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ABSTRACT 

Next-generation sequencing (NGS) has dramatically reduced the 

cost and time of reading the DNA. Huge investments are targeted 

to sequencing the DNA of large populations, and repositories of 

well-curated sequence data are being collected. Answers to 

fundamental biomedical problems are hidden in these data, e.g. 

how cancer arises, how driving mutations occur, how much 

cancer is dependent on environment. So far, the bio-informatics 

research community has been mostly challenged by primary 

analysis (production of sequences in the form of short DNA 

segments, or ''reads'') and secondary analysis (alignment of reads 

to a reference genome and search for specific features on the 

reads); yet, the most important emerging problem is the so-called 

tertiary analysis, concerned with multi-sample processing of 

heterogeneous information. Tertiary analysis is responsible of 

sense making, e.g., discovering how heterogeneous regions 

interact with each other.  

This new scenario creates an opportunity for rethinking genomic 

computing through the lens of fundamental data management. We 

propose an essential data model, using few general abstractions 

that guarantee interoperability between existing data formats, and 

a new-generation query language inspired by classic relational 

algebra and extended with orthogonal, domain-specific 

abstractions for genomics. They open doors to the seamless 

integration of descriptive statistics and high-level data analysis 

(e.g., DNA region clustering and extraction of regulatory 

networks). In this vision, computational efficiency is achieved by 

using parallel computing on both clusters and public clouds; the 

technology is applicable to federated repositories, and can be 

exploited for providing integrated access to curated data, made 

available by large consortia, through user-friendly search services. 

Our most far-fetching vision is to move towards an Internet of 

Genomes exploiting data indexing and crawling.  

Categories and Subject Descriptors 

H.2.1 [Logical design]: Data models; H.2.3 [Languages]: Query 

languages; H.2.8 [Database applications]: Scientific databases. 

Keywords 
Genomic data management 

1. INTRODUCTION 
Modern genomics promises to answer fundamental questions for 

biological and clinical research, e.g., how protein-DNA 

interactions and DNA three-dimensional conformation affect gene 

activity, how cancer develops, how driving mutations occur, how 

much complex diseases such as cancer are dependent on personal 

genomic traits or environmental factors. Unprecedented efforts in 

genomics are made possible by Next Generation Sequencing 

(NGS), a family of technologies that is progressively reducing the 

cost and time of reading the DNA. Huge amounts of sequencing 

data are continuously collected by a growing number of research 

laboratories, often organized through world-wide consortia (such 

as ENCODE [1], TCGA [2], the 1000 Genomes Project [3], and 

Epigenomic Roadmap [4]); personalized medicine based on 

genomic information is becoming a reality.  

Several organizations are considering genomics at a global level. 

Global Alliance for genomics and Health1 is a large consortium of 

over 200 research institutions with the goal of supporting 

voluntary and secure sharing of genomic and clinical data; their 

work on data interoperability is producing a data conversion 

technology2 recently provided as an API to store, process, 

explore, and share DNA sequence reads, alignments, and variant 

calls, using Google's cloud infrastructure3. Parallel frameworks 

are used to support genomic computing, including Vertica4 (used 

by Broad Institute and NY Genome Center) and SciDB5 (used by 

NCBI for storing the data of the 1000 Genomes project [3]. A 

survey of current challenges in computational analysis of genomic 

big data can be found in [5]. According to many biologists, 

answers to crucial genomic questions are hidden within genomic 

data already available in these repositories, but such research 

questions go simply unanswered (or even unasked) due to the lack 

of suitable tools for genomic data management and processing.  

So far, the bio-informatics research community has been mostly 

challenged by primary analysis (production of sequences in the 

form of short DNA segments, or ''reads'') and secondary analysis 

(alignment of reads to a reference genome and search for specific 

features on the reads, such as variants/mutations and peaks of 

expression); but the most important emerging problem is the so-

called tertiary analysis, concerned with multi-sample processing, 

annotation and filtering of variants, and genome browser-driven 

exploratory analysis [6]. While secondary analysis targets raw 

data in output from NGS processors by using specialized 

methods, tertiary analysis targets processed data in output from 

secondary analysis and is responsible of sense making, e.g., 

discovering how heterogeneous regions interact with each other 

(see Figure 1). 

                                                                 

1 http://genomicsandhealth.org/ 

2 http://ga4gh.org/#/api 

3 https://cloud.google.com/genomics/ 

4 https://www.vertica.com/ 

5 http://www.paradigm4.com/ 
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Figure 1. Phases of genomic data analysis, source:  

http://blog.goldenhelix.com/grudy/a-

hitchhiker%E2%80%99s-guide-to-next-generation-

sequencing-part-2/  

Tertiary processing consists of integrating DNA features; these 

can be specific DNA variations (e.g., a variant or mutation in a 

DNA position), or signals and peaks of expression (e.g., regions 

with higher DNA read density). Processing can also give 

structural properties of the DNA, e.g., break points (where the 

DNA is damaged) or junctions (where DNA creates loops, and 

then locations which are distant on the 1D string become close in 

the 3D space).  

While gigantic investments are targeted to sequencing the DNA of 

larger and larger populations, comparably much smaller 

investments are directed towards a computational science for 

mastering tertiary analysis. Bio-informatics resources are 

dispersed in provisioning a huge number of tools for ad-hoc 

processing of genomic data, targeted to specific tasks and adapted 

to technology-driven formats, with little emphasis on powerful 

abstractions, format-independent representations, and out-of-the-

box thinking and scaling. Programming data manipulation 

operations directly in Python or R is customary.  

Another source of difficulty comes from “metadata”, which 

describe DNA region-invariant properties of the biological sample 

processed by NGS, i.e., the sample cell line, tissue, preparation 

(antibody used), experimental conditions, and in case of human 

samples the race, gender, and other phenotype-related traits. This 

information should be stored in principled data schemes of a 

“LIMS” (laboratory information management system) and be 

compliant with standards, but biologists are very liberal in 

omitting most of it, even in well-cured repositories.  

2. OUR CONTRIBUTION 
Bio-informatics suffers its interdisciplinary nature and is 

considered by biologists and clinicians as a commodity that 

should immediately respond to their pressing needs, while it stays 

too far from foundational science to attract the interest of many 

core computer scientists. We understood that it is “mission 

impossible” for basic computer science to have an impact on 

primary and secondary analysis: algorithms are biologically 

driven and very specialized and efficient. Hence, we decided not 

to interfere with current biologists’ practices, but rather to 

empower them with radically new data processing capabilities.  

We propose a paradigm shift based on introducing a very simple 

data model which mediates all existing data formats, and a high-

level, declarative query language which supports data extraction 

as well as the most standard data-driven computations required by 

tertiary data analysis. The Genomic Data Model (GDM) is based 

on just two entities: genomic region and metadata. Regions (upper 

part of Figure 2) have a normalized schema (i.e., a table of typed 

attributes) where the first five attributes are fixed and the next 

attributes are variable and reflect the “calling process” that 

produced them. The fixed attributes include the sample identifier 

and the region coordinates (the chromosome whom the region 

belongs to, its left and right ends, and the strand - i.e., the “+” or 

“–” of the two DNA strands on which the region is read, and “*” 

if the region is not stranded). The model can be adapted to the rare 

cases of regions across chromosomes. Metadata (lower part of 

Figure 2) are even simpler. They are arbitrary, semi-structured 

attribute-value pairs, extended into triples to include the sample 

identifier. We consider this model a paradigm shift, because a 

single model describes, though simple concepts, all types of 

processed data (peaks, signals, mutations, DNA sequences, loops, 

break points).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. GDM schema and instances for NGS ChIP-Seq data. 

 

The data model is completed by a constraint: data samples can be 

included into a named dataset when their genomic regions have 

the same schema. Thus, the above figure shows the PEAKS 

dataset for “ChIP-Seq” data with two samples (1 and 2) whose 

regions fall within two chromosomes (1 and 2) and whose 

variable part of the schema consists of the attribute P_VALUE 

(each peak’s statistical significance). Note that the sample ID 

provides a many-to-many connection between regions and 

metadata of the same sample; e.g., sample 1 has 5 regions and 4 

metadata attributes, sample 2 has 4 regions and 3 metadata 

attributes; regions of the first sample are stranded (positively or 

negatively oriented along the DNA), while regions of the second 

sample are not stranded. Metadata tell us that sample 1 has 

karyotype “cancer” and sample 2 was taken from a “female”. This 

example is simple, but we can associate a schema with arbitrarily 

complex processed data, where typed and named attributes serve 

the purpose of any numerical or statistical operation across 

compatible values. An important operation is the schema 

merging, which allows merging datasets with different schemas 

(the operation builds a new schema such that fixed attributes are 
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in common and variable attributes are concatenated; in this way, 

we provide interoperability across heterogeneous processed data.   

We also defined a query language, called GenoMetric Query 

Language (GMQL) - the name derives from its ability of 

computing distance-related queries along the genome, seen as a 

sequence of positions. GMQL is a closed algebra over datasets: 

results are expressed as new datasets derived from their operands. 

Thus, GMQL operations compute both regions and metadata, 

connected by IDs; they perform schema merging when needed. 

GMQL operations include classic algebraic transformations 

(SELECT, PROJECT, UNION, DIFFERENCE, JOIN, SORT, 

AGGREGATE) and domain-specific transformations (e.g., 

COVER deals with replicas of a same experiment; MAP refers 

genomic signals of experiments to user selected reference regions; 

GENOMETRIC JOIN selects region pairs based upon distance 

properties). The language brings to genomic computing the classic 

algebraic abstractions, rooted in Ted Codd’s seminal work, and 

adds suitable domain-specific abstractions. Tracing provenance 

both of initial samples and of their processing through operations 

is a unique aspect of our approach; knowing why resulting regions 

were produced is quite relevant. In [7], we show GMQL at work 

in many heterogeneous biological contexts.  

We give an intuition of GMQL through a simple example, 

consisting of three operations. We start from two datasets called 

ANNOTATIONS and ENCODE, the former includes samples 

with the reference regions from the UCSC database6, the latter 

includes thousands of samples from ENCODE (in BED format); 

both are available at our server, with both regions and metadata. 

Two selections are used to produce two intermediate datasets: 

PROMS extracts from ANNOTATIONS a single sample with all 

the promoter regions of known genes; PEAKS extracts the 

samples of type ‘ChipSeq’ from ENCODE. Then, a map operation 

applies to the intermediate datasets PROMS and PEAKS and 

produces the RESULT dataset. The MAP operation, as well as all 

GMQL operations, implicitly iterates over all the samples of its 

operand datasets; it counts, for each input peak sample, all the 

peaks of expression over each region of PROMS, representing 

gene promoters. Thus, RESULT contains one output sample for 

each PEAK input sample, each with all the regions of PROMS; 

for each of such regions, it has the counter of peaks of the sample 

which fall within such region. This simple example shows the 

power of the language: with tree algebraic operations, we select 

reference regions and experiments and then compute aggregate 

properties of each experiment over each reference region, with 

implicit iteration over all the experiment samples. 

PROMS = SELECT(annType == 'promoter') ANNOTATIONS; 
PEAKS = SELECT(dataType == 'ChipSeq') ENCODE; 
RESULT = MAP(peak_count AS COUNT) PROMS PEAKS; 

This query above was executed over 2,423 ENCODE samples 

including a total of 83,899,526 peaks, which were mapped to 

131,780 promoters, producing as result 29 GB of data.  

3. DATA-DRIVEN GENOMIC PROBLEMS 
An open problem that we are nowadays studying concerns the 

search for a correlation of cancer-inducing mutations and DNA 

string breaks with abnormal gene activity during cell replication 

                                                                 

6 http://genome.ucsc.edu/cgi-bin/ hgTables 

?hgsid=445319346_kHaTO493uLRZhjuqCvaKTaFt7HL3 

[8], as one of the possible basic mechanisms of cancer. The 

assumption under consideration is that the abnormal production of 

DNA string breaks correlates with the presence of mutations 

(simply explained: mutations occur where the genome is most 

fragile, fragility is revealed by DNA break points); this in turn 

may be caused by gene dis-regulation during the process of cell 

replication (certain genes omit to perform a regulatory function 

that should prevent mutations during replication, or should fix 

them afterwards). In this problem, we are therefore confronted 

with correlating the cell replication with gene regulations; we do 

it in experimental conditions (exposure of cells to oncogenes), and 

we study how the induction of the oncogene changes both 

replication time and expression of other genes. The study requires 

genome-wide comparison of heterogeneous datasets (breakpoints, 

mutations, gene replication times and gene expressions under 

different experimental conditions), challenging both GDM and 

GMQL, and then calling for specific data analysis; specifically, 

GMQL can extract differentially dis-regulated genes, intersect 

them with regions where string breaks occur, and then count the 

mutations in various conditions. 

Another open problem is concerned with the tri-dimensional 

layout of DNA, which is induced by the chromatin structure 

revealed by peaks of the CTCF transcription factor, and 

understanding how CTCF loops influence gene regulation [9]; 

a loop is simply a binding of the DNA, so that two DNA regions 

which are far away from a 1D perspective become very close from 

a 3D perspective. In Figure 3, within yellow (thin) rectangles we 

see three signals which identify three non-coding regions of the 

genome, called enhancers, and within a black (thick) rectangle we 

see signals which identify the promoter of the gene Fbln2. They 

are enclosed within regions which represent short CTCF loops, 

and the assumption to be tested is whether there is a direct 

relationship between active enhancers and active genes (where 

activity is revealed by experiments) when enhancers and 

promoters are enclosed within CTCF loops (as this spatial 

condition may favor the enhancer-to-gene relationship); 

determining the relationships of genes with enhancers is a 

fundamental aspect of epigenetics. Such question corresponds to 

searching a pattern within the whole genome; GMQL can be used 

to extract candidate gene-enhancer pairs by suitable intersections 

of the signals in Figure 3 - i.e., CTCF regions, the regions of the 

three methylation experiments (H3K27AC, H3K4me1, 

H3K4me3), and gene promoter regions (from RefSeq). 

Figure 3. Interaction between CTCF loops and gene regulation 

by enhancers. 
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4. VISION 
GDM and GMQL open new scenarios in approaching tertiary 

analysis of genomic data. We next discuss them. 

4.1 Data Analysis 
Data analysis methods which are most useful for genomic 

computing can be bridged to the high-level language, with a 

bottom-up, problem driven approach. In particular, query results 

can be expressed in the form of interaction networks between 

genomic regions. In biology, many genes are involved in complex 

regulatory processes; for us, genes are just DNA regions of a 

specific sample (they are “known annotations of the genome”) and 

thus we can MAP (using the domain-specific operation shown in 

the example of Section 2) arbitrary experiments to genes. MAP is 

the first transformation in Figure 4, which computes aggregates 

over those regions of regions of experiments that intersect with 

genes (represented by regions R1, R2, R3). In general, every map 

operation produces what we call a genome space, i.e., a tabular 

space of regions vs. experiments (in the middle of Figure 4), 

which is the starting point for data analysis (including advanced 

data mining and computational intelligence). Such table can be 

also interpreted as an adjacency matrix representing a network, 

where regions are nodes and arcs have a weight obtained by 

further aggregating properties across experiments; thus, the 

second transformation in Figure 4 yields to a gene network, 

producing as well the strength of gene-to-gene interactions. The 

interpretation of genome spaces in the form of networks is 

particularly important in genomics, as regulatory gene activities 

typically depend on multiple interacting genes.   

 

Figure 4. Interpretation of GMQL “map” query as a genome 

space, and further transformation of the genome space into a 

gene network. 

Several data mining and computational intelligence approaches, 

including advanced latent semantic analysis and topic modelling, 

can be applied to evaluate relationships among genomic data, and 

between them and biological or clinical features of experimental 

samples expressed in their metadata, i.e., for genotype-phenotype 

correlation analysis.    

4.2 Distributed Processing and Cloud 

Computing 
With the growth of NGS experiments (whose cost is expected to 

drop to about 100 Euro in less than a decade, 

https://www.genome.gov/sequencingcosts/), we will see a deluge 

of NGS data. Although processed data are “smaller” than raw data 

(0.3 TB per full genome sample), we are still talking of samples 

with tens of thousands or even millions of regions. Genomic 

repositories store thousands of full genome samples (i.e., 4,660 

samples in [1], 5,400 samples in [2], and 2,500 samples in [3]). 

Our simple query in Section 3 produced 83 million regions, and 

simple queries over genes may produce genome spaces of 10K 

genes and 100M relationships between them, whose analysis 

requires using large-scale network management packages. 

Moreover, NGS is increasingly used for massive testing on 

restricted, pathology-specific mutation panels, so as to accelerate 

the use for diagnostics and for clinics. We are clearly facing one 

of the most important “big data” problems for mankind.   

We are currently working towards a new GMQL release, that will 

be available in 2016, and will support two parallel 

implementations, respectively using Flink7 and Spark8, two 

emerging data frameworks. In our architecture, the two 

implementations differ only in the encoding of about twenty 

GMQL language components, while the compiler, logical 

optimizer, and APIs/UIs are independent from the adoption of 

either framework. In a recent paper [10] we present an early 

comparison of Flink and Spark at work on three genomic queries 

inspired by GMQL. Several tools were developed within the 

Hadoop framework for primary and secondary analysis, including 

BioPig [11], SeqPig [12] and SparkSeq [13]. Our preliminary 

work shows open source frameworks are effective computing 

systems also for tertiary data analysis; we foresee a growth of 

systems for genomic based upon parallel computing frameworks. 

So far, our focus on tertiary data analysis is shared just by 

Paradigm4, a startup company founded by the Turing award Mike 

Stonebraker, whose products include genomic add-ons to SciDB, 

a vector-based data management system for scientific 

applications. They provide access to data from TCGA and 1000 

Genomes Project, and they advocate the use of specialized 

databases for scientific computing rather than cloud computing – 

indeed, we find in [6] several arguments against the use of Spark. 

We expect that the alternative between open frameworks and 

specialized systems will shape the evolution of genomic data 

management in the forthcoming years. 

4.3 Integrated Access to Repositories 
Very large-scale sequencing projects are emerging; as of today, 

the most relevant ones include: 

 The Encyclopedia of DNA elements (ENCODE) [1], the 

most general and relevant world-wide repository for basic 

biology research. It provides public access to more than 4,000 

experimental datasets, including the just released data from its 

Phase 3, which comprise hundreds of epigenetic experiments 

of processed data in human and mouse; 

 The Cancer Genome Atlas (TCGA) [2], a full-scale effort to 

explore the entire spectrum of genomic changes involved in 

human cancer;  

 The 1000 Genomes Project [3], aiming at establishing an 

extensive catalogue of human genomic variations from 26 

different populations around the globe; 

 The Epigenomic Roadmap Project [4], a repository of 

“normal” (not involved in diseases) human epigenomic data 

from NGS processing of stem cells and primary ex vivo 

tissues. 

                                                                 

7 https://flink.apache.org/ 

8 https://spark.apache.org/ 
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Data collected in these projects are open and public; all the 

Consortia release both raw and processed data, but biologists in 

nearly all cases trust the processing, which is of high-quality and 

well controlled and explained. All consortia provide portals for 

data access; some systems already provide integrated access to 

some of them (e.g., [14]; see also http://www.paradigm4.com/).  

The use of a high-level model and language, such as GDM and 

GMQL, is the ideal setting for provisioning next generation 

services over data collected and integrated from these and other 

repositories, improving over the current state-of-the-art in four 

directions:  

 All the processed datasets available in the above data sources 

will be provided of compatible metadata; 

 It will be possible to choose among a set of custom queries, 

representing the typical/most needed requests; 

 It will be possible to provide user input samples to the 

services, whose privacy will be protected;  

 Deferred result retrieval will be possible, through limited 

amount of staging at the sites hosting the services. 

A simple protocol will facilitate input and output file 

transmissions and it will also be possible to visualize results on 

genome browsers or to selectively retrieve regions or metadata. 

Users will be enabled to write personalized queries, whose 

privacy will be protected. The main challenges in this vision 

include two new research objectives: the mediation of ontological 

knowledge and the statistical description of custom queries. 

 Ontological reasoning will be required in order to establish the 

appropriate conceptual relationships between the metadata 

which are present at the various sources. The best option is to 

use the global ontology provided by the Unified Medical 

Language System (UMLS) [15], which collects and integrates 

well-established biomedical ontologies. Our initial solution, 

presented in [16], consists in semantically annotating the 

metadata of each repository’s datasets by means of UMLS, 

and completing the information by performing the semantic 

closure [17] of such annotations. Then, a suitable UI would 

allow users to search for relevant experiments through 

keyword-based or free text queries.  

 Custom queries will need to be augmented with suitable 

mechanisms for reasoning about data; such services could 

imitate the Great service developed by Gill Bejerano’s group 

at Stanford [18], which includes powerful statistics to indicate 

the significance of query results.  

4.4 Federated Query Processing and 

Protocols 
The availability of a core data model as a data interoperability 

solution and of a high-level data processing language is a strong 

prerequisite for defining data exchange protocols. We expect that 

each data repository will be the owner of the data that are locally 

produced, and that nodes of cooperating organizations will be 

connected to form a federated database. In such systems, queries 

move from a requesting node to a remote node, are locally 

executed, and results are communicated back to the requesting 

node; this paradigm allows for distributing the processing to data, 

transferring only query results which are usually small in size. 

Supporting a high-level query interface to a server is already 

making one big step forward, which is similar to the gigantic step 

made by SQL in the context of client-server architectures (which 

dates a couple of decades). Indeed, once a system supports an API 

for submitting GMQL queries, these have the following 

properties: they are short texts and produce short answers. This 

comes from the nature of problems: the more they are biologically 

inspired, the more they produce results which are both short and 

ranked, and these will eventually be transmitted along any GMQL 

API; in contrast, most of today’s implementations requires first a 

full data transmission and then to evaluate server-side imperative 

programs. This scenario opens up to the design of simple 

interaction protocols, typically for:  

- Requesting information about remote datasets, facilitated by 

the availability of metadata (for locating data of interest) and of 

their region schemas (for formalizing queries). 

- Transmitting a query in high-level format and obtain data 

about its compilation, not only limited to correctness, but 

including also estimates of the data sizes of results. 

- Launching query execution and then controlling the 

transmission of results, so as to be in control of staging 

resources and of communication load. 

4.5 Search Methods and Internet of Genomes 
After having provided access to integrated sources of sequence 

data, we come to the question of how such knowledge can be 

searched. The problem can be approached progressively, starting 

first with opening search services over the integrated repositories. 

There are two intertwined problems: 

 Metadata search. Search methods should locate relevant 

samples within very large bodies, using classical measures of 

precision and recall; keyword-based search or free text 

querying should be supported. 

 Feature-based region search. Best-matching regions with 

user-specified features should be provided. For some regions 

(e.g., known genes) it is possible to define a priori the typical 

features, store them as attributes, and then use indexing; but in 

general features should be computed. We envision general 

search mechanisms where the user selects interesting regions, 

then provides information about the features of interest, then 

those features are computed, and finally regions are ordered 

based on their computed features and presented to the user. 

So, search and feature evaluation have to intertwine in a clever 

way. 

The most ambitious and challenging vision is building a search 

system upon an Internet of genomes. The prerequisite to this 

vision is of course not in today’s reach, and requires all research 

centers to agree on a deployment technology playing the role of 

HTML and HTTP for the Web. However, biologists are forced to 

publish the data which go together with their experiments: it is 

already in their practice to provide a link to a download site where 

experimental data should be available for downloading by 

reviewers. In such context, it is possible to envision the definition 

of a simple protocol for data publishing, prescribing how to 

publish a link to genomic data in their native format with suitable 

metadata; the protocol should offer the possibility of making such 

link public, i.e., visible within a host open to the visits of 

crawlers. With such infrastructure, a third party hosting a search 

service could periodically launch the crawlers, and these would 

download the metadata and links from the host; the search service 

could also download datasets from the hosts by using those links, 

with an agreed, non-intrusive protocol. The search service would 

then have all the required information for indexing all the 
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metadata and for storing some of the samples within a large 

repository, possibly pre-computing some features of their regions. 

Such search system could accept search queries and produce 

result snippets, with an indication of the presence of each dataset 

in the repository. In any case, users of the search system would be 

able to locate genomic data available at another host (a research or 

clinical center) and could download them asynchronously.  

5. CONCLUSIONS 
The progress in DNA and RNA sequencing technology has been 

so far coupled with huge computational efforts in primary and 

secondary genomic data management, consisting of producing 

“raw” data, aligning them to the reference genomes, and calling 

for specific features such as expression peaks and mutations. 

However, a new pressing need is emerging: making sense of data 

produced by these methods, in the so-called tertiary analysis. This 

need requires a substantial change of the dominating approach to 

bio-informatics. While primary and secondary analyses produce 

data formats which are typically intricate and incompatible, 

tertiary analysis must worry about their interoperability and ease 

of use. Tertiary analysis calls for raising the level of abstractions 

of models, languages and tools for genomics, going towards a 

broader vision where biologists and clinicians can observe the 

huge and complex body of genomic knowledge at a much higher 

level, using simple interfaces similar to search queries which have 

become widely available in the Internet.  

In this paper, we have shown that a change of paradigm is 

possible, by means of a new data model and query language; we 

have then shown the biological applications that have become 

feasible thanks to this approach, and examined the relevant 

advantages that this approach may bring in the contexts of data 

analysis, distributed processing, integrated repository access, 

federated data management, and search of genomic data over the 

Internet. The corresponding scenario traces a five-to-ten year 

research trajectory. 
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