
Keyword Search on microblog Data Streams:

Finding Contextual Messages in Real Time
Manoj K Agarwal

Search Technology Center
Microsoft India

agarwalm@microsoft.com

Divyam Bansal
Bangalore, India

Google Inc.

divyamb@google.com

Mridul Garg, Krithi Ramamritham1
Dept. of Computer Sc. and Eng.

IIT-Bombay, India

gmridul09@gmail.com, krithi@cse.iitb.ac.in

ABSTRACT
Microblogging streams contain information pertaining to emerging
real world events. Due to the rapid pace at which these data streams
are generated, it is often difficult for users to discover the most
relevant messages in the context of their keyword queries. Search
over such data streams returns the most recent messages only; most
recent messages may not be the most relevant messages. Hence
users have to resort to the cumbersome task of sifting through a
large amount of information to obtain the context of a live event.

We present a novel real time search system – Contextual Event
Search – on dynamic message streams, to extract meaningful
summaries for live events in real time. Our technique is
unsupervised and automatically identifies different facets of the
live events in a scalable and effective manner.

We demonstrate that for a given keyword search, users are
presented with meaningful, compact and complete contextual event
summaries for the most relevant events in a given time window,
thus exposing the full context behind the messages.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Information filtering,
Relevance feedback, Search Process.

General Terms
Algorithms, Experimentation.

Keywords
Dynamic Graph, Indexing, Search, Summarization.

1. INTRODUCTION
Highly dynamic unstructured data streams – sequences of
chronologically ordered messages posted by multiple users at a fast
pace – occur in various social media and enterprise domains. In
microblog streams (e.g., Twitter), messages are posted at a high rate
due to their large user base. Twitter is often the first medium to
report emerging events [1][2], ranging from globally important
events to the events relevant only for a small community.

__

1 The author list is in alphabetical order.

An event is a real world or an abstract activity, relevant for a group
of people or a community. An event in a data stream is defined by
“messages, posted by multiple users, in the same context, within a
bounded time window”, for example, messages posted by the fans
during the course of a football match. It is only natural that in a fast
moving world, a large number of events occur concurrently.

Existing unsupervised approaches identify emerging events as
clusters of keyword over dynamic message streams [1][2][3]. Each
keyword cluster forms an ‘event-topic’. The technique described in
[1], when used to discover events from the tweets posted during the
Nairobi terrorist attack [7], discovered many event-topics including
one containing the keywords:

- A: UK, #kenya, #westgate, #nairobi”

Clearly, the context behind the keyword cluster is not available to
the users – the keywords are insufficient to describe the underlying
event. The same is true of another event-topic:

 - B: was, 69, kofi, among, #ghana, attacks,
ghanaian, awoonor, killed, poet, prof., #kenya

To better understand the event-topic, i.e., what the event is about,
users are needed to search for the most relevant messages in the
data stream by themselves. Besides burdening the users with the
task of understanding the emerging events manually, for example,
to determine if there is connection between A and B, this approach
suffers from many shortcomings:

(1) Message search is primitive, e.g., Twitter just returns the most
recent tweets for a given search query [5]. It is not necessary that
the recent tweets alone are the most relevant tweets for the event.

(2) Simple keyword search results can produce an information
overload for a fast moving data stream. Often a large number of
tweets are returned by Twitter in response to a search query [6].

(3) In such fast moving data streams, typically the rate at which
messages are generated is high but messages are short. Therefore,
it is often difficult for the users to understand the context of a
standalone message even if the message is informative.

(4) Events evolving in real time comprise different facets. Search
results are continuously updated with recent messages and it
becomes difficult for the user to keep pace with evolving events.

1.1 Contextual Search on Live Data Streams
We demonstrate our system for Contextual Event Search, to extract
the complete contextual summaries for the events unraveling in a
live message stream in real-time. The summaries are stored in an
event thread as shown in Figure 1. Live real-world events are not
just point events – they evolve continuously. The event summary
must be updated every time there are significant changes in the
event. When these changes are arranged temporally, an event thread
results. The event thread captures the passage of time naturally.
Challenges involved in discovering such event threads are many:

© 2016, Copyright is with the authors. Published in Proc. 19th
International Conference on Extending Database Technology (EDBT),
March 15-18, 2016 - Bordeaux, France: ISBN 978-3-89318-070-7, on
OpenProceedings.org. Distribution of this paper is permitted under the
terms of the Creative Commons license CC-by-nc-nd 4.0

Demonstration

Series ISSN: 2367-2005 604 10.5441/002/edbt.2016.59

http://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2016.59

 The first challenge is to identify and associate the relevant
messages to the corresponding ‘event topic’.

 Secondly, most real world events do not evolve linearly and
comprise several facets. Therefore, the summary for an event
is represented as a Directed Acyclic Graph (DAG). It is non-
trivial to discover such ‘contextual event threads’. Each
unique path in the event thread is a different facet of the event.

The contextual event summary displayed in Figure 1 was
constructed by our approach automatically for the event ‘Nairobi
terrorist attack’. The event summary starts with a message that a
mall has been attacked, followed by how the action against
attackers was progressing, rumors, claims and counter claims by
authorities and citizens, etc. were also discovered in real time. The
important sub-events were discovered from approximately 164K
tweets and arranged in a chronological sequence. For each of the
sub-events in the event thread, our technique identified an
appropriate summary as shown in Figure 1. Sub-event 9
corresponds to A and sub-event 5 corresponds to B.

We demonstrate our system that automatically constructs such
summaries as shown in Figure 1, for a live data stream. Our system
summarizes the event in a fast moving data stream in real time in
an unsupervised manner. The event thread represent a compact,
complete and meaningful event summary. A minimal set of related
messages are identified that represent the complete event summary.
The event summary discovered by our system is stable, i.e., it is
updated only with additional information, which is appended to the
summary discovered thus far. Our system also exposes the different
facets of live events which are presented as a contextual event
summary thread. The details of discovering the event threads are
beyond the scope of this paper.

To the best of our knowledge, ours is the first system that discovers
contextual event threads automatically for a fast moving data
unfiltered data stream in real time in an unsupervised manner. Lin
et al., explore the problem of generating storylines from microblog
data [4]. Their system is only applicable to retrospective data
analysis where on relevant tweets a storyline is generated via graph
optimization. In [6], Shou et al. present a technique to summarize a
twitter data stream, filtered in the context of a given user query. In
[9], authors present a method to summarize a pre-specified event
topic. Their methodology is applicable for structured and recurring
events such as sports events and need the prior knowledge of
similar events.

1.2 System Components
With the aid the event summaries, we enable the contextual search
over data streams. Following are the components of our system:

Discovery: The event threads are discovered in a live data stream.
They contain the most relevant messages in a chronologically
ordered event threads representing its story line. Event thread is
associated with a rank based on event popularity and its dynamicity.
If an event is highly dynamic with fast updates, its rank increases.

Indexing: An index is maintained over the events threads. Since
the index is updated in real time, we adopt a lazy-update strategy,
i.e., index is updated only for the most popular events. For events,
which are less popular, only a subset of these events are updated in
the index, unless the underlying changes in the event result in
significant increase in event rank.

Search: For a keyword query, a ranked list of most relevant event
threads is returned. Hence, even the messages which may not
contain the query keywords but are part of the event threads are
returned. Thus, our system is able to find the most relevant
contextual messages for a given keyword query.

The architecture of our system is shown in Figure 2. It contains
three components; Event Discovery and Summarization Engine to
discover event thread over a live data stream. The discovered events
are pushed to the Indexing Engine, which maintains an index over
them as well as keeps the index updated for live events. Finally, the
Search Engine finds and returns the most relevant topK events,
upon receiving a keyword query. topK is a tunable parameter. Event
Discovery and Summarization Engine is based on the model in [1]
but its details are beyond the scope of this paper. In next section,
we present the details of other two components.

Figure 2: The system Architecture

6. Spread to all Kenyans - the westgate situation may be trying to distract
Nairobi, a bigger attack may happen, STAY INDOORS- RT n SHARE

2. Day 2: Al-Shabaab Jihadists Holding Innocent
Civilians at Westgate in Nairobi, Death Toll at 59.

4. KENYA UPDATE: Death toll in #Westgate siege rises to
68 as 9 more bodies recovered during rescue operation 5. Ghanaian poet & author- Prof. Kofi #Awoonor was among the 69 killed in

the attack on #Nairobi's #Westgate mall. #Ghana #Kenya
7. Israeli forces enter Nairobi mall: security source
http://t.co/E0NoM7lxPA \u2026 #westgate

8. Two helicopters landed on the roof of #westgate mall
where #nairobi hostage crisis continues.

10. Kenyan forces kill two terrorists, claim control of Westgate mall:
Kenyan forces assaulted terrorists in Nairo... http://t.co/zoJaHgAuun

9. Speculation that convertite 'white widow' Samantha Lewthwaite from UK
is the mastermind of the attack on #Westgate Mall in #Nairobi, #Kenya

14. Day 3: Kenyan Government Takes Westgate Mall From al-
Shabaab Jihadists p://t.co/E66dDy5l6y #BigTweet

11. Something I never saw in 30 yrs as journalist: civilians bringing food,
coffee to journalists covering #Nairobi's #Westgate siege. Amazing!

12. Militants at the Westgate mall in Nairobi, Kenya, are still
holding their ground, Somalia's Al-Shabab group claims

1. #AlShabaab says it attacked #Westgate mall in
#Nairobi to retaliate for Kenya's role in #Somalia.

3. MAJOR assault by security forces ongoing to end two-day siege at
Westgate mall. Fears abound death toll could be higher when dust settles.

13. Gosh RT @Lady_Elsie: Haiya! \"@sirfender: Huh? RT @jstraziuso: More
gunfire, one explosion at #westgate mall. Obviously not over.

Index Updates

Event
Index

Indexing
Engine

Search
Engine

Live Data
Stream

Live Data
Stream

Event
Discovery

&
Summari-

zation
Engine

Keyword
Query

Search
Response Output

Figure 1. Contextual Event Summary Thread Discovered by our system for Nairobi Attack

605

2. REAL TIME CONTEXTUAL SEARCH
Each event is identified by a unique event ID e. As an event
evolves, its summary is appended with the most recent updates.
Each node in the event tree represents an ‘event topic’ and has a set
of relevant tweets associated with it [1]. The algorithm to find
meaningful summary of an ‘event topic’ and discovery of different
event facets is beyond the scope of this paper. Each event topic, i.e.,
keyword cluster cei has a summary sei and a ranking score rei. For

an event e, there is a list of clusters n
ieic 1|  n≥1 associated with it.

Ranking score re for an event e is computed as re= 
n
i eic1 . Event

summary se is defined by arranging the cluster summaries (se1,

se2,..,sen) in a (multi-faceted) event thread.

2.1 Indexing Engine
The search engine maintains an inverted index. The inverted index
consists of words mapped to a posting list of event IDs. For each
word w, its posting list Lw contains event IDs which have w in its
summary. In the posting lists, events are sorted in the decreasing
order of their ranking scores. One of the challenges is to maintain
the posting lists sorted, since inserting an event in Lw would take O
(|Lw|) time; |Lw| is the number of events in Lw. To reduce the cost of
insert operation, we adopt the following approach: List Lw is
organized as a list Lw' containing sequence of buckets B1, B2,… , Bm
where m=| Lw'|. Each bucket contains a max-heap and a min-heap.
Both heaps contain same event IDs. We define the size of the
bucket as the size of its max-heap. Each bucket Bi has an event with
maximum score si

max
 and an event with minimum score si

min. The
sequence of buckets is such that the following property is satisfied:

 iss ii   |max
1

min □

The size of buckets Bis increases by a factor of 2 (|Bi+1|/|Bi|=2

mii  ;). Therefore, m=| Lw'|= O (log(|Lw|). The time complexity

of the insert operation is equal to the time complexity of a)
searching the bucket B in which the event should be inserted
(O(m)); b) inserting the event in B (O(m)), since the size of each
bucket is O(|Lw|) and the bucket is maintained as a heap; c)
adjusting the size of B (its size increases by 1 on inserting an event).
Step (c) takes O(m2) time since the event with minimum ranking
score is removed from B and inserted in next bucket and this
procedure may continue till the first bucket in the sequence. If the
size of the last bucket is larger than the maximum allowed, then the
event with minimum ranking score is removed and is inserted in a
new bucket appended at the end (number of buckets in list Lw
increases by 1).

- The insert operation in each bucket is performed by inserting
the event in max-heap and min-heap (O(m) time complexity).

- The remove operation in a bucket is performed by removing
the minimum element in its heaps. This is O(1) for min-heap
but for max-heap it takes O(|Lw|) if done naively. We store
the pointer to the location of the minimum ranking score
event in max--heap hence removal takes O(m) time.

Since there are m buckets and insertion and removal in each bucket
takes O(m) time, step (c) takes O(m2) time. Therefore, the overall
insert operation takes O (m2) time.

For each list, we maintain a mapping of event ID to the bucket
which contains it. This is useful when an event has to be removed
from a posting list or its ranking score has to be updated. With this
map searching an event in a list takes O(1) time. Buckets are
implemented as locator heap in which a map is maintained which
contains the location of event IDs inside the bucket (i.e., heap) thus
making the deletion of an event from the bucket O(m).

Lazy Update: With more tweets flowing-in, events are updated
which results in the update of its ranking score. We need to reflect
these changes in the index. However, updating the index is costly
as the event clusters get updated at a fast pace. Thus, we trade-off
the minor drop in output accuracy for greater efficiency of the
search engine. Whenever the score of an event changes, we check
if the new score is greater than the score of the event at the 2
topKth position in the relevant posting list. If not, we assume that
the event will not affect the final output for any query and hence
the change is ignored. Otherwise, we update its score.

2.2 Search Engine
In this section, we describe our query processing system or search
engine. The search engine takes a keyword query and returns topK
most relevant event summaries. Suppose a user enters a query Q of
length l : q1, q2... ql, where qi|1≤i≤l is a query word. To define topK
relevant events, we compute maxScore (Q, e) [8] of an event e for
a query Q. We define a function p (w, e) for a word w and an event
e. p(w, e)=1, if e is present in the posting list of word w, otherwise
p (w, e)=0.

maxScore 


l

i
ie eqpr

1
),(

where re is the event rank. topK events with highest maxScore form
the output. We next define some important terms and data
structures before describing the algorithm to find topK events:

partial_maxScore: Initial partial_maxScore of all events is set to
0. Maximum partial_maxScore of an event e is the product of re
and the words in the query for which e is present in their respective
posting list.

topEvents: We maintain a min-priority queue of topEvents which
stores candidate events and is initially empty. An event e1 is
considered “less than” event e2 if partial_maxScore of e1 is less
than that of e2.

min_topEvents: It is the event with minimum partial_maxScore
among all the events in topEvents.

fcEvents: It stores final candidate events. Any event evicted from
topEvents is stored in fcEvents.

getMax (B) returns the event with maximum ranking score in the
bucket B.

We search for the posting list for each word in the query. Words for
which no posting list is found are discarded. For all the posting lists
in consideration, an iterator is set to the first bucket. The highest
ranked event from each bucket is inserted in topEvents. We take the
event min_topEvents and compare it to the event next to it,
called en, from the posting list it belongs to. We check if en is a
candidate event. en is a candidate event if either the number of

events in topEvents and fcEvents is less than topK or  lren

min_topEvents.partial_maxScore; lren  is maxScore (Q, en)

which is the maximum possible value of partial_maxScore for
event en. Hence, if this value is less than
min_topEvents.partial_maxScore and at least topK events are
already present in topEvents and fcEvents, then en cannot occur in
the final output. If it is a candidate event, it is inserted in
the topEvents; otherwise the min_topEvents may occur in the final
output and hence moved from topEvents to fcEvents. If the event en
is already present in topEvents or fcEvents, then we just update
its partial_maxScore. Once no more events can be inserted in
topEvents, we move the remaining events from topEvents to
fcEvents. topK events with highest partial_maxScore in fcEvents
form the Output. For faster retrieval, no posting list is traversed
beyond 2  topKth event (which lies in log(2 topK)th bucket.

606

Our experiments have shown that typically in a posting list, initial
top ranking events are followed by a long tail of low ranking events.
Hence, it is unlikely that if any event beyond 2 topKth position in
the any of the posting list under consideration, are in final topK list.
This the reason behind this heuristic.

Correctness of the algorithm: The algorithm traverses all the
posting lists of the query words present in the index. However,
instead of traversing them completely, whenever an event e does
not qualify to be a candidate event, min_topEvents is removed from
topEvents. This ensures that the corresponding posting list is not
considered again as all the following events have lower ranking
score. Hence, they can never become candidate events.

Time Complexity: In the worst case, each event can be a candidate
event. So all the top 2 topK events in the posting lists of query
words are inserted in topEvents. The time complexity for all the
insertions in topEvents for a query Q of length l is O(log(l topK))
as l  2  topK is the maximum number of events in topEvents. The
time complexity of traversing the posting lists is O(l topK
log(topK)) since each event is removed from a bucket on traversal.
Hence, the time complexity of the algorithm is O(l  topK+ l topK
 log(topK)) = O(l topK log(topK)).

3. DEMONSTRATION
We demonstrate the ability of our system to find the most relevant
messages in the context of a user keyword query. Specifically, for
a given keyword query, we demonstrate;

 The ability of our system to find the most relevant messages in
real time over live data streams.

 The discovery of contextual tweets in a live data stream, for a
given user query, i.e., those tweets that do not even have the query
keywords but are relevant.

 The ability of our system to create a story line for events
unraveling in a live data stream in an unsupervised manner.

Our system returns a ranked list of the most relevant events for the
user query. We will demonstrate the statistical summary of the live
event including the number of tweets posted for that event and its
ranking score. We will also demonstrate that the event summary
discovered by our system is complete. At the demo, a user can see
a fraction of randomly selected tweets from a live data stream and
be able to compare our summary with the raw data. We will
demonstrate our system on recorded as well as live Twitter stream.

The screenshot in Figure 3 shows the output of our search system
for a given user query. For each event present in the result set, for
the given keyword query, users can see a chronologically ordered
DAG of most relevant tweets, representing contextual event
threads, by clicking on the link.

Figure 3: Real Time Search Engine over Live Data Streams

4. REFERENCES
[1] M. K Agarwal, K. Ramamritham, M. Bhide "Real Time

Discovery of Dense Clusters in Highly Dynamic Graphs:
Identifying Real World Events in Highly Dynamic
Environments", in VLDB 2012.

[2] M. Mathioudakis, N. Koudas, “TwitterMonitor: Trend Detection
over the Twitter Stream”, in SIGMOD 2010.

[3] N. Bansal, F. Chiang, N. Koudas, F. Tompa, “Seeking Stable
Clusters in the Blogosphere”, in VLDB 2007.

[4] Chen Lin et al., “Generating Event Storylines from Microblogs”,
in CIKM 2012.

[5] Chun Chen, et al., “T1: An Efficient Indexing Mechanism for
RealTime Search on Tweets”, in SIGMOD 2011.

[6] L. Shou, Z. Wang, K. Chen, G. Chen, “Sumblr: Continuous
Summarization of Evolving Tweet Streams”, in SIGIR 2013.

[7] https://en.wikipedia.org/wiki/Westgate_shopping_mall_attack

[8] Matthias Petri, J. Shane Culpepper, Alistair Moffat, “Exploring
the magic of WAND”, in 18th ADCS, 2013.

[9] D. Chakrabarti, K. Punera, “Event Summarization using Tweets”,
in. ICSWM 2011.

607

	Contextual Event Search: Finding Contextual Messages in Dynamic microblog Data Stream in Real TimeManoj Agarwal, Divyam Bansal, Mridul Garg, Krithi Ramamritham

