR languages to handle only a particular form of uncertainty, e.g.,
probabilistic or fuzziness [3]; thus, we raise the following question.

FUNCTIONALITY STATEMENT 3. Is it possible to define a new
unifying approach, but perhaps less expressive, to aggregate these
isolated forms of uncertainty in a single tractable formalism?

In general, we view the enrichment of data with semantics as ver-
tical data expansion because this layer allows the database to infer
new facts about the lower layers. We note that there is an increasing
need for the vertical data expansion layer to be more general than
the current notion of TBox 7. Increasingly, conceptual statistical
models are being derived from the data to derive new connections
between instance data. We therefore propose that the vertical data
expansion be enriched by adding statistical models, such as those
offered by machine learning, specifically to improve the linkage
coverage and accuracy as well, considering that the purpose of this
layer is to add semantic inference and reasoning capabilities about
the instance types and the relationships among types.

FUNCTIONALITY STATEMENT 4. In the semantic web litera-
ture, the assumption is that a user can specify the ontology as a
logical view that can be applied over data with respect to a given
query. Is it reasonable to have users be aware of the meta-models
needed to understand the structure of the data, especially as one al-
lows statistical models? And how does one describe a specific sta-
tistical model that should be applied over the data declaratively?

To further benefit from the enriched data, there is a need for new
formalism to combine the expressiveness power of database query-
ing languages (e.g., SQL) with the semantic formalism of descrip-
tion logic (e.g., OWL) to capture the knowledge about the data.

FUNCTIONALITY STATEMENT 5. Is it possible to develop a new
semantically enriched query language that combines the expres-
siveness and declarativeness power of SQL (subset of FOL) and
the leading semantic formalisms such as OWL (also subset of FOL)
while retaining decades long advancement of query optimization
and scalable query execution? Furthermore, is it possible to ex-
tend this new combined language with machine learning models
that are based on non-declarative statistical, mathematical, or nu-
merical formalism rather than the logical FOL formalism?

Through semantically enriched data, there is an enormous oppor-
tunity to improve query optimization by inferring statistics given
that today’s optimizers fail completely in the absence of statistics
on the data.

OPTIMIZATION STATEMENT 3. How to extend the predomin-
ant rule- and cost-based query optimization to leverage the explicit
semantics within our data model, so the optimizers are no longer
limited to only statistics on data (e.g., selectivity estimates) to guide
the query optimization (often missing or unavailable for external
sources)? Is it possible to exploit the available semantics (e.g., ex-
ploiting class and subclass relationships) by inferring the selectiv-
ity and rewriting the query to a more efficient query (e.g., by infer-
ring that certain predicates can be collapsed together semantically
or can be dropped because they are redundant or unsatisfiable)?

4. QUERY MODEL: EMBRACE CONTEXT

There is a compelling case to make queries less complicated
through automatic exploration and refinement given the query con-
text while the results must become evidence-based and justified
(not limited to just a confidence score).  Considering our pro-
posed holistic data model, there are new opportunities to formal-
ize and leverage the context of queries throughout the entire query
pipeline, giving rise to a new way of thinking about how to query is-
lands of data. We declare a pressing need to rethink the entire query
model in a self-curating database; in particular, we focus on refining
queries and computing answers through the continuous discovery
and integration of data made possible by the rich data model.



4.1 Continuous Discovery and Refinement

In the database literature, we have the notion of adaptive query
processing for collecting more accurate statistics during query exe-
cution to proactively optimize the query plan [2]. But conceptually
our proposed context-aware query model opens up new avenues of
research, in which not only more accurate statistics are gathered,
but the query is also refined. In addition to refining the query, the
data is also being adapted. Specifically, new instance relations or
semantics relationships are discovered within the context of a given
query (and its refined queries) as part of an online incremental in-
tegration, a step towards achieving the continuous integration.

Consider the task of determining an effective dosage of a drug by
querying multiple clinical data sources. It is well-known that eth-
nicity and race have a major role in determining drug responses [9].
Now if these isolated data sources correspond to populations that
are biased to genetic, ethnicity, and environmental conditions, then
there is a tremendous value in automatically and judiciously nav-
igating through these data sources without forcing the user to be
fully aware of the semantics and interpretation of data that would
be embedded in the enriched data model.

Suppose the initial query is “What is an effective dosage of War-
farin for preventing a blood clot?” (captured in Figure 2). Now to
offer an accurate and justified answer in the presence of many dis-
connected data sources, there is a crucial need to develop an explo-
rative querying framework that exploits the context of the query. To
discover the necessary information and to fill the gap, the follow-
ing refined queries may be posed automatically: “Is Warfarin sensi-
tive to ethnic background?” (necessary to be aware of any medical
facts); “What are the disjoint classes of population with respect to
Warfarin?”’ (necessary for drilling down further); or “Does War-
farin have a narrow therapeutic range?” (necessary to quantify the
dosage sensitivity and its range). We argue that such exploration is
only possible by enriching data with sufficient semantics in order
to interpret the context of queries and raise additional questions.

FUNCTIONALITY STATEMENT 6. A new formalism is needed
to express and execute the context-aware query model such that the
discovery of new data connections and the refinement of query are
feasible. Is it possible to formulate the discovery and refinement
process as a random walk problem, where the initial seeds or the
probability of each step taken is driven by query predicates and/or
query partial results?

FUNCTIONALITY STATEMENT 7. Alternatively, is it possible
to extend the query-by-example formalism [14] for filling miss-
ing data to introduce an incremental process so the query answer
is partially computed, and the partial answer becomes an exam-
ple with incompleteness (missing values) for raising/refining addi-
tional queries?

To judge and choose the right formalism for context-aware query
answering, we also need to revisit the existing evaluation criteria
both in terms of completeness and feasibility.

FUNCTIONALITY STATEMENT 8. To improve the discovery, is
it possible to extend the crowdsourcing formalism to identify and
assess the necessity to fetch incomplete data given certain qualita-
tive (to improve the accuracy and coverage of answers) or quanti-
tative (to find information faster) cost functions?

4.2 Continuous Online Integration

The importance of online incremental integration for the context-
aware query model is twofold. First, in a setting consisting of
independently managed (but linked) data sources, individual data
sources may change over time and one cannot be assured that all
updates are propagated in a timely fashion. In fact, one of the main
shortcomings of today’s linked data initiative, in which large data
sources are linked statically once, is the inability to deal with stale
linked data [13]. Second, large scale one-time integration requires
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a priori knowledge to perform the integration, and this is not al-
ways feasible [8]. Moreover, it discards the knowledge of the users
of the systems. Every time a user submits a query, the query may
contain knowledge about the data, e.g., how two pieces of data are
connected. One can think of a submitted query as a small scale but
more focused and accurate integration that is at the instance-level
and not necessarily at the schema-level.

FUNCTIONALITY STATEMENT 9. There is a need for a new
Jformalism to assess the correctness of query answering within the
context of a single query while we discover and consult overlap-
ping or even conflicting sources of information. More importu-
nately, how do we formulate the feedback mechanism to materialize
the discovered information guided by the context of query? If the
discovered information is conflicting, then how could we automati-
cally assess the richness or validity of discovered entities based on
the degree of richness of each source (e.g., information content)?

Today’s formalisms for computing query answers focus on the
inconsistencies, incompleteness, and uncertainty that arise within
each data source or a set of integrated sources (i.e., a single con-
solidated view of data). The traditional probabilistic query answer-
ing relies on possible world semantics to assess the likelihood of
answers by enumerating all possible worlds [5]. A well-known
expressive representational model is a conditional table (c-table),
in which each tuple ¢; is associated with a Boolean formula (the
condition ¢;) [10]. The existence of a tuple in a possible world is
subject to the satisfaction of its condition [10], c-tables are formally
expressed as the valuation function of conditions v(c).

Given an instance of data with uncertainty, we have a discrete
probability space of P = (W,P), where W is a set of all the
possible worlds givenby W = {I1, - , I, } and P is a probability
model that assigns probability P (1;) to each possible world I; such
that 0 < P(I) < 1 and X}, P(I;) = 1. The probability of any
tuple ¢ is the total probability of all worlds in which ¢ exists and can
simply be computed by £ 7, P(1:).

Similarly, the incompleteness semantics [] is defined for an in-
complete database D as a set of complete databases [D] that are
constructed given an interpretation of null values Z™" under either
as open- or closed-world assumption, [Jowa or [Jcwa, respectively
[10]. The domain of the database consists of a set of constants (de-
noted by Const) and a set of nulls (denoted by Null), where the null
represents the missing/unknown values. An example of a different
interpretation of null values Z™" is Codd’s three-valued logic.

Subsequently, the problem of query answering is reformulated
as finding certain answers for the query Q). Given an interpretation
of nulls Z™": the certain answer is defined as certain(Q, D) =
N, {Q(D:)|D; € [D]}, which amounts to finding an intersection
among a set of possible worlds. Notably, an incomplete database
can be represented by a c-table [5], an important step towards unify-
ing the representation model for both uncertainty and incomplete-
ness [5, 10]. For instance, to capture both incompleteness and un-
certainty, the c-tables semantics can be extended to included the
valuation of nulls v(¢;) and the valuation of conditions v(c;) so
that a possible complete database instance I can be computed.

The existing techniques based on possible world semantics fo-
cus on deriving possible data instances from a single consolidated
representation of data with uncertainty/incompleteness. However,
there is no formalism to deal with multiple databases, where each
source is complete and certain, but when viewed together without
sufficient semantics, then uncertainty, incompleteness, and incon-
sistencies could arise. Let us revisit querying a set of independent
sources, where each source captures clinical trials carried out in a
different country and data is demographically biased; thus, naively
combining the data from these sources may result in conflicting
outcomes, even if data in each source is consistent/certain [9].

Consider a simple Boolean query “Is 5.0 mg an effective dosage



of Warfarin for preventing blood clot?”. If the data was collected in
white-dominant population, the effective daily dosage is expected
to be around 5.1 mg, while in Asian and black population, daily
doses of 3.4 mg and 6.1 mg are recommended, respectively [9].
Now, a naive evaluation may return false as the certain answer
to our question (because not all sources report a 5.0 mg dosage
rate) while semantically enriched data can infer that these reported
dosage rates belong to three disjoint ethnic classes, and to compute
the certain answer it is sufficient to have at least one dataset with a
daily dose of “close” to 5.0 mg. Now the notion of closeness can
further be formulated based on fuzzy logic in light of the fact that
“Warfarin has a very narrow therapeutic range” [9]. Therefore, we
argue that sufficient semantics are needed to capture the knowledge
about the data premises (beyond today’s lineage and provenance in-
formation) when integrating multiple data sources, and a new query
answering formalism is needed to leverage the added knowledge.

In general, derived possible worlds are all constructed from a
single integrated and consolidated actual world with incomplete-
ness and/or uncertainty. But data at the web scale consisting of a
large set of actual worlds (independent data sources) not just postu-
lated probable worlds. These independent actual worlds, which we
refer to as “parallel worlds” to distinguish them from the existing
possible worlds semantics, may have conflicting facts, an alterna-
tive view of worlds, or relative facts that are only locally consis-
tent given the premise of the particular world (i.e., semantics of the
data). In short, information is relative with respect to the perspec-
tive of each independent source, and even in the absence of local
inconsistency or uncertainty, the data may become contradictory
when combined in the absence of sufficient semantics.

FUNCTIONALITY STATEMENT 10. Firstly, is the exiting c-table
formalism sufficiently expressive and concise to model our notion
of parallel worlds with our proposed enriched and unified data
model? For example, is the c-table representation required to be ex-
tended with relation and semantic layers (analogous to our holistic
model) to faithfully capture the answers? Now, assuming a rep-
resentational model, how do we formulate the notion of parallel
world semantics for computing justified answers that may not al-
ways be globally justified in the presence of overlapping, comple-
mentary, and/or opposite relative views of worlds, where “justify”
is taken as a fuzzy definition of “certain” to capture, possibly in a
relaxed form, correctness and consistency for query semantics?

In addition to the need for formalism and the semantics of query
answering, there are other research challenges related to the execu-
tion semantics. As we continuously seek to discover and integrate
new data sources and our holistic data model becomes more expres-
sive, a whole set of challenges arise for transaction processing. For
example, how do we ensure repeatability and guard against non-
deterministic phantoms in transaction processing?

FUNCTIONALITY STATEMENT 11. If the relation and seman-
tic layers can be changed continuously, even when the instance
layer does not change, and these layers are further enhanced with
non-deterministic predictive inference power, could the classical
isolation semantics (e.g., repeatibility or snapshot) ever be satis-
fied? In what ways must concurrency control be extended to ac-
count for the non-determinism that is not the result of explicit up-
date queries? Is it possible to introduce relaxed isolation semantics
(e.g., eventual consistencies) to account not only for a delay in re-
ceiving changes (i.e., pushed and eventually received), but also to
account for situations where changes may never be sent explicitly
and once received may be non-deterministic (i.e., pulled and even-
tually received with uncertainty)? These fundamental changes to
the concurrency model will inevitably have implication for other
components such as logging and recovery protocols.

A system-level dimension of continuous integration and avoid-
ance of today’s pre-dominant first-ingest-then-process arises when
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considering the landmark shift of pushing both query execution and
hosting of data sources on the cloud [1]. This synergy will intro-
duce a whole new class of workload orchestration and optimization
to reduce the cost of online integration and query answering.

OPTIMIZATION STATEMENT 4. How can existing placement str-
ategies be adapted to transition from disk data placement to plac-
ing data in distributed main memory at cloud scale? How can the
data be judiciously placed in distributed shared memory with close
affinity when online integration of data sources is likely in order to
eliminate the storage access cost and to reduce the main memory
footprint by avoiding data cache duplication?

5. REVISITING DATABASE PRINCIPLES

In conclusion, to characterize our vision of self-curating databases,
we revisit Codd’s classical rules for relational systems and elab-
orate on how these rules must be extended to account for self-
curating databases. In the process, we develop a comprehensive
list of criteria that may serve as a test for self-curating databases.

e Deviation from the foundation rule: A self-curating database
cannot assume that all data is managed locally and all data is
in a relational model as was prescribed by Codd.

Deviation from the information rule: Information is not limited
to only the tabular form. A richer representation is essential to
store information about the data. Meta-data and data represen-
tations must be unified and their distinction eliminated. Further-
more, every piece of information needs to be represented in the
hierarchical multi-layered data model, where each layer seman-
tically enriches the data, unlike Codd’s vision that information is
represented in only one way, namely, as a value in a table.
Extending the systematic treatment of null values rule: The data
model must allow each data item to be noisy, fuzzy, uncertain,
or incomplete so that it can be manipulated systematically, in
addition to the need for the nulls to represent missing values as
advocated by Codd.

Extending the comprehensive data sublanguage rule: The em-
ployed language must also support (1) data discovery and re-
finement operators and (2) multi-source transactions with lim-
ited access and concurrency enforcement on external sources, in
addition to the language requirements stated by Codd.
Deviation from the view updating rule: External views may not
be updatable or forced to be updated incrementally and lazily,
whereas Codd assumes all views must be strictly updatable.
Deviation from the integrity independence rule: Constraints on
data and meta-data are not limited to an independent set of rules
maintained in the catalog (as required by Codd) because con-
straints are now modeled at the relation and semantic layers and
data instances are physically linked.
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