
Galaxy: A Platform for Explorative Analysis
of Open Data Sources

Seyed-Mehdi-Reza Beheshti #, Boualem Benatallah #,Hamid Reza Motahari-Nezhad #,∗

#University of New South Wales, Sydney, Australia
{sbeheshti,boualem,hamidm}@cse.unsw.edu.au

∗IBM, Almaden Research Center, San Jose, USA
motahari@us.ibm.com

ABSTRACT
A large volume of Open Data is being generated on a contin-
uous basis. Examples of this are the case of social, natural,
and information systems such as World Wide Web and so-
cial networks. Most entities and objects in the Open Data
are interconnected, forming a complex, semi-structured, and
information-rich networks. In this sense, Linked Open Data
has the potential to be similar to a federated database. Since
Linked Open Data is based on W3C standards, it is possi-
ble to implement a federation infrastructure, however, the
current SPARQL standard makes it challenging to analyze
the Open Data in an explorative manner. Consequently,
it will be hard to discover the hidden knowledge in the re-
lationships among entities in Open Data sources. In this
paper, we present Galaxy, a platform for explorative anal-
ysis of Open Data Sources. Galaxy facilitates the analy-
sis of Open Data graphs based on simple abstractions, i.e.
folders and paths, which enable an analyst to group related
entities in the graph or find paths among entities. Galaxy
uses Hadoop data processing platforms to store and retrieve
large numbers of RDF triples and to support cost-effective
and Web-scale processing of Semantic Web data through a
Folder-Path enabled extension of SPARQL.

Keywords
Linked Data, Open Data Analytics, Querying Graphs

1. INTRODUCTION
Open Data sources may include any information that can

be obtained without a privileged position. Examples include
electronic and print media (e.g. RSS feeds from newspa-
pers), social media (Twitter, Facebook, Instagram, YouTube),
and blog sites (e.g. Tumblr, Wordpress). The production of
knowledge from Open Data is seen by many organizations
as an increasingly important capability that can complement

c©2016, Copyright is with the authors. Published in Proc. 19th Inter-
national Conference on Extending Database Technology (EDBT), March
15-18, 2016 - Bordeaux, France: ISBN 978-3-89318-070-7, on OpenPro-
ceedings.org. Distribution of this paper is permitted under the terms of the
Creative Commons license CC-by-nc-nd 4.0

the traditional intelligence sources. In particular, most enti-
ties and objects in the Open Data are interconnected, form-
ing a complex, semi-structured, and information-rich net-
works which can be modeled using graphs. In this sense,
Linked Open Data has the potential to be similar to a fed-
erated database: combining these data sources offer a rich
information resource for enterprise analysis.

Since Linked Open Data is based on W3C standards (e.g.
RDF format and the SPARQL query language), it is possi-
ble to implement a federation infrastructure, however, the
current SPARQL standard makes it challenging to analyze
the Open Data in an explorative manner. Consequently, it
will be hard to discover the hidden knowledge in the rela-
tionships among entities in Open Data sources. For example
it is important to quickly form an intelligence picture from
the Open Data sources around a topic of interest (such as
country, person, organization or event), group related enti-
ties around that topic, find paths among entities, and use all
these information for the follow-on analysis. There is a need
for graph representation models and efficient approaches for
expressing and executing these types of queries. In partic-
ular, manipulating, querying, and analyzing Linked Open
Data graphs to discover new knowledge is of high interest.

In this paper, we present Galaxy, a platform for explo-
rative analysis of Open Data Sources. Galaxy helps in fa-
cilitating the analysis of Open Data graphs based on simple
abstractions, i.e. folders and paths (introduced in our earlier
work [4]), which enables an analyst to group related entities
in the graph or find paths among entities. A folder node
contains a set of entities that are related to each other, i.e.,
the set of entities in a folder node is the result of a given
query that requires grouping graph entities in a certain way.
We define a path node for each query that results in a set of
paths (i.e. transitive relationship between two entities which
can be codified using regular expressions). Folder and Path
nodes, can represent a network snapshot, i.e. a subgraph,
from multiple perspectives and granularities. Folder and
Path nodes can be timed [3]: Timed folder/path nodes can
show their evolution for the time period that they represent.
Galaxy uses Hadoop data processing platforms to store and
retrieve large numbers of RDF triples and to support cost-
effective and Web-scale processing of Semantic Web data
through a Folder-Path enabled extension of SPARQL.

The rest of the paper is organized as follows. In Section 2,
we present some key components of our system, while in
Section 3 we describe our demonstration scenario.

Demonstration

 

 

Series ISSN: 2367-2005 640 10.5441/002/edbt.2016.68

http://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2016.68


2. SYSTEM OVERVIEW
Figure 1 represents the architecture of the Galaxy. The

main components of the system include the Extracted Data
Folder and the Graph Query Engine.

Extracted Data Folders. Open data are complex, un-
structured and generated at a high rate, resulting in many
challenges to ingest, store, index, and analyze such data
efficiently. The notion of extracted data folders serves to
enable the ingestion of data (from open data sources), and
the persistence of this data in accordance with a particular
defined schema. Machine learning techniques can be used
to construct the schema for an open data source [5]. We as-
sume that the expert analysts will construct the schema for
each folder. Figure 4 illustrates the Twitter schema where
the main entities include users, tweets, links, domains, and
hashTags. Folders provide a federated data access infras-
tructure upon which the federated analysis will operate. We
also envisage folders to support multiple layers of granular-
ity (e.g., split or merge existing folders). Folders can also be
combined to create higher-level virtual folders, called feder-
ated folders, using filter, project and join operators.

Graph Query Engine (SPARQL extension). Due to
space restrictions, in this paper we highlight the main com-
ponent of the query engine. However, we refer to our pa-
per [2] for algorithmic and other details. Figure 2 presents
the graph processing architecture which consists of the fol-
lowing components: graph loader, data mapping layer, query
mapping layer, regular expression processor, time-aware con-
troller, and OLAP (on-line analytical processing) controller.

Graph Loader. Input graph (e.g. Twitter extracted
folder) can be in the form of RDF, N3, or XML. We de-
veloped a workload physical design by developing a loader
algorithm. This algorithm is responsible for: (i) validating
the input graph; and (ii) generating the triples, where two
types of triples are recognized: attribute-edges (e.g., “Bob
@age 35”) and relationship-edges (e.g., “Bob knows Fred”).
We use the ‘@’ symbol for representing attribute edges and
distinguishing them from the relationship edges.

Data Mapping Layer. This layer is responsible for cre-
ating: (i) object-store, which contains all objects in the in-
put graph uniquely identified by an identifier. Each ob-
ject contains an arbitrary list of attribute-edges describing
its features; (ii) link-store, which contains all directed links
between pairs of objects represented as relationship-edges;
and (iii) data element mappings between semantic web tech-
nology (i.e. Resource Description Framework) and Hadoop
file system. As a result, objects-store and link-store will be
stored in Hadoop cluster.

Query Mapping Layer. This layer is consist of a parser
for parsing SPARQL like queries (based upon the syntax of
Folder-Path extension [2, 3, 4] of SPARQL) and a SPARQL-
to-PigLatin translation algorithm. In order to translate the
SPARQL queries into Pig-Latin we follow a specific format
in which data is read from the HDFS, a number of Pig-Latin
operations (e.g., LOAD, SPLIT, JOIN, FILTER, GROUP,
and STORE) are performed on the data, and then the re-
sulting relation is written back to the file system. In par-
ticular, SPARQL graph pattern matching is dominated by
join operations, and is unlikely to be efficiently processed.
We use existing query optimization techniques [7, 8, 9] to
generate the optimal query plan by reinterpreting certain
join tree structures as grouping operations, i.e., to enable
a greater degree of parallelism in join processing. In the

…Data Sources

Extracted 
Data Folders

YouTube
Folder

Flickr
Folder

Twitter
Folder

Graph Query Engine

User 
Queries

Big Data Platforms

…

Entity-Relationship Graph

Figure 1: The Galaxy Architecture.

Graph Loader

Data Mapping

Regular Expression Processor

Ti
m

e-
aw

ar
e

C
on

tro
lle

r

External Algorithms Controller

SPARQL Like Query

R
D

F/N
3/XM

L (G
raph)

Graph Query Engine
Processing Architecture

SPARQL Queries

Folder/Path Queries

P-OLAP Queries

Q
ue

ry
O

pt
im

iz
er

Query Mapping

(SPARQL-to-PigLatin Translation and Processing)

Parser

Syntax Tree

SPARQL Like Query

Algebra Compiler/
Optimizer

Algebra Tree

Pig Latin Translator

Pig Latin Program

Pig

MapReduce Jobs

(A) (B)

O
LA

P 
C

on
tro

lle
r

Figure 2: The Query Engine Architecture.

following, we illustrate an example for a sample mapping
between SPARQL and Pig-Latin.

Example 1. DBLP1 is an open source data for computer
science bibliographical network. Adam, an OLAP analyst,
is interested in partitioning the DBLP graph into a set of
authors having same interests. Then he plans to apply a set
of OLAP style operations (e.g., calculating authors ranking
and contribution degree) on constructed partitions. Details
about this example, including the SPARQL query can be
found in [2]. Processing this query using Pig Latin’s query
algebra, results in the query plan shown in Figure 3. The
logical plan can be described as follows: (1) load the in-
put dataset using the LOAD operator in Pig-Latin; (2) split
the dataset, based on the partitioning condition, and create
triple tables for related predicates. Next step is to filter the
dataset into related authors, where the ‘interest’ triplestore
will be needed for the partitioning phase and ‘publications’
and ‘citations’ triplestores will be needed to apply OLAP
style operations on partitions; (3) filter the graph using the
result of previous step, i.e., to support the triple syntax and
weave the predicated to related partitions. Notice that, in
the case of using JOIN operator in this step, the triple syn-
tax will be no longer available; (4) group by the interest ta-
ble on the object column to remove redundant values, e.g.,
cases where two or more authors, different subjects, hav-
ing same interests; (5) evaluation of OLAP operations on
graphs independently for each partition, providing a natu-

1http://dblp.uni-trier.de/db/

641



Load

Split

S P O
S1 @citations 15
S2 @citations 12
… … …

S P O
S1 @class entitynode
S2 @class entitynode
… … …

S P O
S1 @interest DataBase
S2 @interest AI
… … …

S P O
S1 @publications 10
S2 @publications 8
… … …

Filter

S P O
S1 @class entitynode
S1 @type author
S1 @publications 8
S1 @citations 15
S1 @name Adam
… … …

Graph

S P O
S1 @type author
S2 @type author
… … …

Type_author

citations

class

publications

interest
FOREACH

(Apply operations on partitions)
(Group by)

STORE

Figure 3: Query plan for the Example 1.

ral parallelization of execution; and (6) store the final result
on Hadoop cluster using the STORE operator in Pig-Latin.

Regular Expression Processor. This component is
responsible for parsing graph patterns. In particular, graph
analysts can codify their knowledge into regular expressions
that describe paths through the nodes and edges in the
graph. The regular expression processor supports optional
elements (?), loops (+,*), alternation (|), and grouping ((...)).

Time-aware Controller. RDF databases are not static
and changes may apply to graph entities (i.e. nodes, edges,
and folder/path nodes) over time. Time-aware controller is
responsible for data changes and incremental graph loading.
Moreover, it creates a monitoring code snippet and allocate
it to a folder/path node in order to monitor its evolution
and update its content over time.

GOLAP controller. This component is responsible for
supporting on-line analytical processing on graphs, through
partitioning graphs (using folder and path nodes) and allows
evaluation of OLAP operations on graphs independently for
each partition, providing a natural parallelization of execu-
tion, details can be found in [2].

External Algorithms Controller. This component is
responsible to support applying existing graph mining algo-
rithms (e.g. graph reachability and shortest path) to the
open data graph, and store the result in a folder/path node
for the follow on analysis. For example we developed inter-
faces to support various graph mining algorithms [1] such as
Transitive Closure, GRIPP, Tree Cover, Chain Cover, Path-
Tree Cover, and Shortest-Paths.

3. DEMONSTRATION SCENARIO
The demonstration scenario consists of three parts. First,

we would like that the attendee appreciates the difficulties
that one can encounter when dealing with open data sources.

GeoLocation

geoID 

continent VARCHAR(100)

country_code VARCHAR(10)

country VARCHAR(30)

state VARCHAR(30)

city VARCHAR(30)

postal_code VARCHAR(20)

street_address VARCHAR(256)

Indexes

User

userID VARCHAR(100)

description VARCHAR(256)

geo_enabled 

language VARCHAR(100)

name VARCHAR(256)

time_zone VARCHAR(100)

url VARCHAR(256)

verified 

geoID BIGINT

Indexes

Tweet

tweetID VARCHAR(30)

content VARCHAR(256)

language VARCHAR(100)

source VARCHAR(100)

geoID BIGINT

userID VARCHAR(10)

time TIMESTAMP

topicID INT

Indexes

TweetReply

tweetID VARCHAR(30)

reply_UserID VARCHAR(100)

reply_tweetID VARCHAR(30)

Indexes

TweetAnalytics

tweetID VARCHAR(30)

favourited_count BIGINT

retweet_count BIGINT

time TIMESTAMP

Indexes

UserAnalytics

userID VARCHAR(100)

favourites_count BIGINT

followers_count BIGINT

friends_count BIGINT

listed_count BIGINT

statuses_count BIGINT

follower_ratio DOUBLE

time TIMESTAMP

Indexes

Topic

topicID 

topicName VARCHAR(256)

Indexes
HashTag

hashTagID 

tweetID VARCHAR(30)

hashTag VARCHAR(256)

topicID BIGINT

similar_hashtags VARCHAR(1000)

Indexes

HashTagSimilarity

hashTagID1 BIGINT

hashTagID2 BIGINT

similarity INT

Indexes

Media

mediaID VARCHAR(255)

tweetID VARCHAR(30)

mediaType VARCHAR(20)

url VARCHAR(256)

Indexes

Domain

domainID 

tweetID VARCHAR(30)

url VARCHAR(256)

topicID BIGINT

Indexes

Link

linkID 

tweetID VARCHAR(30)

url VARCHAR(256)

page_title VARCHAR(256)

metaTags TEXT

page_links TEXT

first_paragraph TEXT

page_text TEXT

Indexes

NamedEntity

name_entityID 

tweetID VARCHAR(30)

type VARCHAR(256)

named_entity VARCHAR(256)

entity_mentions TEXT

Indexes

Figure 4: Twitter Extraction Folder Schema.

We start with a Twitter dump2 and illustrate how we gen-
erate the Twitter extraction folder according to the gener-
ated Twitter schema (Figure 4). Next, we illustrate how
we use the query language to construct content-based rela-
tionships among related entities. When talking about con-
tent we mainly deal with entity attributes, where we con-
sider content-based relationships as correlation condition-
based relationships. For example, a correlation condition in
Twitter may enable grouping entities in different ways, e.g.
Tweets coming from the same location or users from the
same timezone, and store them in folder nodes. Figure 5
presents the set of related tweets whose location country is
the same as Australia.

Next, we present to the attendee an interactive scenario
where she would be able to generate the ‘influence graph’
among users in the Twitter open data through the follow-
ing steps: (i) Using Folder Nodes, to form an intelligence
picture from the Twitter data around a topic of interest
(i.e. Twitter User) by grouping related entities around that
topic and store them in folder nodes. Examples are, folders
for users who: (a) belong to the same location, (b) tweet the
same topics (we assume that we have a topic discovery algo-
rithm), (c) use similar hashTags/links in their tweets; and
(d) retweet similar tweets; (ii) Using Path Nodes to con-
struct relationships among twitter constructed folders. For
example a reachability algorithm will be used (in path node
queries) to see if two different twitter users are reachable
through a shard friend or a retweet path. As the result set of
related patterns can be stored in path nodes for further anal-
ysis; (iii) Constructing relationships among open/federated
data sources. We will provide the attendee with a set of fold-
ers constructed from other open data sources such as Wiki-
data and DBPedia. The attendee will use query templates

2https://archive.org/details/archiveteam-twitter-stream-
2012-02

642



Figure 5: An example of partitioning the graph for
the follow on analysis.

Figure 6: Screenshots of the front-end tool: assisting
user to generate regular expressions.

Figure 7: Screenshots of the front-end tool: assisting
user to generate correlation conditions.

to discover similarity among different folders, e.g. a tweet in
Twitter folder can be related to a topic in Wikidata folder;
and (iv) Generating the ‘influence graph’ among users in
Twitter. The attendee will use SPARQL like queries to fur-
ther analyze the folder and path nodes and use the front-end
tool to visualize the influence graph. In order to facilitate
creating SPARQL queries, we provide a front-end tool for
assisting users to create SPARQL queries in an easy way.
Figures 6 and 7 illustrates screenshots of the front-end tool,

4. CONCLUSION AND FUTURE WORK
In this paper, we presented Galaxy, a platform for explo-

rative analysis of Open Data Sources. Galaxy assists the an-
alysts to quickly form an intelligence picture from the Open
Data sources around a topic of interest, group related enti-
ties around that topic (folder nodes), find paths among enti-
ties (path nodes), and use all these information for the follow
on analysis. Galaxy uses Hadoop data processing platforms
to store and retrieve large numbers of RDF triples in Hadoop
file system. As future work, we plan to make use of inter-
active graph exploration and visualization techniques which
can help users to quickly identify the interesting parts of a
graph.

5. ACKNOWLEDGEMENTS
We Acknowledge the Data to Decisions CRC (D2D CRC)

and the Cooperative Research Centres Programme for fund-
ing part of this research.

6. REFERENCES
[1] C. C. Aggarwal and H. Wang. Managing and Mining

Graph Data. Springer Publishing Company,
Incorporated, 2010.

[2] S.-M.-R. Beheshti, B. Benatallah, and
H. Motahari-Nezhad. Scalable graph-based olap
analytics over process execution data. Distributed and
Parallel Databases, pages 1–45, 2015.

[3] S.-M.-R. Beheshti, B. Benatallah, and H. R. M.
Nezhad. Enabling the analysis of cross-cutting aspects
in ad-hoc processes. In CAiSE, pages 51–67, 2013.

[4] S.-M.-R. Beheshti, B. Benatallah, H. R. M. Nezhad,
and S. Sakr. A query language for analyzing business
processes execution. In BPM, pages 281–297, 2011.

[5] A. Doan, P. Domingos, and A. Y. Halevy. Reconciling
schemas of disparate data sources: A machine-learning
approach. In ACM Sigmod Record, volume 30, pages
509–520. ACM, 2001.

[6] M. Fayzullin, V. Subrahmanian, M. Albanese,
C. Cesarano, and A. Picariello. Story creation from
heterogeneous data sources. Multimedia Tools and
Applications, 33(3):351–377, 2007.

[7] M. F. Husain, L. Khan, M. Kantarcioglu, and B. M.
Thuraisingham. Data intensive query processing for
large rdf graphs using cloud computing tools. In IEEE
CLOUD, pages 1–10, 2010.

[8] H. Kim, P. Ravindra, and K. Anyanwu. From sparql to
mapreduce: The journey using a nested triplegroup
algebra. PVLDB, 4(12):1426–1429, 2011.

[9] P. Ravindra, H. Kim, and K. Anyanwu. An
intermediate algebra for optimizing rdf graph pattern
matching on mapreduce. In ESWC, pages 46–61, 2011.

643


	Galaxy: A Platform for Explorative Analysis of Open Data SourcesSeyed-Mehdi-Reza Beheshti, Boualem Benatallah, Hamid Reza Motahari Nezhad, 

