Industrial and Applications Paper

c proceedings

DECT: Distributed Evolving Context Tree
for Mining Web Behavior Evolution

Industrial Paper

*
Xiaokui Shu
Department of Computer
Science, Virginia Tech
Blacksburg, VA USA
subx@cs.vt.edu

ABSTRACT

Internet user behavior models characterize user browsing
dynamics or the transitions among web pages. The mod-
els help Internet companies improve their services by accu-
rately targeting customers and providing them the informa-
tion they want. For instance, specific web pages can be cus-
tomized and prefetched for individuals based on sequences
of web pages they have visited. Existing user behavior mod-
els abstracted as time-homogeneous Markov models do not
provide efficient support for modeling user behavior varia-
tion through time. This paper presents DECT, a scalable
time-variant variable-order Markov model. DECT digests
terabytes of user session data and yields user behavior pat-
terns through time. We realize DECT using Apache Spark.
Our implementation is being open-sourced and we deploy
DECT on top of Yahoo! infrastructure. We demonstrate
the benefits of DECT with anomaly detection and ad click
rate prediction applications. DECT enables the detection of
higher-order path anomalies that are masked out by exist-
ing models. DECT also provides insights into ad click rates
with respect to user visiting paths.

Keywords

Markov Model; Context Tree; Distributed Computing; Time
Series; Anomaly Detection; Link Prediction

1. INTRODUCTION

Understanding Internet user behavior is a key to the op-
timization of Internet services and software. A web browser
or server can prefetch or prepare webpages for a user, if the
system knows the user will visit the page in the short fu-
ture [23]. A service provider can customize clickable ads for

*The work was mostly done while the first author was an
intern at Yahoo! Labs.

© 2016, Copyright is with the authors. Published in Proc. 19th Inter-
national Conference on Extending Database Technology (EDBT), March
15-18, 2016 - Bordeaux, France: ISBN 978-3-89318-070-7, on OpenPro-
ceedings.org. Distribution of this paper is permitted under the terms of the
Creative Commons license CC-by-nc-nd 4.0

Series ISSN: 2367-2005

Nikolay Laptev
Yahoo! Labs
701 First Avenue
Sunnyvale, CA USA
nlaptev@yahoo-inc.com

Danfeng (Daphne) Yao
Department of Computer
Science, Virginia Tech
Blacksburg, VA USA
danfeng@cs.vt.edu

a user, if the provider knows which ads the user is likely to
click [17]. Service providers can also design search engines
to fit human browsing dynamics [13].

Markov model (first-order, time-homogeneous) is commonly
adopted for Internet user behavior modeling [5]. It is, how-
ever, amnesiac; the probability of the next user visit is purely
based on the current status of the user. Higher-order Markov
models cure the amnesia issue by digesting historical visiting
sites of users [15]. Variable-order Markov models improve
higher-order Markov models by pruning away unnecessarily
higher-order paths for space saving purposes [3].

While the community has developed a string of advanced
Markov models to describe Internet user behavior patterns,
one strong assumption is constantly kept in all existing mod-
els: user behavior patterns do not change over time.

The above assumption, however, does not hold in the real
world. New products are releasing; UI of existing websites
are changing; cyber attacks occur; breaking news happen.
The Internet is evolving, and the observed Internet user be-
havior patterns should reflect the changes.

This paper presents DECT (distributed evolving context
tree), a time-variant model for efficiently describing Inter-
net user behavior patterns and their changes through time.
DECT is a time-variant variable-order Markov model. It
improves the state of the art variable-order Markov models
by releasing its assumption of static time-invariant user be-
havior patterns. DECT is designed to handle large volumes
of user session data and can be efficiently constructed via
distributed computing.

Time-variant variable analysis, e.g., visit counts of ser-
vices, has been widely used in industry to detect anomalies
like attacks, failures, and bugs. However, these commonly
used variables are stateless or only first-order with respect
to Markov models.

In contrast, DECT enables higher-order time-variant vis-
iting path analysis. DECT yields both regular time series of
individual path visiting probabilities and high-dimensional
time series for a set of related paths, e.g., paths that share
the same prefix. We demonstrate in Section 4.1 that DECT
can produce deep signals for anomaly detection. It helps re-
veal stealthy attacks, e.g., application layer DDoS attack [21]
and browsing mimicry attack [22]. First-order Markov mod-
els, in contrast, could mix these signals into noises. We
demonstrate in Section 4.2 that DECT distinguishes ad click
probability variations based on historical web pages a user
visits, while existing first-order prediction is blind to differ-

10.5441/002/edbt .2016.54

http://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2016.54

Table 1: Symbols, Terms and Definitions

Term Definition

s site the primitive unit to record user behavior
(e.g., a URL, a web service, a website)

FE session a sequence of sites that a user visits
(every session has a beginning and an end)

p path a substring of a session

T target the next site a user is going to transit to

¢ context a sequence of visited sites prior to 7

ent types of users who come from diverse paths.
The contributions of our work are summarized as follows.

e We design DECT to digest large volumes of user ses-
sion data and construct time-variant user behavior mod-
els in a distributed manner.

e We explain the benefits of a time-variant user behavior
model and showcase application examples of DECT in
anomaly detection and ad click prediction.

e We realize DECT using Apache Spark and demon-
strate its performance processing terabytes of real-world
user session datasets.

2. DECT

We discuss two major features of DECT in this section:
variable-order and time-variant. These features are realized
through a flattened context tree, which embeds time series
information in its leaf nodes.

2.1 Definitions and Overview

We study user behavior in terms of their visiting paths on
the Internet. A (desktop or mobile) user session is recorded
as a sequence of visits to a set of Internet sites — resources
that users are visiting. Sites vary from specific URLs to do-
mains'. We define related variables that are used to express
user visiting paths in Table 1.

Higher-order Markov models have been proved effective
in modeling static user behavior [5]. Given a path p, a
higher-order Markov model can be trained to predict the
last transition of p based on previously visited sites in p. In
this setup, we refer to the last transition in p as the target
7, and the sites prior to 7 as the context c.

The key question we aim to answer is how target transi-
tion probabilities change over time. When considering the
higher-order Markov model as a weighted directed graph
Gy = (Vu, Eum), we construct our model to keep track of:

e change of Vjs: new and obsoleted nodes
e change of Fj: transition matrix variation

DECT enables the tracking of both changes, and it pro-
vides two features to handle large amounts of data and mit-
igate exponential space explosion caused by regular higher-
order Markov model:

i) variable-order context-target probability
ii) fine-grained parallel path computing and pruning

We realize the two features through flattened context tree
— a new parallel and concise data structure for building dis-
tributed time-variant variable-order Markov model.

!The granularity of sites is a data collection parameter.

574

root

>A|->B|->C
0.25| 0.5 | 0.25
i 1 |
context A context 8 context C
>A|>B|->C
>A|->B|->C >A|->B|->C
0.15| 0.7 | 0.15
08| 01] 01 0.25| 0.4 | 0.35
l—)—l T
context A->B
>A|->B|->C
>A|->B|->C 0.25| 0.7 | 0.05
07]02] 01

_l

context C->C->B

>A| >B | >C
0.2 0.7 0.1

Figure 1: Example of regular context tree (pruned
to represent a variable-order Markov model).

2.2 A New Context Tree Structure

Context tree is a common data structure for constructing
variable-order Markov model [2,5,6]. We first give a brief de-
scription of regular context tree and its operations. Then we
present our flattened context tree structure for distributed
tree construction and fine-grained parallel pruning.

2.2.1 Regular Context Tree

A regular context tree T¢ is a k-ary tree where k is the
number of all possible sites. T¢ records static transition
probabilities of any target given a limited length context.
The limited context length is the depth of the tree.

We give an example of a regular context tree in Figure 1.
A site s € {A,B,C}. Each node maps to one context
that is recorded. A node nz, which corresponds to context
¢ = (s—y,...,5-2,5-1, S0), positions at depth y in Tc. Its
parent is the node with context & = (s_(y_1),...,S-2,5-1,
s0) at depth y — 1. Its children are nodes with context
Ce; = (S—(y+1);+---15-2,5-1,50) at depth y + 1 where 0 <
1 < & < k. & is the total number of children of c.

ne stores the target probability distribution with respect
to the context ¢ = (s—y,...,S$—-2,5-1, S0), i.e., P(7;|¢) where
0 < j < ke < k. K¢ is the total number of reachable targets
given the context c.

Pruning Pruning a regular context tree of a higher-order
Markov model results in a variable-order Markov model.
The standard T¢ pruning strategy is a bottom-up process:
pruning away ng if both criteria are satisfied:

1.
2.

nz is a leaf node.

The distance, e.g., KL divergence, between the target
probability distribution of ne and that of its parent
node ngz is less than a predefined threshold 7. .

Time-variant capability Unfortunately, regular context
tree is designed to accommodate static transition probabil-
ities. The transition matrix of the corresponding Markov
model is fixed when the model is built. Updating the tree
to reflect a time-variant model is expensive. It requires to

> W(A|B)

W(A|C->B)

VA2 AV e

root

W(A|C->C->B)
AVAVa VAV

wB|C->C->B)
— e —

Y

Figure 2: Example of flattened context tree with
change of transition probabilities in time series.

Table 2: Flattened Context Tree vs. Regular Con-
text Tree

FCT* RCT*
Node semantics (context, target) context
Tree depth 1 highest order
Probability time series embedded none

*FCT/RCT: flattened/regular context tree

recalculate node probabilities and reevaluate previous prun-
ing procedures for pruned nodes.

2.2.2 Flattened Context Tree

We present a flattened context tree. We define the pruning
strategy to facilitate distributed tree operations for our time-
variant Markov model. We prove that our parallel pruning
strategy preserves the tree structure: one branch can be
pruned only if all its children are pruned.

A flattened context tree T only has a depth of two: depth
0: root, and depth 1: all data nodes. Each depth-1 node np
corresponds to a path p = (¢,t) = (s—y,...,5-2,5-1, S0, t)
and it records a time series of transition probability ¥(7|¢) =
{P:(7|¢) : t € T'}. In comparison, a node ne in T¢ stores the
distribution of transition probabilities according to context
c. Table 2 shows the most significant differences between our
flattened context tree and regular context tree. We illustrate
the structure of flattened context tree in Figure 2.

The advantage of the flattened tree structure is that each
node can be processed independently of other nodes, which
enables fine-grained parallel probability computing and prun-
ing for each (¢, 7) pair. Furthermore, different nodes in Tr
can be processed on a different processing unit in a dis-
tributed manner to scale out the process.

Pruning The purpose of pruning is to transform a higher-
order Markov model to a variable-order one. Pruning of Tr
is performed for individual nodes in parallel. A node np is
pruned away if p is rarely visited through a large segment of
the monitored time period. The criteria can be measured as
the total number of path wisits or the total number of path
appearances during the overall monitored time period. The
latter yields True or False in each inspection window and

575

sums the total number of True for the overall time period.

THEOREM 1. In a flattened context tree Tr, a node ng
records the target transition probability time series of path
I . _ . .
p. p denotes a suffix string of p. np in Tr can be pruned if
ng (node corresponding to p') can be pruned.

PRrOOF. If a path p is visited, its suffix path p’ is visited.
And two different paths p; and p2 can share the same suffix
path p’. So V(p') > V(p) where V(p) is the number of path
p visits. Given T,, as the pruning threshold for path visits,
V(p) < Tpo holds if V(§') < Tpo. [

If one restructures a flattened context tree Tr back to
a regular context tree T, Theorem 1 guarantees that all
children of a branch node are pruned away before the branch
node is pruned. It is consistent with the standard pruning
strategy presented in Section 2.2.1.

Time-variant capability Time series information is em-
bedded into each node np in TF, so Tr reflects the change
of the corresponding Markov model through time. Change
of Ejys (discussed in Section 2.1) is distributed across ¥(7|c)
in each node. Changes of Vs (discussed in Section 2.1) are
also stored in new or obsolete nodes if not pruned.

2.3 Growing the Flattened Context Tree

A flattened context tree Tr grows through time. We use
a sliding window w to aggregate sessions through time and
yield transition matrices of our time-variant Markov model
at different times. Time series yielded from nodes in the
flattened context tree are extended when new sessions are
consumed and the tree has grown.

2.3.1 Session Batch

Session batch is a set of sessions. It is the smallest sliding
unit for w. Sessions are batched according to the timestamp
of its first visited site. A session may last across several
batch time periods, but the entire session is recorded only
once in the first batch it appears®. The timestamp of the
session batch is the start of the session batch.

Session batches do not interference with each other, and
they can be preprocessed in parallel to facilitate the tree
construction. In each session batch:

i) All paths at different lengths are identified (through
n-gram with variable-n) and parsed into tuples (¢, 7).
ii) The counts of each tuple are accumulated.
iii) A set of 4-tuples (¢, 7, ty, 7(z,+)) is yielded as the session
batch digest where t; is the session batch timestamp
and 7z, is the count of tuple (¢, 7) in the batch.

2.3.2 Sliding Window

The sliding window w covers a fixed number of session
batches and each slide takes in a new session batch and
abandons the earliest batch in the previous w.

In each sliding position, three operations are performed:

i) 4-tuples (¢, T, tw,N(e,r)) are accumulated from session
batch digests where t,, is the timestamp of the earliest
session batch in the window.

ii) 3-tuples (¢, tw,ne) are accumulated from the 4-tuples
where 7z is the count of context ¢ in the window.

20ur current design does not support streaming because it
requires the entire user session to finish before it can be
sessionized and batched.

Table 3: Description of Spark Runtime Stages of our DECT Prototype

Functionality #(SS) Description

Input handling 1 reading user session data from HDFS

Modeling 19 n-gram generation, batching, in-window aggregation, probability calculation, pruning
Time series generation 9 assembling time series and storing them onto HDFS

Statistics generation 3 generating and yielding statistics throughout the entire processing procedure

#(SS): number of Spark runtime stages

iii) A set of 4-tuples (¢, 7, tw, P(7]C)) is yielded as the win-

dow digest where P(t|¢c) = nLj)

2.3.3 Flattened Context Tree Update

Digests of w at different positions are aggregated accord-
ing to tuple (¢, 7) in the window digest. Each tuple forms a
depth-1 node np in the flattened context tree Tr. The time
series at each node (¥(7|¢c) at node np where p = (¢, 7))
is extended when a new window position is processed. w
at different positions of a single node can be computed in
parallel if all session batches are known.

Pruning of Tr can be performed at any time based on the
generated time series at nodes. As discussed in Section 2.2.2,
pruning is performed at nodes that are rarely visited. If np
is pruned, ¥(7|¢) prior to the pruning action is lost. ns can
be added back to TF if it becomes popular in the future, but
without the segment of ¥(7|¢) when it is pruned away.

2.3.4 Time Series Production and its Applications

Tr records the user behavior pattern evolvement and it
can be consumed by a variety of time series analysis tools
(e.g., anomaly detection, path prediction).

User behavior evolvement data generation. The user
behavior evolvement data are yielded in three major forms
for post-processing and analytics:
e U(7|¢): individual time series for each (¢, 7) pair
e {U(7]c) | 0 << ke}: high-dimensional time series for
all targets of a context ¢ where k¢ is the total number
of reachable targets of context c.
e {U(7|é;) | 0 < i< pr}: a collection of time series for
a target 7 where o, is the total number of contexts
which can reach the target 7.

{¥(m|e) | 0 < i < ke} forms a high-dimensional time se-
ries where each dimension is W(7;|¢). We write {U(7|¢;) | 0 <
i < 0-} as a collection because each ¥(7|¢’) is not indepen-
dent of ¥(7|c) where & is a suffix of ¢, yet it is quite useful
to compare ¥ (7|¢) with ¥(7|c).

User behavior evolvement data analysis. Three most
important components of an aggregated user behavior time
series are trend, seasonality, and irregular component.

Trend Ur(7|¢) describes long-term movement without
calendar related and irregular effects.

Seasonality Ug(7|¢) characterizes regular cyclic move-
ments influenced by seasonal factors.

Irregular component VU;(7|¢) records non-systematic
and unpredictable component(s) after trend and sea-
sonal components are removed from the signal.

Many user behavior time series ¥(7|¢) can be very well

o976

decomposed into the three components as described in (1).

(1)

Pg(7|e) can be further divided into daily and weekly sea-
sonal components as found in our experiments.

Two major applications of our model are described next.

Anomaly Detection aims to discover anomalous user
behavior with respect to specific visiting paths. A spike or
a ravine in a time series could indicate breaking news, flash
crowds, Denial-of-Service attacks, service failures, etc. A
plateau appearing in the trend component of a time series
may indicate a persistent attack or a test for a new feature.
User behavior evolvement data ¥(7|¢) and {¥(r;|¢) | 0 <
1 < Kz} are yielded for anomaly detection.

Ad Click Prediction is an application to predict how
likely a user will click an ad on her current visiting site
given her visiting path of the current session. Different
visiting paths leading to the same site may give different
ad click rates, and the probability trends of different paths
may be different. User behavior evolvement data ¥(7|¢) and
{¥(7]¢;) | 0 < i< pr} are yielded for ad click prediction.

U(rle) = Wr(r|e) + Ws(r]e) + Vi (7]e)

3. IMPLEMENTATION

We implement DECT via Apache Spark using Scala. We
deploy DECT on top of Yahoo! infrastructure to support
anomaly detection and other services on Yahoo! network.

Our DECT implementation is open-sourced on github [19].
The implementation takes advantage of scalable and robust
transformations on resilient distributed dataset (RDD) in
Spark, e.g., mapValues and join. DECT compiles to 32
Spark stages at JVM runtime (shown in Table 3).

Our implementation consumes plaintext session data stored
on HDFS where each line records a user session®. A user ses-
sion consists of a timestamp ts and a sequence of visited sites
E = {s0,51,...}. DECT digests the plaintext session data
and yields two types of information:) time series harvested
from the flattened context tree, stored on HDFS, and ii)
statistics on processed data, e.g., total number of ith-order
time series, printed to Spark log.

Our realization is optimized from the following aspects:

1. Session and path (n-gram) data are aggregated at early
stages to minimize unnecessary duplicate data process-
ing. For example, before generating and counting n-
grams in each session F, same E with the same session
batch timestamp ¢, are counted and deduplicated.

2. Compact data structures are used to reduce storage
and transmitting overhead, e.g., a context as a single
JVM string, instead of an array of sites (JVM strings).

3We employ a Pig script to retrieve, sessionize and store raw
user event data from HCatalog onto HDF'S prior to DECT.

W
=
F 0.2 |
= 01
S 0
E XW ——
<
= 02 WU/MM
B 01 L L
g o
2 Y-X-W —
e}

° 02 | i
= ool R AAAANAAANMANAAANA i Al A N el
O 1 1 1 1 1
0 7 14 21 28

Day index

Figure 3: Higher-order path time series anomaly
detection®.

3. Job parameters are broadcasted, e.g., string splitter.

4. Partitioning strategies are manually specified to reduce
data movement among worker nodes.

4. EVALUATION

We conduct experiments on two Yahoo! daily user session
datasets to answer the following key questions:

1. What do we benefit from our time-variant user behav-

ior model over existing static stochastic models?

Is our design scalable to handle enterprise-wide tasks
consisting of billions of sessions?

We evaluate DECT with all data collected through Yahoo!
data highway. We analyze Yahoo! user activities within the
first half of 2015. In the evaluation, we focus on user sessions
within a single product, e.g., Yahoo! mail. Visits to alien
sites during sessions are ignored*.

We process user session data of Yahoo! US websites (En-
glish version) within two products separately: Yahoo! mail
and Yahoo! finance®. Each site in a session is roughly a
view in the model-view-controller (MVC) web architecture,
and it has a unique URL.

4.1 Case Study: Anomaly Detection

Time series of site visits are commonly used as anomaly
detection signals. However, if no context information is
specified, anomaly signals of specific visiting paths are masked
out by other signals. Therefore, it causes false negatives.

We pick a typical Yahoo! mail site W (i.e., 7 in Sec-
tion 2)® and show that anomalies in higher-order path sig-
nals are significant and can be revealed by DECT. We use
DECT to compute visiting probabilities of W for all con-
texts {¢} that exist. We then fed time series {¥(7;|¢) | 0 <

4DECT can be deployed at the client/browser side to model
and analyze Internet-wide user behavior.

5 According to Yahoo! data privacy requirements, ¢) detailed
data statistics are not provided; i) probabilities in figures
are disguised while their relative positions are preserved.

LY

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

Ad click probability

Day index

Figure 4: Ad click probabilities given different
paths. The bold dotted line denotes the overall ad
click rate of users on a site. Each thin line denotes
ad click rates of users on this site coming from one
specific visiting path®.

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

Lol

2

Ad click probability

%%%éé%

5

1 3 4 6 7 8 9 10

#(viewing actions) before clicking an Ad

Figure 5: Ad click probability of a wanderlust®.

i < ke} yielded by DECT into EGADS for anomaly detec-
tion. EGADS is a generic and scalable framework for auto-
mated anomaly detection on large scale time-series data [10].
The entire anomaly detection application consists of DECT
(time-variant user behavior modeling) and EGADS (time
series anomaly detection).

Fig. 3 shows two higher-order anomalous time series iden-
tified by EGADS. The upper subfigure, a common seasonal
time series across a month, is the visiting probability of W
across all Yahoo! mail sites. One anomalous time series (site
X to W) is detected during that month (several spikes in the
middle subfigure). Another anomaly is found on the 8th day
of visiting path “Y to X to W” in the lower subfigure. Any
anomaly (spike) with respect to a higher-order path may be
hidden in the time series of its suffix path.

4.2 Case Study: Ad Click Prediction

Existing ad click prediction techniques do not take his-
torically visited paths into account. We run DECT on the
Yahoo! finance dataset to show that such information is
useful in distinguishing probabilities of ad clicks.

We draw the overall ad click rate on a Yahoo! finance site®
in Fig. 4 with the bold dotted line. We then use DECT to

700 T T T T T T
l Order limit: 2nd 7774

600 ~ Order limit: 4th &%

500 | s
400 i
300
200 |

Processing time (seconds)

100

2110 4210 9010 16510 33010 66010

Number of vCores allocated

Figure 6: Performance pivot discovery of DECT.

— 2048
2}
o]
=
Q
S 1024 | -
=
[}
.g 512 | % i
o ==
@ 256
é = ==
o
A~ 128
0Oth 2nd 4th 6th 8th

Order limit of DECT

Figure 7: Order impact on computation complexity.

investigate three ad click rate time series, each of which has
a site previously visited (one-time context) before the target
site. Fig. 4 shows that the click rate of users coming from
one site can be 5 times higher than that of another.

Besides the finding that ad click rates are related to user
visiting paths, another interesting conclusion we reached is
that the more a user views articles on a site, the less likely
she will click an ad on that site. We illustrate the decrease
of ad click rates on a Yahoo! finance site® in Fig. 5. We
explain the phenomenon that frequent readers tend to con-
tinuously consume target information, e.g., stock values, and
ignore ads. Ads could be less effective and more annoying
to frequent readers than normal visitors. This work is being
deployed at Yahoo! for better ad-targeting.

4.3 Performance analysis

We demonstrate the performance of our implementation
by processing a subset of Yahoo! mail data (around 0.1
billion user sessions, 10GB storage size on HDFS)®.

Scalability and Performance Pivot. Our realization of
DECT is based on the scalable Apache Spark framework. A
distributed system results in an increasing amount of com-
municating/scheduling overhead when scaling out. We are
interested in discovering performance pivots and parameter
tuning on real-world datasets.

We conduct several groups of experiments with DECT

978

running on different numbers of worker nodes. We measure
the degree of parallelism via the maximum number of pro-
cessing units (vCore)® concurrently allocated at any execu-
tion stage. Fig. 6 shows that our implementation scales out
well before reaching a performance pivot. Performance piv-
ots are reached for DECT with order limit 4 at 9010 vCores
and order limit 2 at 4210 vCores. Increasing the number
of processing units after the pivots wastes more in overhead
than gaining better performance. The more complex the
computation is, e.g., higher order limit, the larger amount
of processing units are required to reach the pivot.

Magnitude of frequently visited higher-order paths.
DECT is a variable-order Markov model. It employs a prun-
ing procedure to remove time series of rarely visited higher-
order paths. We are interested in the order impact on the
overall computational complexity.

We execute DECT with various order limits. Because
the total number of possible paths is exponential in path
order, the results in Fig. 7 show that: i) the processing time
increases exponentially with the increase of the order limit,
and #) the pruning procedure reduces the number of time
series by a constant factor on Yahoo! mail dataset.

S. RELATED WORK

Our work is motivated by time-homogeneous Markov user
behavior modeling, time series analysis, and evolutionary
network analysis.

Time-homogeneous Markov modeling. Web user be-
havior has been studied for various purposes, such as PageR-
ank [13], link prediction [17], document prefetching [23].
A variety of time-homogeneous Markov models have been
tested to describe Internet user behavior [5]. The time-
homogeneous indicates that the transition matrix of the
Markov model does not change through time. We list some
existing models classified by their Markov orders below.

First-order Markov model: [12,13]
Second-order Markov model: [23]
Higher-order Markov model: [15]
Variable-order Markov model: [2,5, 6]

Variable-order Markov models compute different orders
for different paths to reduce storage expenses. The idea
was proposed by Bithlmann and Wyner [3]. There exist two
generic approaches to construct variable-order models.

Pruning-based approach: starting with a complete
higher-order model and iteratively pruning low-entropy
branches to get a incomplete tree, e.g., [6].

Growing-based approach: starting with a first-order
Markov model and expanding leaves with inconsistent
distribution into branches, e.g., [2].

Our design follows the former approach for straightfor-
ward parallel design. The operations of growing higher-order
paths, i.e., slicing and clustering, are computational heavy
and the results cannot be efficiently reused over time.

Time series analysis. A time series denotes the change
of a variable over time [8]. Time series analysis has been
applied to many fields including signal forecasting [9], data
feature extraction [7] and anomaly detection [4,10,11,20].
Time series analysis is widely used to detect anomalous

5The number of workers is linear to the number of vCores.

user events in the industry. However, studied variables in
existing systems are mostly primitive, e.g., counts of site
visits. They only represent zeroth-order or first-order (one-
hop) paths [10]. The prediction is fast but loses rich context
information. DECT, in contrast, utilizes historical site visit-
ing information to provide more detailed signals for anomaly
detection and ad click rate prediction as shown in Section 4.

Evolutionary network analysis. Dynamic networks ap-
pear in social networks, wireless sensor networks, Internet
of Things, and the Web. The analysis of evolving networks
provides a comprehensive understanding of such networks [1]
and enables applications such as link prediction [18] and
anomaly detection [16].

Graphs are generic models for dynamic network repre-
sentation [1]. More specifically, dynamic networks usually
generate complex cyclic graphs, and evolutionary network
analysis heavily relies on unique properties of such graphs,
e.g., community discovery [14]. Compared to cyclic graphs,
variable-order Markov models are tree-equivalent structures.
In our model, we bring some concepts from evolutionary net-
work analysis, e.g., change of Var and change of Ea. But,
in general, it is currently unclear how evolutionary network
analysis methods can be applied to dynamic web user be-
havior modeling.

6. CONCLUSIONS AND FUTURE WORK

This paper presents DECT, a scalable time-variant web
user behavior model. It characterizes the changing nature
of Internet user behavior with a time-variant variable-order
Markov model. DECT can be efficiently realized on scalable
distributed frameworks, e.g., Apache Spark, to process large
volumes of user behavior data. DECT enables time series
analysis on individual or related sets of long (higher-order)
user paths. We open-sourced DECT and deployed it at Ya-
hoo! to support path time series analysis such as anomaly
detection, click probability prediction and path trend dis-
covery. In the future work, we plan to work on streaming
pruning strategies to enable streaming user behavior pro-
cessing using DECT.

7. REFERENCES
[1] C. Aggarwal and K. Subbian. Evolutionary network

analysis: A survey. ACM Computer Surveys,
47(1):10:1-10:36, May 2014.

[2] J. Borges and M. Levene. Evaluating variable-length
Markov chain models for analysis of user web
navigation sessions. IEEFE Transaction on Knowledge
and Data Engineering, 19(4):441-452, April 2007.

[3] P. Bithlmann and A. J. Wyner. Variable length
Markov chains. The Annals of Statistics,
27(2):480-513, April 1999.

[4] V. Chandola, A. Banerjee, and V. Kumar. Anomaly
detection: A survey. ACM Computer Surveys,
41(3):1-58, July 20009.

[5] F. Chierichetti, R. Kumar, P. Raghavan, and
T. Sarlos. Are web users really Markovian? In
Proceedings of World Wide Web Conference, pages
609-618, New York, NY, USA, 2012.

[6] M. Deshpande and G. Karypis. Selective Markov
models for predicting web page accesses. ACM
Transactions on Internet Technology, 4(2):163-184,
May 2004.

979

[7]
8]

[9]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

(20]

(21]

(22]

23]

P. Esling and C. Agon. Time-series data mining. ACM
Computing Surveys, 45(1):12, 2012.

J. D. Hamilton. Time series analysis, volume 2.
Princeton university press Princeton, 1994.

R. J. Hyndman and A. B. Koehler. Another look at
measures of forecast accuracy. International Journal
of Forecasting, 22(4):679-688, 2006.

N. Laptev, S. Amizadeh, and I. Flint. Generic and
scalable framework for automated time-series anomaly
detection. In Proceedings of the 21th ACM SIGKDD
International Conference on Knowledge Discovery and
Data Mining, pages 1939-1947, 2015.

N. Laptev, R. Hyndman, and E. Wang. Large-scale
unusual time series detection. In Proceedings of IEEE
International Conference on Data Mining, 2015.

Z. Li and J. Tian. Testing the suitability of Markov
chains as web usage models. In Proceedings of Annual
International Computers Software and Applications
Conference, pages 356—361, November 2003.

L. Page, S. Brin, R. Motwani, and T. Winograd. The
PageRank citation ranking: bringing order to the web.
Technical Report 1999-66, Stanford InfoLab, 1999.

S. Parthasarathy, Y. Ruan, and V. Satuluri.
Community discovery in social networks:
Applications, methods and emerging trends. In C. C.
Aggarwal, editor, Social Network Data Analytics,
pages 79-113. Springer US, 2011.

P. Pirolli and J. Pitkow. Distributions of surfers’ paths
through the World Wide Web: Empirical
characterizations. World Wide Web, 2(1-2):29-45,
1999.

S. Ranshous, S. Shen, D. Koutra, S. Harenberg,

C. Faloutsos, and N. F. Samatova. Anomaly detection
in dynamic networks: a survey. Wiley Interdisciplinary
Reviews: Computational Statistics, 7(3):223-247, 2015.
R. R. Sarukkai. Link prediction and path analysis
using Markov chains. Computer Networks,
33(1):377-386, 2000.

R. R. Sarukkai. Link prediction and path analysis
using Markov chains. Computer Networks,
33(1-6):377-386, 2000.

X. Shu. Distributed evolving context tree (DECT),
https://github.com/subbyte/DECT.

O. Vallis, J. Hochenbaum, and A. Kejariwal. A novel
technique for long-term anomaly detection in the
cloud. In Proceedings of USENIX HotCloud Workshop,
pages 15-15, Philadelphia, PA, June 2014.

Y. Xie and S. zheng Yu. Monitoring the
application-layer DDoS attacks for popular websites.
IEEE/ACM Transactions on Networking, 17(1):15-25,
Feb 2009.

S. Yu, G. Zhao, S. Guo, Y. Xiang, and A. Vasilakos.
Browsing behavior mimicking attacks on popular web
sites for large botnets. In IEEE Conference on
Computer Communications Workshops (INFOCOM
WKSHPS), pages 947-951, April 2011.

I. Zukerman, D. W. Albrecht, and A. E. Nicholson.
Predicting users’ requests on the WWW. In
Proceedings of the Tth International Conference on
User Modeling, pages 275284, Secaucus, NJ, USA,
1999. Springer.

	DECT: Distributed Evolving Context Tree for Mining Web Behavior EvolutionXiaokui Shu, Nikolay Laptev, Danfeng Yao

