
Parallel Array-Based Single- and Multi-Source Breadth
First Searches on Large Dense Graphs

Moritz Kaufmann
Technical University of Munich

kaufmanm@in.tum.de

Manuel Then
Technical University of Munich

then@in.tum.de

Alfons Kemper
Technical University of Munich

kemper@in.tum.de

Thomas Neumann
Technical University of Munich

neumann@in.tum.de

ABSTRACT

One of the fundamental algorithms in analytical graph data-
bases is breadth-first search (BFS). It is the basis of reach-
ability queries, centrality computations, neighborhood enu-
meration, and many other commonly-used algorithms.

We take the idea of purely array-based BFSs introduced
in the sequential multi-source MS-BFS algorithm and extend
this approach to multi-threaded single- and multi-source BFSs.
Replacing the typically used queues with fixed-sized arrays,
we eliminate major points of contention which other BFS
algorithms experience. To ensure equal work distribution
between threads, we co-optimize work stealing paralleliza-
tion with a novel vertex labeling. Our BFS algorithms have
excellent scaling behavior and take advantage of multi-core
NUMA architectures.

We evaluate our proposed algorithms using real-world and
synthetic graphs with up to 68 billion edges. Our evaluation
shows that the proposed multi-threaded single- and multi-
source algorithms scale well and provide significantly better
performance than other state-of-the-art BFS algorithms.

1. INTRODUCTION
Graphs are a natural abstraction for various common con-

cepts like communication, interactions as well as friendships.
Thus, graphs are a good way of representing social networks,
web graphs, and communication networks. To extract struc-
tural information and business insights, a plethora of graph
algorithms have been developed in multiple research commu-
nities.

At the core of many analytical graph algorithms are breadth
first searches (BFSs). During a BFS, the vertices of a graph
are traversed in order of their distance—measured in hops—
from a source vertex. This traversal pattern can for example
be used to do shortest path computations, pattern match-
ings, neighborhood enumerations, and centrality calculations.
While all these algorithms are BFS-based, many different

c©2017, Copyright is with the authors. Published in Proc. 20th International
Conference on Extending Database Technology (EDBT), March 21-24,
2017 - Venice, Italy: ISBN 978-3-89318-073-8, on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Com-
mons license CC-by-nc-nd 4.0

multi-sourcesingle-source

se
q

u
en

ti
a
l

p
a
ra

ll
el

Beamer [5]

Yasui [20]

Agarwal [2] Chhugani [8]

Hong [12]

MS-BFS(Then) [18]

iBFS(Liu) [14]

Our contributions
SMS-PBFS MS-PBFS

Figure 1: State-of-the-art single-server breadth-first-
search publications

BFS variants have been published. Important aspects that
differentiate BFS variants are their degree of parallelism, the
number of sources they consider, and the type of graph they
are suited for.

Possible degrees of parallelism include single-threaded and
multi-threaded execution as well as distributed processing.
Many emerging systems, e.g., Pregel [16], Spark [21], and
GraphLab [15], focus heavily on distributed processing, but
often neglect to optimize for the single-machine use case.
However, especially for graph analytics, distributed process-
ing is a very hard problem. The main reason for this is the
high communication cost between compute nodes which is
directly influenced by the inherent complexity of graph parti-
tioning [4]. While there are cases in which distribution cannot
be avoided, we argue that in graph analytics it is often done
unnecessarily, leading to diminished performance. Actually,
most—even large-scale—real-world graphs easily fit into the
main memory of modern server-class machines [11]. Thus,
we only consider the single-node scenario but differentiate
between single and multi-threaded processing.

In Figure 1 we give an overview of the multi-threaded
single-node state-of-the-art BFS algorithms.

The figure also includes the second important aspect of a
BFS variant: its number of sources. Traditionally, the BFS
problem is stated as traversing the graph from a single source
vertex. While this single-source model can be applied to any
BFS-based algorithm, it hampers inter-BFS optimizations.
Specialized multi-source BFS algorithms like MS-BFS [18]
and the GPU based iBFS [14] concurrently traverse the
graph from multiple source vertices and try to share common
work between the BFSs. This is, for example beneficial when
the all pairs shortest path (APSP) problem needs to be
solved as it is the case for the closeness centrality metric.

Series ISSN: 2367-2005 1 10.5441/002/edbt.2017.02

http://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2017.02

For this computation, a full BFS is necessary from every
vertex in the graph. Considering that small-world networks
often consist of a single large connected component, a single-
source BFS would visit every vertex in each traversal while
a multi-source-optimized BFS batches visits where possible.

One central limitation of current multi-source BFS algo-
rithms is their limited ability to analyze large graphs ef-
ficiently. The GPU-based iBFS is limited to the memory
available on GPU cards which is over an order of magnitude
less than what is available in modern servers. The CPU-based
MS-BFS on the other hand is sequential; utilizing all cores
would require an separate BFS instance for each CPU core.
It can only speed up analysis when a huge number of sources
is analyzed and it requires much more memory due to the
separate BFS states.

In this paper we propose two breadth-first search algo-
rithms that are optimized for modern massively-parallel
multi-socket machines: SMS-PBFS and MS-PBFS. SMS-
PBFS is a parallelized single-source BFS, while MS-PBFS is
a parallelized multi-source BFS. Both algorithms are based
on the approaches introduced by the sequential MS-BFS. By
adding scalable parallelization we enable massive speedups
especially when working with a limited number of sources.
Our approach also significantly reduces memory requirements
for parallelized multi-source BFSs.

Our evaluation using real-world graphs as well as arti-
ficial graphs, including the industry-standard benchmark
Graph500 [1], shows that SMS-PBFS and MS-PBFS greatly
outperform the existing state-of-the-art BFS algorithms. Be-
cause the overhead for parallelization is negligible, our paral-
lelized algorithms can be efficiently used for sequential BFS
traversals without modifications.

Specifically, the contributions of this paper are as follows:

• We present the MS-PBFS algorithm, a multi-core NUMA-
aware multi-source BFS that ensures full machine uti-
lization even for a limited number of sources. We also in-
troduce SMS-PBFS, a multi-core NUMA-aware single-
source BFS based on MS-PBFS that shows better per-
formance than existing single-source BFS algorithms.

• We introduce a new vertex labeling scheme that is both
cache-friendly as well as skew-avoiding.

• We propose a parallel low-overhead work stealing schedul-
ing scheme that preserves NUMA locality in BFS work-
loads.

The latter two contributions can also boost the perfor-
mance of existing BFS algorithms as well as other graph
algorithms.

The paper is structured as follows. In Section 2 we describe
the state-of-the-art BFS algorithms for the sequential and
parallel single-source case as well as for the sequential multi-
source case and summarize their limitations. Afterward, in
Section 3 we present our novel algorithms MS-PBFS and
SMS-PBFS. In Section 4 we describe our optimized schedul-
ing algorithm, vertex labeling scheme, and memory-layout for
modern NUMA architectures. Section 5 contains the evalua-
tion of our algorithms. We give an overview over the related
work in Section 6. Section 7 summarizes our findings.

2. BACKGROUND
In this section we describe the current state-of-the-art BFS

algorithm variants. We focus on algorithms that operate on

undirected, unweighted graphs. Such a graph is represented
by a tuple G = {V, E}, where V is the set of vertices and E =
{neighborsv|v ∈ V } where neighborsv is the set of neighbors
of v. Additionally, we assume that the graphs of interest
are small-world networks [3], i.e., that they are strongly
connected and their number of neighbors per vertex follows
a power law distribution. This is the case for most real-world
graphs; examples include social networks, communication
graphs and web graphs.

Given a graph G and a source vertex s, a BFS traverses
the graph from s until all reachable vertices have been visited.
During this process, vertices with a one-hop distance from
s are visited first, then all vertices with distance two and
so on. Each distance corresponds to one iteration. While
executing an iteration the neighbors of vertices that were
newly discovered in the previous iteration are checked to see
if they have not yet been discovered. If so, they are marked as
newly seen and enqueued for the next iteration. Consequently,
the basic data structures during execution are a queue of
vertices that were discovered in the previous iteration and
must be processed in the current iteration, called frontier ,
a mapping seen that allows checking if a vertex has already
been visited, and a queue next of vertices that were newly
discovered in the current iteration. The latter queue is used
as input for the next iteration. The number of BFS iterations
corresponds to the maximum distance of any vertex from
the source. It is bound by the diameter of the graph, i.e., the
greatest shortest distance between any two vertices.

Our novel MS-PBFS and SMS-PBFS algorithms build
on multiple existing techniques which we introduce in the
following. We categorize the presented algorithms as either
parallel or sequential, and as either single-source or multi-
source as shown in Figure 1. To the best of our knowledge,
each of the presented algorithms in this chapter is the current
single-server state-of-the art in its category.

2.1 Sequential and Parallel Single-Source BFS
The fastest sequential single source BFS algorithm for

dense graphs was presented by Beamer et al. [5]. It breaks up
the algorithmic structure of the traditional BFS to especially
reduce the amount of work required to analyze small-world
networks. In such graphs most vertices are reached within few
iterations [18]. This has the effect that at the end of this “hot
phase” the frontier for the next iteration contains many more
vertices than there are unseen vertices in the graph, as most
were already discovered. At this point the classical top-down
approach — trying to find unseen vertices by processing the
frontier — becomes inefficient. Most vertices’ neighbors will
already have been seen but would still need to be checked.
The ratio of vertices discovered per traversed edge becomes
very low. For these cases Beamer et al. propose to use a
bottom-up approach and iterate over the vertices that were
not yet seen in order to try to find an already seen vertex
in their neighbor lists. Even though the result of the BFS is
not changed, this approach significantly reduces the number
of neighbors that have to be checked. This translates into
better traversal performance, thus, this approach is often
used in more specialized BFS algorithms [2, 18, 20].

Those algorithmic changes also have implications on the
BFS data structures that can be used. Typically, the queues
in a BFS are implemented using either a dense bitset or a
sparse vector. The bottom-up phase, though, requires efficient
lookups of vertices in the queue, thus, it can not be used

2

efficiently with a sparse vector. The original authors solve
this by converting the data structures from bitset to sparse
vector when switching from top-down to bottom-up or vice
versa.

For parallelization, this approach can be combined with
existing work on scalable queues for BFSs [2, 12, 8, 5, 20]
and on scalability on multi-socket NUMA architectures [19,
8] through static partitioning of vertices and data across
NUMA nodes. Many of these techniques are combined in the
BFS algorithm proposed by Yasui et al. [20, 19] which is the
fastest multi-threaded single-source BFS.

2.2 Sequential Multi-Source BFS
The MS-BFS algorithm [18] is targeted towards multi-

source traversal and further reduces the total number of
neighbor lookups across all sources compared to Beamer et
al. It is based on two important observations about BFS
algorithms. Firstly, regardless the data structure used, for
sufficiently large graphs it is expensive to check whether a
vertex is already contained in seen as CPU cache hit rates
decrease. For this very frequent operation even arrays with
their containment check bound of O(1) are bound by memory
latency. This problem is further exacerbated on non-uniform
memory access (NUMA) architectures that are common in
modern server-class machines. Secondly, when multiple BFSs
are run in the same connected component, every vertex of
this component is visited separately in each BFS. This leads
to redundant computations, because whenever two or more
BFS traversals in the same component find a vertex v in
the same distance d from their respective source vertices,
the remainder of those BFS traversals from v will likely be
very similar, i.e., visit most remaining vertices in the same
distance.

MS-BFS alleviates some of these issues by optimizing
for the case of executing multiple independent BFSs from
different sources in the same graph. It uses three k-wide
bitsets to encode the state of each vertex during k concurrent
BFSs:

1. seen[v], where the bit at position i indicates whether v

was already seen during the BFS i,

2. frontier [v], determining if v must be visited in the
current iteration for the BFSs, and

3. next[v], with each set bit marking that the vertex v

needs to be visited in the following iteration for the
respective BFS.

For example given k = 4 concurrent BFSs, the bitset
seen[v] = (1, 0, 0, 1) indicates that vertex v is already discov-
ered in BFSs 0 and 3 but not in BFSs 1 and 2. Using this
information, a BFS step to determine seen and next for all
neighbors n of v can be executed using the bitwise operations
and (&), or (|), and negation (∼):

for each n ∈ neighbors[v]
next[n]← next[n] | (frontier [v] & ∼seen[n])
seen[n]← seen[n] | frontier [v]

Here, if n is not yet marked seen for a BFS and this
BFS’s respective bit is set in frontier [v], then the vertex n

is marked as seen and must be visited in the next iteration.
The bitwise operations calculate seen and next for k BFSs at
the same time and can be computed efficiently by leveraging
the wide registers of modern CPUs. A full MS-BFS iteration
consists of executing these operations for all vertices v in the

0

25

50

75

100

0 1000 2000 3000 4000

Number of BFS sources

C
P

U
 u

ti
liz

a
ti
o

n
 (

%
)

Algorithm

MS−BFS

MS−PBFS

Figure 2: CPU utilization of MS-BFS and MS-PBFS
as the number of sources increases.

0

3

6

9

0 20 40 60

Number of threads

R
e

la
ti
ve

 o
ve

rh
e

a
d

Algorithm

MS−BFS

MS−PBFS

Figure 3: Relative memory overhead compared to
graph size as number of threads increases.

graph. Note that all k BFSs are run concurrently on a single
CPU core with their traversals implicitly merged whenever
possible.

MS-BFS works for any number of concurrent BFSs using
bitset sizes chosen accordingly. However, it is especially ef-
ficient when the vertex bitsets have a width for which the
target machine natively supports bit operations. Modern
64-bit x86 CPUs do not only have registers and instructions
that support 64 bit wide values, but also ones for 128 bit and
256 bit using the SSE and AVX-2 extensions, respectively.
The original publication elaborates on the trade-offs of var-
ious bitset widths and how they influence the algorithm’s
performance.

In Section 3 we show how MS-BFS can be efficiently par-
allelized and present an optimized variant that is highly
efficient for single source traversals.

2.3 Limitations of Existing Algorithms
The MS-BFS algorithm is limited to sequential execution.

The only way to saturate a multi-core system is to run a
separate MS-BFS instance on each core. However, if the
number of BFS sources is limited, e.g., to only 64 as in the
Graph500 benchmark, MS-BFS can only run single-threaded
or, at best, on few cores. In such cases, the capabilities of a
multi-core system cannot be fully utilized. Figure 2 analyzes
this problem using a 60-core machine and 64 concurrent
BFSs per MS-BFS. Every 64 sources one more thread can
be used. Hence, only with 3840 or more sources all cores
are utilized. Also, by running multiple sequential instances
simultaneously, the memory requirements rise drastically to
the point that the dynamic state of the BFSs require much
more memory than the graph itself. This is demonstrated in
Figure 3. It compares the memory required for the MS-BFS
and our proposed MS-PBFS data structures to the size of
the analyzed graph. We calculated the memory requirement
based on 16 edges per vertex like the Kronecker graphs in the
Graph500 benchmark. While traditional BFSs only require a
fraction of the graph memory for their working set, MS-BFS

3

Listing 1: Top-down MS-BFS algorithm from [18].
1 for each v ∈ V
2 if frontier [v] = ∅, skip

3 for each n ∈ neighborsv
4 next[n]← next[n] | frontier [v]
5
6 for each v ∈ V
7 if next[v] = ∅, skip

8 next[v]← next[v] & ∼seen[v]
9 seen[v]← seen[v] | next[v]

10 if next[v] 6= B∅

11 v is found by BFSs in next[v]

already requires more memory than the graph using only
6 threads. With 60 threads it requires over 10 times more
memory! Hence, more than one terabyte of main memory
would be needed to analyze a 100GB graph using all cores. An
alternative could be to use smaller batch sizes, thus, requiring
fewer sources and memory to take advantage of all cores.
However, that would decrease the traversal performance as
less work can be shared between the BFSs. In contrast, the
parallel multi-source algorithm MS-PBFS proposed in this
paper can use all cores at 64 BFSs and only consumes as
much memory as a single MS-BFS.

State-of-the-art parallel single-source algorithms are lim-
ited by either locality and scalability issues associated with
the sparse queues. Even if partitioned at NUMA socket gran-
ularity there can be a lot of contention and the trend of
having more cores per CPU socket does not work in such
approaches favor.

3. PARALLEL SINGLE- AND

MULTI-SOURCE BFS
In this section we present our parallelized multi-source

BFS algorithm as well as a single-source BFS variant, both
designed to avoid those problems.

3.1 MS-PBFS
In the following we introduce MS-PBFS, a parallel multi-

source BFS algorithm that ensures full machine utilization
even for a single multi-source BFS.

MS-PBFS is based on MS-BFS and parallelizes both its
top-down (Section 3.1.1) and its bottom-up (Section 3.1.2)
variant. Our basic strategy is to parallelize all loops over the
vertices by partitioning them into disjunct subsets and pro-
cessing those in parallel. State that is modified and accessed
in parallel then has to be synchronized to ensure correctness.

3.1.1 Top-down MS-PBFS

MS-BFS uses a two-phase top-down variant, shown in
Listing 1. As described in the Section 2, each value in seen,
frontier and next is not a single boolean value but a bitset.
The first phase, lines 1 through 4, aggregates information
about which vertices are reachable in the current iteration. Af-
ter it finishes, the second phase, the loop in lines 6 through 11,
identifies which of the reachable vertices are newly discovered
and processes them.

Our strategy is to parallelize both of these loops and
separate them using a barrier. During this parallel processing,
the first loop accesses the fixed-size frontier , neighbors and
next data structures. As the former two are constant during

First phase Second phase

frontier next next seen

writes to

neighbors

writes

Figure 4: Concurrent top-down memory accesses

the loop accesses, they do not require any synchronization.
The next data structure on the other hand is updated for each
neighbor n by combining n’s next bitset with the currently
visited v’s frontier . As vertices in general can be reached via
multiple edges from different vertices, different threads might
update next simultaneously for a vertex. To avoid losing
information in this situation, we use an atomic compare and
swap (CAS) instruction, replacing line 4 with the following:

do

oldNext ← next[n]
newNext ← oldNext | frontier [v]

while atomic_cas(next[n], oldNext, newNext)

Bitsets wider than the CPU’s largest atomic operation
value type can be supported by implementing the update
operation as a series of independent atomic CAS updates of
each sub-part of the bitset. For example a 512-bit bitset could
be updated using eight 64-bit CAS as described above. This
retains the desired semantics as the operation can only add
bits but never unset them. It is also not required to track
which thread first added which bit as the updates of the
newly discovered vertices is only done in the second phase.

The second phase iterates over all vertices in the graph
and updates next and seen. In contrast to the first phase,
no two worker threads can access the same entry in the
data structures. Regardless of how the vertex ranges are
partitioned, there is a bijective mapping between a vertex,
the accessed data entries, and the worker that processes
it. Consequently, there cannot be any conflicts, thus, no
synchronization is necessary.

Figure 4 visualizes the memory access patterns for all
writes in the first and second phase of the top-down MS-
PBFS algorithm. The example shows a configuration with
two parallel workers and a task size of two. Squares show the
currently active vertices and arrows point to entries that are
modified. The linestyle of the square shows the association
to the different workers. We come back to this figure in
Section 4.4 to further explain the linestyles.

To reduce the time spent between iterations, we directly
clear each frontier entry inside the second parallelized loop.
This allows MS-PBFS to re-use the memory of the current
frontier for next in the subsequent iteration without hav-
ing to clear the memory separately. Thus, we reduce the
algorithm’s memory bandwidth consumption.

Furthermore, we only update next entries if the computa-
tion results in changes to the bitset. This avoids unnecessary
writes and cache line invalidations on other CPUs [2].

4

Listing 2: Bottom-up MS-BFS traversal from [18].
1 for each u ∈ V
2 if |seen[u]| = |S|, skip

3 for each v ∈ neighborsu
4 next[u]← next[u] | frontier [v]
5 next[u]← next[u] & ∼seen[u]
6 seen[u]← seen[u] | next[u]
7 if |next[u]| 6= 0
8 u is found by BFSs in next[u]

frontier seen next

reads from

neighbors

writes

Figure 5: Concurrent bottom-up memory accesses

3.1.2 Bottom-up MS-PBFS

As explained in Section 2.1, a BFS’s bottom-up variant
linearly traverses the seen data structure to find vertices that
have not been marked yet. For every vertex v that is not yet
seen in all concurrent BFSs, MS-BFS’s bottom-up variant
checks whether any of its neighbors was already seen in the
respective BFS. If so, v is marked as seen and is visited in the
next iteration. We show the full bottom-up loop in Listing 2.

MS-PBFS parallelizes this loop by splitting the graph into
distinct vertex ranges which are then processed by worker
threads. Inside the loop, the current iteration’s frontier is
only read. Both seen and next are read as well as updated.
Similar to the second phase described in the previous sec-
tion, there is a bijective mapping between each updated
entry and the worker that processes the respective vertex.
Consequently, there cannot be any read-write or write-write
conflicts and, thus, no synchronization is required within the
ranges. Figure 5 depicts the bottom-up variant’s memory
access pattern, again for two parallel workers.

Once all active BFSs bits are set in next we stop checking
further neighbors to avoid unnecessary read operations. This
check is also used in the original bottom-up algorithm by
Beamer et al.

3.2 Parallel Single-Source: SMS-PBFS
In order to also apply our novel algorithm to BFS that

traverse the graph from only a single source, we derive a
single-source variant: SMS-PBFS. SMS-PBFS contains two
main changes: the values in each array are represented by
boolean values instead of bitsets, and checks that are only
required when multiple BFS are bundled can be replaced by
constants. This allows us to simplify the atomic update in
the top-down algorithm, as a single atomic write is sufficient,
instead of a compare and swap loop. The SMS-PBFS top-
down and bottom-up algorithms are shown in Listing 3 and
4, respectively. Parallel coordination is only required when
scheduling the vertex-parallel loops and during the single

Listing 3: Single-source parallel top-down algorithm
1 parallel for each v ∈ V
2 if not(frontier [v]), skip

3 for each n ∈ neighborsv
4 if not(next[n]), atomic(next[n]← true)
5 frontier [v]← false
6
7 parallel for each v ∈ V
8 if not(next[v]), skip

9 next[v]← not(seen[v])
10 if not(seen[v])
11 seen[v]← true
12 v is found

Listing 4: Single-source parallel bottom-up algo-
rithm
1 parallel for each u ∈ V
2 if seen[u]
3 next[u]← false
4 else

5 for each v ∈ neighborsu
6 if frontier [v]
7 next[u]← true
8 break

9 if next[v]
10 seen[u]← true
11 u is found

atomic update in the first top-down loop.
While MS-PBFS always has to use an array of bitsets to

implement next, frontier and seen, there is more freedom
when implementing SMS-PBFS. It is still restricted to using
dense arrays, but each entry can either be a bit, a byte
or a wider data type. In the parallel case, where the state
of 512 vertices fits into one 64-byte CPU cache line using
bit representation, the chance of concurrent modification is
very high. Choosing a larger data type allows to balance
cache efficiency and reduced contention between workers. We
demonstrate these effects in our evaluation. To reduce the
number of branches, we try to detect when a consecutive
range of vertices is not active in the current iteration and
skip it. Instead of checking each vertex individually we check
ranges of size 8 bytes, which can efficiently be implemented
on 64-bit CPUs. Using a bit representation, each such range
contains the status of 64 vertices. If no bit is set, we directly
jump to the next chunk and save a large number of individual
bit checks. Otherwise, each vertex is processed individually.
This is similar to the Bitsets-and-summary optimization [19]
but does not require an explicit summary bit.

4. SCHEDULING AND PARALLEL GRAPH

DATA STRUCTURES
The parallelized algorithms’ descriptions in Section 3 focus

on how to provide semantical correctness. It leaves out the
implementation details of how to actually partition the work
to workers and how to store the BFS data structures as well
as the graph. As shown by existing work on parallel single-
source BFSs, these implementation choices can have a huge
influence on the performance of algorithms that are intended
to run on multi-socket machines with a large number of cores.
In this section we describe the data structures and memory

5

Ordered Random

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

Workers

V
is

it
e
d
 n

e
ig

h
b
o
rs Workers

1
2
3
4
5
6
7
8

Figure 6: Visited neighbors per worker during a BFS
using static partitioning on a social network graph
with different vertex labelings

1 2 3 4 5 6

12345678 12345678 12345678 12345678 12345678 12345678

Workers

#
 U

p
d
a
te

d
 B

F
S

 s
ta

te
s Workers

1
2
3
4
5
6
7
8

Figure 7: Updated BFS vertex states per worker per
iteration during a BFS using static partitioning on
a social network graph with ordered vertex labeling

organization to efficiently scale MS-PBFS and SMS-PBFS
(together abbreviated as (S)MS-BFS) on such machines.

4.1 Parallelization Strategies
The initial version of our parallelized algorithms used pop-

ular techniques from state-of-the-art parallel single-source
implementations. Specifically, it used static partitioning of
vertices to workers, and degree-ordered vertex labeling[19].
With this labeling scheme, we re-labeled the graph’s ver-
tices and assigned dense ids in the order of the vertices’
degrees, with the highest-degree vertex getting the smallest
id. That way, the states of high degree vertices are located
close together which improves cache hit rates. This first
implementation showed very good performance for a small
number of workers. However, at higher thread counts, the
overall scalability was severely limited.

Together with static partitioning, degree based labeling
has the effect that due to the power-law distribution of vertex
degrees in many real world graphs, the vertices in the first
partitions have orders of magnitude more neighbors than
those in later partitions. We visualize this effect in Figure 6.
In that experiment, the first worker processes the first 1

8
th of

the vertices in the graph, the second worker the second 1

8
th,

and so on. As the amount of work per partition increases
with the number of neighbors that need to be visited, the
described skew directly affects the workers’ runtime, as it is
one of the most costly operations besides updating the BFS
vertex state. While it may be possible to create balanced
static partitions such that each worker has to do the same
amount of work across all BFS iterations, it is not enough
to significantly increase utilization. The problem would then
be that in different iterations different parts of the graph
are active, thus, there would still be a large runtime skew

in each iteration. The different workload for workers across
iterations is shown in Figure 7 using the number of updated
BFS vertex states as an indicator for the actual amount of
work.

Additionally, this figure gives an indication why dynamic
work assignment does not ensure full utilization on its own.
Intuitively, in a small-world network an average BFS traverses
the graph starting from the source vertex to the vertices with
the highest degrees, because these are well-connected, and
from there to the remainder of the graph. For such a BFS,
the high-degree vertices are typically discovered after two to
three iterations as shown in Figure 7. There in iteration two
only a tiny fraction of vertices is updated. On the other hand
as these are the high-degree vertices a lot of undiscovered
vertices are reachable from them, resulting in a huge number
of updates in iteration three. The updates themselves, which
are processed in the second phase of the top-down algorithm
could be well distributed across workers. Identifying the
newly reachable vertices, which is done in the first phase, by
searching the neighbors of the high-degree vertices is more
challenging to schedule because there are only few and due to
the labeling they are all clustered together. In combination,
this iteration is very expensive but a large part of the work
is spent when processing very few high-degree vertices. To
achieve even utilization, tiny task sizes would be required.
Such tiny tasks mean, however, that the scheduling overhead
would become so significant that the overall performance
would not improve.

Instead, our design relies on two strategies. We use fine-
granular tasks together with work-stealing to significantly
reduce the number of vertices that are assigned at once
and enable load-balancing between the cores. We also use a
novel vertex labeling scheme that is scheduling-aware and
distributes high-degree vertices in such a way that they are
both clustered but also spread across multiple tasks. This
allows us to avoid the use of tiny task ranges.

4.2 Parallel Vertex Processing
In this section we focus on providing a parallelization

scheme that minimizes synchronization between threads and
balances work between nodes to achieve full utilization of all
cores during the whole algorithm.

Our concept allows load balancing through work stealing
with negligible synchronization overhead.

4.2.1 Task creation and assignment

Efficient load balancing requires tasks to have two related
properties: there need to be many tasks and their runtime
needs to be relatively short compared to the overall runtime.
If there were only two tasks on average per thread, a scenario
is very probable where a slow thread only starts its last task
when all other threads are already close to being finished
with their work. This creates potential to have all other
threads idling until this last thread is finished. Given a fixed
overall runtime, the shorter the runtime of each work unit
and the more tasks are available, the easier it becomes to get
all threads to finish at approximately the same time. On the
other hand, if the ranges are very small, the threads have to
request tasks more often from the task pool. This can lead
to contention and, thus, decrease efficiency because more
processing time is spent in scheduling instead of doing actual
work.

Due to the fixed-size frontier and next arrays which span

6

Listing 5: Task creation algorithm: create_tasks
1 Input: queueSize, splitSize, numThreads
2 workerTasks ← ∅

3 curWorker ← 0
4 for(offset = 0; offset < queueSize; offset+ = splitSize)
5 wId ← curWorker mod numThreads
6 range ← {offset, min(offset + splitSize, queueSize)}
7 workerTasks[wId]← workerTasks[wId] ∪ range
8 curWorker ← curWorker + 1
9 taskQueues ← ∅

10 for i = 1, . . . , num_threads
11 taskQueues[i]← {|workerTasks[i]|, workerTasks[i]}
12 return taskQueues

all the vertices no matter how many of them are actually
enqueued, all parallel loops of (S)MS-PBFS can follow the
same pattern: a given operation has to be executed for all
vertices in the graph. To create the tasks we divide the list
of vertices into small ranges. In our experiments we found
that task range sizes of 256 or more vertices do not have any
significant scheduling overhead (below 1% of total runtime)
for a graph with more than one million vertices. With about
3900 tasks in such a graph there are enough tasks to load
balance even machines with hundreds of cores.

For work assignment we do not use one central task queue,
but similar to static partitioning give each worker its own
queue. When a parallelized loop over the vertices of the graph
is executed, the queues are initialized using the create_tasks
function shown in Listing 5. Each task queue taskQueues[i] =
{curTaskIx, queuedTasks} belonging to worker i consists of
an index curTaskIx pointing to the next task and a list
of tasks queuedTasks. The number of vertices per task is
controlled by the parameter splitSize. We use a round-robin
distribution scheme, so the difference in queue sizes can be
at most one task.

4.2.2 Work stealing scheduling

The coordination of workers during task execution is han-
dled by the lock-free function fetch_task, which is shown in
Listing 6. The function can be kept simple due to the fact
that during a phase of parallel processing no new tasks need
to be added. Only after all tasks have been completed the
next round of tasks is processed—e.g., a new iteration or the
second phase of the top-down algorithm.

Initially, each worker fetches tasks from its own, local queue
which is identified using the workerId parameter. It atomi-
cally fetches and increments the current value of curTaskIx
as shown in line 5. Using modern CPU instructions, this can
be done without explicit locking. If the task id is within the
bounds of the current task queue (line 7), the corresponding
task range is processed by the worker. Otherwise, it switches
to the next worker’s task queue by incrementing the task
queue offset, and tries again to fetch a task. This is repeated
until either a task is found or, alternatively, after all queues
have been checked, an empty task range is returned to the
worker to signal that no task is available anymore. Further
optimizations like remembering the task queue index where
the current task was found and resuming from that offset
when the next task is fetched, guarantee that every worker
skips each queue exactly once. Incrementing the curTaskIx
only if the queue is not empty avoids atomic writes which
could lead to cache misses when other workers are visiting

Listing 6: Task retrieval algorithm: fetch_task
1 Input: taskQueues, workerId
2 offset ← 0
3 do

4 i← (threadId + offset)mod |taskQueues|
5 taskId ← fetch_add_task_ix(taskQueues[i], 1)
6 if taskId < num_tasks(taskQueues[i])
7 return get_task(taskQueues)[i]
8 else

9 offset ← offset + 1
10 while offset < |taskQueues|
11 return empty_range()

Listing 7: Parallelized for loop
1 tasks ← create_tasks(|V |, splitSize, |workers|)
2 run on each w ∈ workers
3 workerId ← getWorkerId()
4 while((range ← fetch_task(tasks, workerId)) 6= ∅)
5 for each v ∈ range
6 {Loop body}
7 wait_until_all_finished(workers)

that queue.
Listing 7 shows how the task creation and fetching algo-

rithms can be combined to implement the parallel for loop
which is used to replace the original sequential loops in the
top-down and bottom-up traversals. Here, workers is the set
of parallel processors. In line 2 all workers are notified that
new work is available and given the current task queues. Each
worker fetches tasks and loops over the contained vertices
until all tasks are finished. Once a worker can not retrieve
further tasks it signals the main thread, which waits until
all workers are finished.

As long as a worker only fetches from its own queue, the
task retrieval cost is minimal—mostly only an atomic in-
crement which is barely more expensive than a non-atomic
increment on the x86 architecture[17]. Even when reading
from remote queues, our scheduling has only minimal cost
that mostly results from reading one value if the respective
queue is already finished, and one write when fetching a task.
This is negligible compared to the normal BFS workload of at
least one atomic write per vertex in the graph. The construc-
tion cost of the initial queues in the create_tasks function
is also barely measurable and could be easily parallelized if
required.

4.3 Striped vertex order
In the introduction of Section 4.1, we discussed that the

combination of multi-threading, degree ordered labeling and
array-based BFS processing leads to large skew between
worker runtimes. As (S)MS-PBFS’s top-down algorithms is
designed for multi-threading and requires efficient random-
access to the frontier, neither the threading model, nor the
backing data structure must be changed. Thus, though our
single-threaded benchmarks confirmed that the increased
cache locality achieved through degree-ordered labeling leads
to significantly shorter runtimes compared to random vertex
labeling, we cannot use degree-ordered labeling.

Instead, we propose a cache-friendly semi-ordered ap-
proach: We distribute degree-ordered vertices in a round
robin fashion across the workers’ task ranges. The highest-

7

degree vertex is labeled such that it comes at the start of
the first task of worker one. The second-highest degree ver-
tex is labeled such that it comes at the start of the first
task of worker two, etc. This round robin distribution is
continued until all the first tasks for the workers are filled.
Then, all the second tasks, and so on, until all vertices are
assigned to the workers. Using this approach we still cannot
guarantee that all task ranges have the same cost, but we
can control that the cost of the ranges in each task queue
are approximately the same per worker. Also, because the
highest degree vertices are assigned first, the most expensive
tasks will be executed first. Having small task sizes at the
end has the advantage of reducing wait times towards the
end of processing when no tasks are available for stealing
anymore. The pre-computation cost of this striped vertex
labeling is similar to that of degree-ordered labeling.

4.4 NUMA Optimizations
Our (S)MS-PBFS algorithms, as described above, scale

well on single-socket machines. When running on multi-socket
machines, however, the performance does only improve in-
significantly, even though the additional CPUs’ processing
power is used. The main problems causing this are twofold.
First, if all data is located in a single socket’s local mem-
ory, i.e., in a single NUMA region, reading it from other
sockets can expose memory bandwidth limitations. Second,
writing data in a remote NUMA region can be very expen-
sive [8]. This leads to a situation where the scalability of
seemingly perfectly parallelizable algorithms is limited to a
single socket. In the following, we describe (S)MS-PBFS opti-
mizations that substantially improve the algorithms’ scaling
on NUMA architectures.

In our (S)MS-PBFS algorithms it is very predictable which
data is read, particularly within a task range. Consider a
bottom-up iteration as described in Section 3.1.2. When
processing a task, it updates only the information of vertices
inside that task. We designed our algorithm with the goals of
not only providing NUMA scalability but also of avoiding any
overhead from providing this scalability. We deterministically
place memory pages for all BFS data structures, e.g., for
seen, in the NUMA region of the worker that is assigned
to vertices contained in the memory page. Further, we pin
each worker thread to a specific CPU core so that it is not
migrated during traversals. The desired result of this pinning
is visualized in Figures 4 and 5. In addition to the figures’
already discussed elements, we use the linestyle to encode the
NUMA region of both the data and the workers. The memory
pages backing the arrays are interleaved across the NUMA
nodes at exactly the task range borders—for the example
shown in the figures there are two vertices per task—and the
workers only process vertices with data on the same NUMA
node except for stolen tasks.

We calculate the mapping of vertices to memory pages
and the size of task ranges as follows. Consider that a 64 bit
wide bitset is used per seen entry, and memory pages have a
common size of 4096 bytes. In this example, the task range
size should be a multiple of pageSize

bitsetSize/8
= 512 vertices. Given

a task range, it is straightforward to calculate the memory
range of the data belonging to the associated vertices.

Because we initialize large data structures like seen, frontier ,
and next only once at the beginning of the BFS and use
them across iterations, we need to make sure that the data is
placed deterministically, and that tasks accessing the same

vertices are scheduled accordingly in all iterations. Thus,
work stealing must not occur during the parallel initializa-
tion of the data structures to ensure proper initial NUMA
region assignments of the memory pages.

When the BFS tasks only update memory regions that
were initialized by themselves, we achieve NUMA locality.
Note that even though our work stealing scheduling approach
results in additional flexibility regarding task assignment,
most tasks are still executed by their originally assigned
workers when the total runtime for the tasks in each queue
is balanced.

While this goal is perfectly attainable for the bottom-
up variant and the second loop of top-down processing, we
cannot efficiently predict which vertex information is updated
in the first top-down loop. Besides processing stolen tasks,
this is the only part of our algorithm in which non-local
writes can happen.

In summary, given that each worker thread initializes the
memory pages that correspond to the vertex ranges it is
assigned to, nearly all write accesses, except for the first
top-down loop and the work stolen from other threads, are
NUMA-local. (S)MS-PBFS further guarantee that the share
of memory located in each NUMA region is proportional to
the share of threads that belong to that NUMA region. If,
for example, 8 threads are located in NUMA region 0 and
2 threads are located in NUMA region 1, 80% of the memory
required for the BFS data structures are located in region 0
and 20% will be in region 1.

Similar to the NUMA optimizations of the BFS data struc-
tures, also the graph storage can be optimized. We minimize
cross-NUMA accesses by allocating the neighbor lists of the
vertices processed in each task range on the same NUMA
node as the worker which the task is assigned to. By using
the same vertex range assignment while loading the neigh-
bor lists and during BFS traversal, we ensure that all the
data entries for each vertex are co-located. This principle is
similar to the GB partitioning described by Yasui et al. [19],
which, however, uses static partitioning with one partition
per NUMA node.

5. EVALUATION
In our evaluation we analyze four key aspects:

• What influence do the different labeling schemes have?

• How does the sequential performance of SMS-PBFS’s
algorithmic approach compare to Beamer’s direction-
optimizing BFS?

• How effectively does it scale both in terms of number
of cores and dataset size?

• How does it compare to MS-BFS and the parallel single-
source BFS by Yasui et al.?

In addition to the MS-PBFS and SMS-PBFS algorithms
described before, we test two more variants. MS-PBFS (se-
quential) is our novel MS-PBFS algorithm run the same way
as MS-BFS: a single instance per core requiring multiple
batches to be evaluated in parallel. This tests the impact of
the early exit optimization in the bottom-up phase, as well as
our optimized data-structures. Another variant, MS-PBFS
(one per socket) runs one parallel multi-source BFS per CPU
socket using MS-PBFS. We use the performance of this vari-
ant to determine the cost of parallelization across all NUMA

8

nodes when using MS-PBFS. Furthermore, SMS-PBFS is
run in two variants: SMS-PBFS (byte) uses an array of bytes
for seen, frontier , and next, and SMS-PBFS (bit) uses an
array of bits.

Our test machine is a 4-socket NUMA system with 4x Intel
Xeon E7-4870 v2 CPUs @ 2.3 GHz with one terabyte of main
memory. Across all four CPUs, the system has 60 hardware
threads. In the experiments we also used all Hyper-Threads.

We used both synthetic as well as real-world graphs. The
synthetic graphs are Kronecker graphs [13] with the same
parameters that are used in the Graph500 benchmark. They
exhibit a structure similar to many large social networks.
Additionally, for validation we also use artificial graphs gener-
ated by the LDBC data generator [9]. The generated LDBC
graphs are designed to match the characteristics of real social
networks very closely. Our used real-world graphs are chosen
to cover different domains with various characteristic: the
twitter follower graph, the uk-2005 web crawl graph and
the hollywood-2011 graph describing who acted together
in movies. The uk-2005 and hollywood-2011 graph were
provided by the WebGraph project [7]. Table 1 lists the
properties of all graphs used in our experiments. For the
Kronecker graph we omit some of the in-between sizes as
they always grow by a factor of 2. The vertex counts only
consider vertices that have at least one neighbor. KG0 is
a special variation of the Kronecker graph that was used
in the evaluation of [14]; it was generated using an average
out-degree of 1024.

The listed memory size is based on using 32-bit vertex
identifiers and requiring 2 ∗ vertex_size = 8 bytes per edge.
To measure the performance of MS-BFS we use the source
code published on github1. For comparison with Beamer,
we used their implementation provided as part of the GAP
Benchmark Suite (GAPBS) [6]. We did not have access to an
implementation of Yasui et al. or iBFS; instead, we compare
to published numbers on a similar machine using the same
graph.

Our basic metric for comparison is the edge traversal rate
(GTEPS). The Graph500 specification defines the number
of traversed edges per source as number of input edges con-
tained in the connected component which the source belongs
to. Compared to the runtime which increases linearly with
the graph size, this metric it is more suitable to compare
performance across different graphs. In the MS-BFS paper,
the number of edges was calculated by summing up the
degrees of all vertices in the connected component. In the
official benchmark, however, each undirected edge is only
counted once. We use this method in our new measurements.
To compare the numbers in this paper with the number of
the MS-BFS paper, the other numbers have to be divided by
two. In order to give an intuition about the effort required
to analyze a specific graph we also show the time MS-PBFS
requires for processing 64 sources in Table 1.

5.1 Labeling Comparison
To evaluate the different labeling approaches, we ran both

MS-PBFS and SMS-PBFS using 120 threads on a scale 27
Kronecker graph with work stealing scheduling. The three
tested variants are random vertex labeling (random), degree-
ordered labeling (ordered), and our proposed striped vertex
labeling (striped). The average runtime per BFS iteration
for each scheme and algorithm is shown in Figure 8. Our re-

1https://github.com/mtodat/ms-bfs

MS−PBFS SMS−PBFS

0

50

100

150

0

200

400

600

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

Iteration

R
u
n
ti
m

e
 i
n
 m

s

Labeling

Ordered

Random

Striped

Figure 8: Runtime of BFS iterations under different
vertex labeling strategies using SMS-PBFS and MS-
PBFS.

MS−PBFS SMS−PBFS

0

5

10

15

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

Iteration

R
a
ti
o
 l
o
n
g
e
s
t
 t
o
 s

h
o
rt

e
s
t

w
o
rk

e
r

ru
n
ti
m

e

Labeling

Ordered

Random

Striped

Figure 9: Skew in worker runtimes per iteration
when running MS-PBFS and SMS-PBFS with dif-
ferent vertex labelings.

sults show that degree-ordered labeling exhibits significantly
better runtimes that random labeling for the MS-PBFS al-
gorithm. Especially in the most expensive third iteration,
the difference between the approaches is close to a factor of
two. This supports the results of existing work about graph
re-labeling[19].

In contrast, for our array-based parallel single-source SMS-
PBFS, random ordering exhibits better runtimes. Here, the
skew, described in Section 4, and its related problems show
their full impact. We evaluated this further in Figure 9 which
shows the runtime difference between the longest to the
shortest worker per iteration for all three labeling approaches.
We see that skew is a much larger problem for SMS-PBFS
than for MS-PBFS. Especially in the costly third iteration,
there is a significant difference—more than factor 15 for
degree-ordered—between worker runtimes per iteration. In
MS-PBFS skew is a smaller problem as a much larger number
of vertices is active in each iteration as there are so many
BFSs active at once. Our novel striped vertex ordering shows
the best overall runtimes and also balances the workload
well. It combines the benefits of degree-based and random
ordering in SMS-PBFS and MS-PBFS, while avoiding the
other labelings’ disadvantages. Similar to random labeling,
striped vertex ordering provides good skew resilience, and
like degree-ordering, it achieves very good cache locality.
Using SMS-BFS the overall runtimes per BFS were: 42ms
(striped), 86ms (ordered), 68ms (random).

5.2 Sequential Comparison
In this section, we analyze SMS-PBFS in a sequential

setting and compare it against Beamer et al.’s state-of-the-
art in sequential single-source BFSs. In addition to Beamer’s
GAPBS implementation, we also implemented two variants
of their BFS that use the same graph, data structure and

9

Name Nodes Edges Memory size MS-PBFS MS-PBFS MS-BFS MS-BFS 64 SMS-PBFS
(x106) (x106) (GB) (runtime per 64) (GTEPS) (GTEPS) (GTEPS) (GTEPS)

Kronecker 20 220 15.7 0.119 3.27 ms 307 160 4.44 56.2 (bit)
Kronecker 26 226 1,050 7.96 246 ms 274 65.8 2.23 58.9 (bit)
Kronecker 32 232 68,300 5q5 39,700 ms 110 failed (OOM) 0.845 76.7 (bit)
KG0 0.982 364 2.72 12.5ms 1860 241 11.2 110 (bit)
LDBC 100 1.61 102 0.764 24.4 ms 267 76.6 3.01 39.2 (byte)
LDBC 1000 12.4 1010 7.61 551 ms 118 45.5 1.30 83.2 (byte)
Hollywood-2011 1.99 114 0.860 49.8 ms 147 59.6 2.19 26.5 (byte)
UK-2005 39.5 783 5.98 2220 ms 22.6 13.2 0.773 4.96 (bit)
Twitter 41.7 1,200 9.11 934 ms 82.4 32.5 1.13 21.0 (bit)

Table 1: Graphs description and algorithm performance in GTEPS using 60 threads.

●

●

●
●

●

●

●

●

●
●

0.0

0.5

1.0

1.5

2.0

16 18 20 22 24 26

Number of vertices as power of 2

T
h
ro

u
g
h
p
u
t
in

 G
T

E
P

S

Algorithm

●
 Beamer
 (dense)

 Beamer
 (GAPBS)

 Beamer
 (sparse)

 SMS−PBFS
 (bit)

 SMS−PBFS
 (byte)

Figure 10: Performance of single-threaded BFS runs
over varying graph sizes

chunk skipping optimizations which we use for SMS-PBFS
(bit). In the first variant, the queues in the top-down phase
are backed by a sparse vector, and in the second variant we
used a dense bit array. Both variants use the same bottom-up
implementation.

Figure 10 shows the single-source BFSs throughput on a
range of Kronecker graphs. The measurements show that
for graphs with as few as 220 vertices, our SMS-PBFS is
already faster than Beamer et al.’s BFS. As the graph size
increases, the probability that the data associated with a
vertex is in the CPU cache decreases. There, our top-down
approach benefits from having fewer non-sequential data
accesses. On the other hand, our BFS has to iterate over all
vertices twice. At small graph sizes this overhead can not be
recouped as the reduction of random writes does not pay off
when the write locations are in the CPU cache. For larger
graph sizes, the improvement of SMS-PBFS over our Beamer
implementation is limited, as the algorithms only differ in
the top-down algorithms but a majority of the runtime in
each BFS is spent in the bottom-up phase.

5.3 Parallel Comparison
In this section we compare our (S)MS-PBFS algorithms

against the MS-BFS algorithm in a multi-threaded scenario.
Inspired by the Graph500 benchmark, we fix the size of a
batch for all algorithms to at most 64 sources. The MS-
BFS algorithm is sequential and can only utilize all cores by
running one algorithm instance per core. Thus, it requires
at least batch_size ∗ num_threads = 7, 680 sources to fully
utilize the machine. To minimize the influence of straggling
threads when executing MS-BFS we used three times as many
sources for all measurements. All algorithms have to analyze
the same set of source vertices that were randomly selected
from the graph. For MS-BFS, the sources are processed one
64-vertex batch at a time per CPU core. MS-PBFS can
saturate all compute resources with a single 64-vertex batch;

●

●

●

●

●

●
●

●

●
●

●
●

●

●

1

15

30

45

60

1 15 30 45 60 120

Number of threads
R

e
la

ti
ve

 s
p
e
e
d
u
p

Algorithm

● MS−BFS

 MS−PBFS

 MS−PBFS
 (one per socket))

 MS−PBFS
 (sequential)

 SMS−PBFS
 (byte)

Figure 11: Relative speedup as number of threads
increase in a 226 vertices Kronecker graph

it, thus, analyzes one batch at a time. SMS-PBFS analyzes
all sources one single source at a time, utilizing all cores.

5.3.1 Thread Count Scaling

To ensure that the amount of work is constant in the CPU
scaling experiments, we kept the number of sources fixed
even when running with fewer cores. The first 15 cores are
located on the first CPU socket, 16–30 on the second socket,
31–45 on the third and 46–60 on the fourth. Figure 11 shows
that MS-PBFS scales better than MS-BFS even though
the latter has no synchronization between the threads. MS-
PBFS (sequential) which uses the same optimizations as
MS-PBFS but is executed like MS-BFS with one BFS batch
per core exhibits the same limited scaling behavior for large
graphs. This contradicts the MS-BFS paper’s hypothesis that
multiple sequential instances always beat a parallel algorithm
as no synchronization is required. The explanation for this
can be found when analyzing the cache hit rates. With our
(S)MS-PBFS algorithms, the different CPU cores share large
portions of their working set, and, thus, can take advantage
of the sockets’ shared last level caches. In contrast, each
sequential MS-BFS mostly uses local data structures; only
the graph is shared. This diminishes CPU caches’ efficiency.

The scalability of around factor 45 for MS-PBFS and
factor 35 for SMS-PBFS using 60 threads is comparable
to the results reported by Yasui et al. [20] for their parallel
single-source BFS. This is a very good result especially as our
multi-source algorithm operates at a much higher throughput
of 274 GTEPS compared to their best reported result of
around 60 GTEPS on a similar machine in the Graph500
benchmark. The close results between the MS-PBFS (one
per socket) variant, where all data except for the graph is
completely local, and MS-PBFS show that our algorithm
is mostly resilient to NUMA effects and is not limited by
contention.

When analyzing the performance gains achieved by the

10

●

● ●
●

●

●
●

●
● ●

●
● ● ●

0

200

400

600

16 18 20 22 24 26 28 30 32

Number of vertices as power of 2

T
h

ro
u

g
h

p
u

t
in

 G
T

E
P

S ● MS−BFS

 MS−PBFS

 MS−PBFS
 (one per socket))

 MS−PBFS
 (sequential)

 SMS−PBFS
 (bit)

 SMS−PBFS
 (byte)

Figure 12: Throughput using 60 cores as graph size
increases

additional 60 Hyper-Threads, the difference between multi-
source and single-source processing is clearly visible. SMS-
PBFS is memory latency-bound and does not saturate the
memory bandwidth; thus, it can gain additional performance
by having more threads. The multi-source algorithms on the
other hand are already mostly memory-bound, and, thus,
they do not benefit from the additional threads.

5.3.2 Graph Size Scaling

Orthogonal to the thread count scaling experiment, we
also measured how the algorithms behave for various graph
sizes using Kronecker graphs. We use graph sizes from ap-
proximately 216 to 232 vertices and 1 million to 68 billion
edges, respectively. As the traversal speed should be indepen-
dent of the graph size, an ideal result would have constant
throughput. Our measured results are shown in Figure 12.
MS-BFS as well as the sequential MS-PBFS variant show a
continuous decline in performance as the graph size increases.
This can be explained with memory bottlenecks, as for larger
graph sizes a smaller faction of the graph resides in the CPU
cache, and more data has to be fetched from main memory.

In contrast, the parallel BFSs struggle at small graph
sizes. Their two biggest problems are contention and that
there is only very little work per iteration (on average less
than 1 ms runtime). The reason for the contention in very
small graphs is the high probability that in the top-down
phase multiple threads will try to update the same entry.
Furthermore, for small graphs, the constant overheads for
task creation, memory allocation, etc., have a relatively high
impact on the overall result.

Parallelization is much more important for large graph
sizes. Starting at 220 (around 1 million) vertices, MS-PBFS
manages to beat the MS-PBFS (sequential) implementation.
At this size, MS-PBFS requires 3.27ms for one batch of 64
sources. At larger sizes a decline in performance can be mea-
sured again, caused by a reduction in cache hit rates resulting
in memory bandwidth bottlenecks. SMS-PBFS maintains its
peak performance for a larger range of graph sizes, though
at a lower level. As it only operates on a single BFS, it
is more bound by memory latency in case of a cache miss
than by memory bandwidth. Other BFS approaches [2, 20]
also exhibit a similar drop in performance at larger scales.
The measurement for MS-BFS and MS-PBFS (sequential)
only include graphs up to scale 29, as at larger graph sizes
the available one terabyte of memory did not suffice to run
120 instances of the algorithms, demonstrating the severe
limitations of MS-BFS in a multi-threaded scenario.

In Table 1 we summarize the algorithms’ performance for
real world datasets. Additionally, we show the performance
when MS-BFS is only limited to processing 64 sources at a
time (MS-BFS 64) like MS-PBFS. The results show that in
this kind of use case the performance of MS-BFS is very low
as it can only utilize one CPU. Overall, our measurements
show that even if MS-BFS is given enough sources to utilize
all cores, MS-PBFS performs significantly better on large
graphs.

We also wanted to compare to the currently fastest parallel
single-source BFS by Yasui and fastest parallel multi-source
iBFS but did not have access to their implementations. As we
could evaluate our algorithms on the same synthetic graphs,
we instead compare to their published numbers. For Yasui et
al. we compare our SMS-PBFS to their most recent numbers
published on the Graph500 ranking. Their results in the
Graph500 ranking are based on a CPU that is about 20%
faster than ours but from the same CPU generation so they
should be comparable. Their result places them 67st overall,
1st single-machine (CPU-only), on the June 2016 ranking and
they achieve a throughput of 59.9 GTEPS compared to the
76.7 GTEPS demonstrated by our single-source SMS-PBFS
on the same scale 32 graph. For iBFS we use the numbers
from their paper, they do not use the default kronecker graph
generator settings but test on graphs with larger degrees. We
compare MS-PBFS against their algorithm on the KG0 graph
where they report their best performance. Using 64 threads,
the iBFS CPU implementation reaches 397 GTEPS, and their
GPU implementation 729 GTEPS. MS-PBFS reaches 1860
GTEPS on 120 threads showing a significant improvements
even when accounting for number of threads.

6. RELATED WORK
The closest work in the area of multi-source BFS algo-

rithms are MS-BFS [18] and the iBFS[14] which is designed
for GPUs. Compared to the first algorithm, our parallelized
approach using striped labeling significantly improves the
performance, and reduces the memory requirements. Fur-
thermore, MS-PBFS enables the use of multi-source BFS
in a wider setting by providing full performance also with
a limited number of sources. iBFS describes a parallelized
approach for GPUs which uses a sparse joint frontier queue
(JFQ) containing the active vertices for a iteration. By us-
ing special GPU voting instructions, it manages to avoid
queue contention on the GPU. However, those instructions
don’t have equivalents on mainstream CPU architectures.
Consequently, the CPU adaption of their algorithm exhibits
significantly lower performance than ours.

The work on parallel single-source algorithms primarily fo-
cuses on how to reduce the cost of insertion into the frontier
and next queues. Existing approaches span from using multi-
socket-optimized queues like FastForward [10], to batch inser-
tions and deletions [2], as well as to having a single queue per
NUMA node as it is used by the parallel Yasui BFS [20]. Yet,
all of these approaches have in common that they share a
single insertion point either at the global level or per NUMA
node. Even if organized at NUMA socket granularity there is
potentially a lot of contention, and the trend of having more
cores per CPU does not work in such approaches’ favor. The
work of Chhugani et al. [8] which also focuses on dynamic
load balancing has similar limitations as it only focuses on
distributing work inside each NUMA socket. Our analysis
shows that while this may be sufficient for sparse queue-based

11

algorithms, it would not provide scalability in array-based
algorithms.

7. CONCLUSION
In our work we presented the MS-PBFS and SMS-PBFS al-

gorithms that improve on the state-of-the art BFS algorithms
in several dimensions.

MS-PBFS is a parallel multi-source breadth-first search
that builds on MS-BFS’s principles of sharing redundant
traversals in concurrent BFSs in the same graph. In con-
trast to MS-BFS, our novel algorithm provides CPU scal-
ability even for a limited number of source vertices, fully
utilizing large NUMA systems with many CPU cores, while
consuming significantly less memory, and providing better
single-threaded performance. Our parallelization and NUMA
optimizations come at minimal runtime costs so that no
separate algorithms are necessary for sequential and parallel
processing, neither for NUMA and non-NUMA systems.

SMS-PBFS is a parallel single-source BFS that builds on
the ideas of MS-PBFS. Compared to existing state-of-the-
art single-source BFSs, our proposed SMS-PBFS algorithm
provides comparable scalability at much higher absolute
performance. Unlike other BFS algorithms, SMS-PBFS has
a simple algorithmic structure, requiring very few atomic
instructions and no complex lock or queue implementations.
Our novel striped vertex labeling allows more coarse-grained
task sizes while limiting the skew between task runtimes.
Striped vertex labeling can also be used to improve the
performance of other BFS algorithms.

8. ACKNOWLEDGMENTS
Manuel Then is a recipient of the Oracle External Research

Fellowship.

9. REFERENCES
[1] The Graph 500 Benchmark.

http://www.graph500.org/specifications. Accessed:
2016-09-09.

[2] V. Agarwal, F. Petrini, D. Pasetto, and D. A. Bader.
Scalable graph exploration on multicore processors. In
Proc. of the 22nd IEEE and ACM Supercomputing
Conference (SC10), SC ’10, pages 1–11. IEEE, 2010.

[3] L. A. N. Amaral, A. Scala, M. Barthélémy, and H. E.
Stanley. Classes of small-world networks. PNAS,
97(21), 2000.

[4] D. A. Bader, H. Meyerhenke, P. Sanders, and
D. Wagner, editors. Graph Partitioning and Graph
Clustering, volume 588 of Contemporary Mathematics.
American Mathematical Society, 2013.

[5] S. Beamer, K. Asanović, and D. Patterson.
Direction-optimizing breadth-first search. Scientific
Programming, 21(3-4):137–148, 2013.

[6] S. Beamer, K. Asanovic, and D. A. Patterson. The
GAP benchmark suite. CoRR, abs/1508.03619, 2015.

[7] P. Boldi and S. Vigna. The WebGraph framework I:
Compression techniques. In WWW ’04, pages 595–601,
2004.

[8] J. Chhugani, N. Satish, C. Kim, J. Sewall, and
P. Dubey. Fast and efficient graph traversal algorithm
for cpus: Maximizing single-node efficiency. In Parallel
Distributed Processing Symposium (IPDPS), 2012
IEEE 26th International, pages 378–389, May 2012.

[9] O. Erling, A. Averbuch, J. Larriba-Pey, H. Chafi,
A. Gubichev, A. Prat, M.-D. Pham, and P. Boncz. The
LDBC social network benchmark: Interactive workload.
In Proceedings of the 2015 ACM SIGMOD
International Conference on Management of Data,
SIGMOD ’15, pages 619–630. ACM, 2015.

[10] J. Giacomoni, T. Moseley, and M. Vachharajani.
Fastforward for efficient pipeline parallelism: A
cache-optimized concurrent lock-free queue. In
Proceedings of the 13th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming,
PPoPP ’08, pages 43–52. ACM, 2008.

[11] P. Gupta, A. Goel, J. Lin, A. Sharma, D. Wang, and
R. Zadeh. WTF: The Who to Follow Service at Twitter.
In WWW ’13, pages 505–514, 2013.

[12] S. Hong, T. Oguntebi, and K. Olukotun. Efficient
parallel graph exploration on multi-core cpu and gpu.
In Parallel Architectures and Compilation Techniques
(PACT), pages 78–88, Oct 2011.

[13] J. Leskovec, D. Chakrabarti, J. Kleinberg, C. Faloutsos,
and Z. Ghahramani. Kronecker graphs: An approach to
modeling networks. J. Mach. Learn. Res., 11:985–1042,
Mar. 2010.

[14] H. Liu, H. H. Huang, and Y. Hu. iBFS: Concurrent
breadth-first search on gpus. In Proceedings of the 2016
International Conference on Management of Data,
SIGMOD ’16, pages 403–416. ACM, 2016.

[15] Y. Low, D. Bickson, J. Gonzalez, C. Guestrin,
A. Kyrola, and J. M. Hellerstein. Distributed
GraphLab: A framework for machine learning and data
mining in the cloud. Proc. VLDB Endow.,
5(8):716–727, Apr. 2012.

[16] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert,
I. Horn, N. Leiser, and G. Czajkowski. Pregel: A
system for large-scale graph processing. In Proceedings
of the 2010 ACM SIGMOD International Conference
on Management of Data, SIGMOD ’10, pages 135–146.
ACM, 2010.

[17] H. Schweizer, M. Besta, and T. Hoefler. Evaluating the
cost of atomic operations on modern architectures. In
2015 International Conference on Parallel Architecture
and Compilation (PACT), pages 445–456, Oct 2015.

[18] M. Then, M. Kaufmann, F. Chirigati, T.-A. Hoang-Vu,
K. Pham, A. Kemper, T. Neumann, and H. T. Vo. The
more the merrier: Efficient multi-source graph traversal.
Proceedings of the VLDB Endowment, 8(4), 2014.

[19] Y. Yasui and K. Fujisawa. Fast and scalable
NUMA-based thread parallel breadth-first search. In
High Performance Computing & Simulation (HPCS),
pages 377–385. IEEE, 2015.

[20] Y. Yasui, K. Fujisawa, and Y. Sato. Fast and
energy-efficient breadth-first search on a single NUMA
system. In Proceedings of the 29th International
Conference on Supercomputing, ISC 2014, pages
365–381. Springer-Verlag New York, Inc., 2014.

[21] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma,
M. McCauley, M. J. Franklin, S. Shenker, and I. Stoica.
Resilient distributed datasets: A fault-tolerant
abstraction for in-memory cluster computing. In
Proceedings of the 9th USENIX Conference on
Networked Systems Design and Implementation,
NSDI’12, pages 2–2. USENIX Association, 2012.

12

	Research Papers
	Parallel Array-Based Single- and Multi-Source Breadth First Searches on Large Dense GraphsMoritz Kaufmann, Manuel Then, Alfons Kemper, Thomas Neumann

