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ABSTRACT

Estimating all pairs of distances among a set of objects
has wide applicability in various computational problems
in databases, machine learning, and statistics. This work
presents a probabilistic framework for estimating all pair dis-
tances through crowdsourcing, where the human workers are
involved to provide distance between some object pairs. Since
the workers are subject to error, their responses are consid-
ered with a probabilistic interpretation. In particular, the
framework comprises of three problems : (1) Given mul-
tiple feedback on an object pair, how do we combine and
aggregate those feedback and create a probability distribu-
tion of the distance? (2) Since the number of possible pairs
is quadratic in the number of objects, how do we estimate,
from the known feedback for a small numbers of object pairs,
the unknown distances among all other object pairs? For
this problem, we leverage the metric property of distance,
in particular, the triangle inequality property in a probabilis-
tic settings. (3) Finally, how do we improve our estimate by
soliciting additional feedback from the crowd? For all three
problems, we present principled modeling and solutions. We
experimentally evaluate our proposed framework by involv-
ing multiple real-world and large scale synthetic data, by
enlisting workers from a crowdsourcing platform.

1. INTRODUCTION
In this paper we investigate the following problem: how to

obtain pairwise distance values between a given set of objects
by using feedback from a crowdsourcing platform? This prob-
lem lies at the core of a plethora of computational problems
in databases, machine learning, and statistics, such as top-
k query processing, indexing, clustering, and classification
problems. We consider an approach where feedback from the
crowd is solicited in the form of simple pair-wise comparison
questions. As an example, given two images (a, b), workers
are asked to rate (in a scale of [0, 1]) how dissimilar these
two images are. The worker response may be interpreted as
the distance between the two images. Although the number
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of pairwise questions is quadratic in the number of objects,
the main idea in this paper is to only involve the workers in
answering a small number of key pair-wise questions, and to
estimate the remaining pair-wise distances using the metric
properties of the distance function, in particular the triangle
inequality property [19] - a property that is true for distance
functions that arise in many common applications.
Our iterative crowdsourcing distance estimation frame-

work has three key probabilistic components. When we
solicit distance information for a specific object pair from
multiple workers, we recognize that due to the subjectivity
of the task involved, workers may disagree on their feedback,
or may even be uncertain about their own estimate. Thus we
develop a probabilistic model for aggregating multiple work-
ers feedback to create a single probability distribution of the
distance learned about that object pair. Next, given that we
have learned the distance distributions of several object pairs
from the crowd, we estimate the probability distributions of
the remaining pairwise distances by leveraging the trian-
gle inequality property of the distances. Finally, if there is
still considerable “uncertainty” in the learned/estimated dis-
tances and we have an opportunity to solicit additional feed-
back, we investigate which object pair should we choose to so-
licit the next feedback on. This iterative procedure is contin-
ued until all pair-wise distances have been learned/estimated
with a desired target certainty (or alternatively, the budget
for soliciting feedback from the crowd has been exhausted).

Novelty: There have been a few prior works that have
studied computational problems using crowdsourcing that
require distance computations. For example, entity resolu-
tion [25, 26, 5] problems investigate entity disambiguation,
and [22] study top-k and clustering problems in a crowd-
sourced settings. However, these works have developed their
formalism and solutions tightly knit to their specific appli-
cations of interest, and do not offer any obvious extension
to solve other distance-based applications. For example,the
work in [24] is focused on determining whether two objects
are the same or not, and not on the broader notion of quan-
tifying the amount of distance between them. In contrast,
our proposed framework offers a unified solution to all these
computational problems, as they all can leverage our dis-
tance estimation framework to obtain the distance between
any pair of objects. Please note that once all pair distances
are computed, finding the top-k objects, or finding the clus-
ters of the objects is easier to compute. Hence, our problem
is more general than the above mentioned body of works.
We discuss related work more thoroughly in Section 7.

Challenges and Technical Highlights: There are sub-
stantial challenges in formalizing and solving the key prob-
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lems that arise in our three probabilistic components. Per-
haps the most straightforward is the first component, i.e.,
how to aggregate the feedbacks received from multiple work-
ers into a single pdf that describes the distance between two
objects. There has been several prior works on reconcil-
ing the answers from multiple workers, which range from
simple majority voting to sophisticated matrix factorization
techniques [7, 14] on binary data, or opinion pooling [12, 8,
4] on categorical data. However these methods are largely
focused on aggregating Boolean/categorical feedback (e.g.,
“are these two entities the same?”), whereas in our case we
need to merge the potentially diverging and uncertain nu-
meric (distance) feedback from multiple workers into a single
probability distribution.

The most challenging aspect of our framework is the sec-
ond component. Knowing distance distributions of some of
the object pairs from the crowd, we have to estimate the
probability distributions of the distances of the remaining
object pairs, by leveraging the metric property of the dis-
tance. While the intuitive idea is simple (e.g., “if a is close to
b, and b is close to c, then a and c cannot be too far apart”),
the problem is challenging because (a) the known distances
themselves are distributions rather than deterministic quan-
tities, and (b) the metric property imposes interdependence
between all the pairwise distances in a complex manner. In
fact, since there are n(n − 1)/2 pair-wise distances (where
n is the number of objects), each such distance can be as-
sumed to be a random variable such that all distances are
jointly distributed in a high dimensional (n(n− 1)/2) space
with interdependencies governed by the triangle inequality.
In principle, this joint distribution must be first computed,
and then the (marginal) pdfs computed as estimates of the
unknown distances. The unknown pairs cannot be estimated
in isolation, as a small change in one pdf is likely to disrupt
the joint distribution and the triangle inequality property
impacting the other pdfs.

We argue that in certain cases, computing the joint distri-
bution may require us to solve a mixture of over and under-
constrained nonlinear optimization system, whereas in other
cases it may reduce to solving an under-constrained system
with many feasible solutions ([2]). For the former cases, we
formalize the optimization problem as a combination of least
squares and maximum entropy formulation and present al-
gorithm LS-MaxEnt-CG that adopts a conjugate gradient ap-
proach [27, 10] to iteratively compute the joint distribution.
For the latter cases, the problem reduces to that of max-
imizing entropy, and we present an algorithm MaxEnt-IPS

that leverages the idea of iterative proportional scaling [23,
21] to efficiently converge to an optimal solution. Both of
these solutions, while ideal, only work for small to moderate
problem instances since they are exponential in the dimen-
sionality of the joint distribution being estimated. Conse-
quently, we also present a heuristic solution Tri-Exp that
scales much better and can handle larger problem instances.

In the third component, our task is to decide, from among
the remaining unknown object pairs, which one to select for
soliciting distance feedback from the crowd. Intuitively, the
selected object pair should be the one whose distance (after
being learned from the crowd) is likely to reduce the “over-
all” uncertainty of the remaining unknown distance pdfs the
most, i.e., minimize the aggregated variance of the remaining
pdfs. To solve this problem in a meaningful way, it is crit-
ical to be able to model how workers are likely to respond
to a solicitation, because their anticipated feedback needs to

be taken into account for selecting the most effective pair.
Finally, we also recognize that this approach of resolving
one object pair at a time by the crowd may be sub-optimal
and slow to converge. Thus, we also describe an extension
where we “look ahead” and select multiple promising unre-
solved object pairs, and engage the crowd in simultaneously
providing feedback for these pairs.

Summary of Contributions: In summary, we make the
following contributions in this paper:

• We consider the novel problem of all-pairs distance es-
timation via crowdsourcing in a probabilistic settings.

• We identify three key sub-components of our itera-
tive framework, and present formal definitions of prob-
lems and the solutions for each of the component (Sec-
tions 2,3,4,5).

• We experimentally evaluate our framework using both
real world and synthetic datasets to demonstrate its
effectiveness (Section 6).

2. DATA MODEL AND PROBLEM FORMU-

LATIONS
We first describe the data model and then formalize the

problems considered in this paper.

2.1 Data Model

Objects and Actual Distances: We are given a set O
of n objects, with no two objects being the same. Objects
could be images, restaurants, movies, etc. Let d(i, j) be the
actual distance between objects i and j. Assume that all dis-
tances are normalized within the interval [0, 1], where larger
values denote larger distances, and that metric properties
are satisfied, in particular the triangle inequality [19] or re-
laxed triangle inequality [9] property, as we define below. We
are interested in using this property for learning all the

(

n

2

)

pairs of distances.

Triangle Inequality Property: For every three objects
(i, j, k) that comprise a triangle △i,j,k, d(i, j) ≤ d(i, k) +
d(k, j) and d(i, j) ≥

∣

∣d(i, k)− d(k, j)
∣

∣.

To lift the strict notion of triangle inequality, one can con-
sider relaxed triangle inequality, that assumes d(i, j) ≤ c.(d(i, k)+
d(k, j)), where c is a known constant that is not too large.
Indeed, the relaxed triangle inequality [9] property allows us
to effectively incorporate subjective human feedback from
crowd workers.

Question: A question Q(i, j) to a worker requests feedback
on her estimate of d(i, j). The same question Q is directed
to m different workers in the available workers pool, in order
to gather multiple feedback.

Feedback: Let f(i, j) represents a worker’s feedback for
the distance. The worker could either give a single value,
or a range/distribution of values (if she is uncertain about
the distance).1 Even if the worker gives a single value, if
it is known from past history of her performance that this
worker is prone to making errors and is only correct with a
certain probability p (say, 80%) (referred to as correctness

1The latter type of feedback is common in experts opinion
aggregation problems [13], where a worker has partial knowl-
edge on a particular topic and her answer reflects that with
a distribution over the possible answers.
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Notation Interpretation
O set of n objects
d(i, j) distance between objects i and j
Q(i, j) asking distance on an object pair

(i, j) in [0− 1] scale
f(i, j) feedback on object pair (i, j)
△i,j,k triangle formed by objects (i, j, k)
dk(i, j), du(i, j) known and unknown distance be-

tween an object pair (i, j), respec-
tively

Dk, Du known and unknown set of dis-
tances, respectively

D distance vector
Pr(D) joint probability distribution of D
W vector representing all buckets of

the multi-dimensional histogram of
Pr(D)

m m different feedbacks on the same
question

A a Boolean matrix of constraints

Table 1: Notations

probability), then her single-value feedback can be converted
to a more general probability distribution (pdf) over the
range [0, 1] (e.g.,using techniques described in Section 3).
We henceforth assume that the “raw” feedback of the worker
has been appropriately processed into a pdf over [0, 1].

Known and Unknown Distances: Once a distance ques-
tion Q(i, j) has been answered by multiple workers, their
respective feedbacks needs to be aggregated into a single pdf
representing how the crowd has estimated the distance be-
tween i and j. Exactly how this aggregation is done is the
first of the three key challenges of this paper, and is de-
scribed in detail in Section 3. We denote the random vari-
able described by this pdf as dk(i, j), where the superscript
k denotes that the distance is now “known”. Note that it
still may not be the actual deterministic distance d(i, j), un-
less the crowd’s responses are completely error free, which
is often not the case in practice.

Of the
(

n

2

)

distances, let Dk represent the set of known
distances, i.e., the ones for which feedback has been ob-
tained from the crowd. Let Du represent the remaining set
of “unknown” distances, i.e., distances between those pair of
objects for which feedback has not been explicitly obtained
from the crowd. Consider du(i, j) ∈ Du. Even though no
information about this distance has yet been solicited, some
distributional information about this distance can be de-
rived since it depends on other pairwise distances in a com-
plex manner (due to the triangle inequality property). We
discuss this issue next.

Joint Distribution of All Pairs Distances: Consider
the set of all distances Dk ∪ Du. We may view this set as
a distance vector D of length

(

n

2

)

, whose every entry is a
random variable representing the distance between the re-
spective two objects (i, j). The space of all instances of D

is [0, 1](
n

2
), however since the

(

n

2

)

distances are interdepen-
dent upon each other due to the metric properties, the valid
instances are those that satisfy the triangle property, i.e.,
for the triangle △i,j,k defined by any three objects (i, j, k),
the three corresponding distances should satisfy the triangle
inequality.

Edges #Feedback Valuesሺ࢏, ሻ࢐ 1 0.55

2 0.8

3 0.6ሺ࢐, ሻ࢑ 1 0.1

2 0.05

3 0.1ሺ࢏, ሻ࢑ 1 0.09

2 0.12

3 ,࢏0.15 ࢒ , ,࢐ ࢒ , ሺ࢑, ሻ࢒ <no feedback> Needs 

estimation

Known 

Unknown

݈݇
j�

(a) Illustration of Example 1݈݇
j�

?
?

?

0.750.25

1.0

0.750.25

1.0

0.750.25

1.0

0.0
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(b) Distances as Distri-
butions (Histograms with
ρ = 0.5)

Figure 1: Illustrative Example.

Let Pr(D) represent the joint probability distribution of
D. Our task is to estimate Pr(D) such that the marginal
distribution for a known random variable dk(i, j) should cor-
respond to the pdf learned from the crowd. We note that
once we have an accurate estimation of Pr(D), we can get
estimates of the distributions of the unknown random vari-
ables du(i, j) by computing their marginals. In the next
subsection we formalize the problems considered in this pa-
per.
Table 1 summarizes the notations used in the paper.

Example 1. Image indexing for K-nearest neighbor queries:
Our proposed framework is apt to process K-nearest neigh-
bor queries over an image database, where, given a query
image, the objective is to obtain an ordered list of images
from the database, ordered by how closely they match the
query image. To handle such queries faster, one potential
avenue is to pre-process the image database and create an
index that will cluster the images according to their distance
among themselves. Then, as an example, if we have found
that a query image I is far from a database image i and
and if the indexes inform us that another image j is close
enough to i, then, we may never need to actually compute
the distance between I and j.

With such an application in mind, consider a toy image
database in Figure 1(a) with n = 4 images (i, j, k, l), where
our eventual goal is to find the distances between all pairs of
images. Assume that out of six possible pairs of distances,
three are known: (i, j), (j, k), and (i, k). I.e., for each of
these pairs, we have solicited feedback from several workers
in the crowd, and aggregated the feedbacks to obtain a single
probability distribution to describe the distance. The dis-
tances of the remaining three pairs are unknown and need
to be estimated, again as probability distributions. Further-
more, if we need to solicit further feedback on a question,
i.e., get the crowd to provide distance for an unknown pair,
we intend to find what is the best question (best pair) to ask.
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2.2 Problem Formulations
Recall from Section 1 that the iterative distance estima-

tion framework involves three probabilistic components, which
gives rise to three problems that need to be solved: (a) how
to aggregate feedbacks from multiple workers for a specific
distance question, (b) given some of the learned distances,
how to estimate the remaining unknown distances, and (c)
which object pair to select next for soliciting feedback from
the crowd. In the remainder of this section, we provide for-
mal definitions of these problems, and offer some insights
into their complexities.

2.2.1 Problem 1: Aggregation of Workers Feedback
for a Specific Object Pair

The first problem may be specified as follows:

Problem 1. Given a set of m feedbacks for the distance
question Q(i, j), where each feedback could be a pdf, aggre-
gate those feedback to create a single pdf for the random
variable dk(i, j).

Using Example 1, this is akin to aggregating three dif-
ferent feedbacks from three different workers to compute
dk(i, j).

2.2.2 Problem 2: Estimation of Unknown Distances

In this problem we need to leverage the known aggre-
gated distances in Dk to estimate the remaining unknown
distances Du. Obviously, if the distances are completely ar-
bitrary, the unknown distances cannot be computed from
the known distances. However, if the distances are metrics,
in particular satisfying the triangle inequality property, then
this property can be leveraged in making better estimates of
the unknown distances. Many well known distances are met-
ric, such as, ℓ2, ℓ1, ℓ∞, while other popular distances such as,
Jaccard distance and Cosine distance could be transformed
to metrics. For us, the challenge is to investigate how this
property can be used in the case when the distances are
probability distributions rather than fixed deterministic val-
ues.

Recall that D is a random vector representing all the
(

n

2

)

distances, and Pr(D) represents the joint distribution of
D. We now describe some important properties that Pr(D)
should possess.

The space of all instances of D, i.e., [0, 1](
n

2
), may be di-

vided into two as follows: (a) Valid instances, i.e., any in-
stance of D such that all triangles △i,j,k satisfy the triangle
inequality, and (b) Invalid instances, i.e., any instance of D
such that there exists a triangle △i,j,k that does not satisfy
the triangle inequality. Thus Pr(D) should be a function
constrained such that the cumulative probability mass over
all valid (respectively invalid) instances of D should be 1
(respectively 0).

Additionally, Pr(D) should be constrained such that the
marginal distributions corresponding to the individual ran-
dom variables in Dk (i.e. the known distances) should agree
with the corresponding distance pdfs learned from the crowd.
However, this constraint may not be always possible to sat-
isfy, as crowd feedback is inherently an error-prone human
activity, which can result in inconsistent feedback that vi-
olates the triangle inequality. Thus our task will be to es-
timate Pr(D) such that the marginal distributions corre-
sponding to individual random variables in Dk are “as close
as possible” to the pdfs learned from the crowd.

Once such a Pr(D) has been constructed, the pdfs of the
unknown distances can estimated by computing the marginal
distributions of each variable in Du.
In the rest of this subsection, we provide more details of

the problem formulation.

Discretization of the pdfs using Histograms: For com-
putational convenience, for the rest of the paper we assume
that (single or multi-dimensional) probability distributions
are represented as discrete histograms, as is common in
databases [17]. In particular, we assume that the [0, 1] inter-
val is discretized into equi-width intervals of width ρ (where
ρ is a predefined parameter). A r-dimensional pdf is thus
represented by a r-dimensional histogram with ( 1

ρ
)
r
buck-

ets. Each bucket contains a probability mass representing
the probability of occurrence of its center value, and the sum
of the probabilities of all buckets equals 1.
For the running example in Figure 1(a), we use ρ = 0.5.

Thus a one-dimensional pdf is represented by a 2-bucket
histogram, where the first bucket is between [0 − 0.5] with
center at 0.25 and the second bucket is [0.5− 1.0] with cen-
ter at 0.75. Figure 1(b) of the running example shows how
each known distance (known edge) is represented as a one-
dimensional histogram after discretizing and aggregating in-
puts from multiple users, where the feedback values are re-
placed by the corresponding bucket centers (we describe de-
tails of our techniques for input aggregation, i.e., Problem
1, in Section 3).

Estimating Pr(D): Once we have the histograms for each
individual known edge, the joint distribution Pr(D) needs to

be estimated as a multi-dimensional histogram with ( 1
ρ
)(

n

2
)

buckets. Our task is to estimate the probability mass of
each of these buckets. Using the running example, there are
26 buckets, whose centers range from [0.25, 0.25, 0.25, 0.25,
0.25, 0.25] to [0.75, 0.75, 0.75, 0.75, 0.75, 0.75]. Computing
the probability mass of a specific bucket, e.g.,
Pr(0.25, 0.27, 0.25, 0.25, 0.25, 0.75), is equivalent of comput-
ing the probability of the simultaneous events d(i, j) = 0.25
& d(j, k) = 0.27 & d(i, k) = 0.25 & d(i, l) = 0.25 & d(k, l) =
0.25 & d(j, l) = 0.75. The computation of Pr(D) can be

modeled as a linear system with ( 1
ρ
)(

n

2
) unknowns, where

each unknown represents the probability mass of a bucket.
These unknowns have to satisfy three types of linear con-
straints:

(1) Constraints imposed by the known pdfs: Pr(D) should be
such that its marginal for any known distance dk(i, j) should
satisfy the corresponding one-dimensional pdf learned from
the crowd. Thus, each bucket of each known marginal pdf
will generate a linear constraint. In our running example, a
one-dimensional bucket such as Pr(d(i, k) = 0.25) will gen-
erate a linear equation of the form

∑

Pr(∗, ∗, 0.25, ∗, ∗, ∗) =
Pr(d(i, k) = 0.25).

(2) Constraints due to triangle inequality: Some of the buck-
ets in the joint distribution must have zero probability mass
if they violate triangle inequality constraints. In our run-
ning example, consider any of the 8 bucket of the form
(0.75, 0.25, 0.25, ∗, ∗, ∗). The probability mass of each such
bucket has to be set to 0, since d(i, j) = 0.75, d(j, k) = 0.25
and d(i, k) = 0.25 does not satisfy the triangle inequality
(this happens irrespective of any combination of the values
for the remaining three edges, hence they are represented as
‘*’).

(3) Probability axiom constraint: A final constraint requires
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that the sum of all the buckets of the joint distribution
adds up to 1. In our running example, this implies that
Pr(0.25, 0.25, 0.25, 0.25, 0.25, 0.25)+Pr(0.25, 0.25, 0.25, 0.25,
0.25, 0.75)+ . . .+ Pr(0.75, 0.75, 0.75, 0.75, 0.75, 0.75) = 1.

If W represents the vector of ( 1
ρ
)(

n

2
) unknowns, and M

represents the set of constraints, then the linear system may
be expressed as AW = b, where A is a Boolean matrix of

size |M | × ( 1
ρ
)(

n

2
), and b is a vector of length |M |. Interest-

ingly, as the following discussion shows, solving this linear
system is not a straightforward task.

Scenario 1: Over-Constrained Case: In general, an
over-constrained linear system AW = b is one which has
no feasible solution [15]. In our case, it is indeed possible
that the marginal distributions corresponding to the individ-
ual random variables in Dk (i.e. the known distances) that
are learned from the crowd gives rise to an over-constrained
scenario. This is because crowd feedback is inherently an
error-prone human activity, which can result in inconsistent
feedback that violates the triangle inequality. For example,
△i,j,k in Example 1 has only one deterministic instance with
edge weights d(i, j) = 0.75, d(j, k) = 0.25 and d(i, k) = 0.25.
Clearly, △i,j,k does not satisfy the triangle inequality, since
d(i, j) > d(i, k) + d(j, k). Hence, there is no valid joint dis-
tribution Pr(D) which can estimate the known pdfs.In such
cases, we estimate Pr(D) such that the marginal distribu-
tions corresponding to individual random variables in Dk

are “as close as possible” (using least squares principle) to
the pdfs learned from the crowd. More formally, given A
and b, we estimate W such that ||AW−b||2 is minimized.

Scenario 2: Under-Constrained Case: In general, an
under-constrained linear system AW=b is one which has
multiple feasible solutions [15]. In our case, while esti-
mating W, we may also encounter under-constrained sce-
narios. Using Example 1 and considering triangle △i,j,l,
we note that any of the following solutions are feasible:
d(i, l) = 0.75, d(l, j) = 0.75, or d(i, l) = 0.75, d(l, j) = 0.25,
or d(i, l) = 0.25, d(l, j) = 0.75. In such cases, maximum
entropy principles [23] are used to choose a solution that is
consistent with all the constraints but otherwise is as uni-
form as possible. More formally, the objective is to solve
the linear system AW=b that maximizes the entropy of the
joint distribution −∑

w∈W
Pr(w) logPr(w).

Scenario 3: Combined Case: Since our problem in-
stances may involve both over and under-constrained sce-
narios, we unify both into a single minimization problem
using a weighted linear combination, where the weight λ can
be used to tune the solution to ensure better least square or
higher uniformity. Our final problem is described as follows:

Problem 2. Estimate the joint distribution vector W such
that f(W) = λ×||AW−b||2+(1−λ)×

∑

w∈W
Pr(w) logPr(w)

is minimized.

Before we move to our next problem definition, we point
out an interesting issue. The exponential size of Problem 2
(the number of buckets in the multi-dimensional histogram is
intractably large for most real-world instances) suggests that
a complete solution of Problem 2 is prohibitive. Fortunately,
we observe that computing the joint distribution is merely
a intermediate (and not strictly necessary) objective - our
eventual objective is to estimate the one-dimensional pdfs
of the unknown distances du(i, j). This issue is discussed in
more detail in Section 4, and in particular we present heuris-
tics to directly compute the unknown one-dimensional pdfs

without having to compute the intermediate joint distribu-
tion.

2.2.3 Problem 3: Asking the Next Best Question

Recall that our overall approach is an iterative process. If
we have the need to solicit further feedback from the crowd,
we have to select an object pair from Du, as human work-
ers have not yet been involved in providing feedback about
such pairs. Our objective is to select the most promising
pair, i.e., that is most likely to reduce the “uncertainty” of
the remaining unknown distances the most. We measure
uncertainty by aggregating the variances of the remaining
unknown distance pdfs (the variance of du(i, j) with mean
µ is measured as σ2

du(i,j) =
∑

∀q pq ∗ (q − µ)2).

Problem 3. From the set Du of the candidate object pairs,
choose the next best question Q(i, j) to solicit feedback from
the human workers, such that, upon receiving the feedback,
the aggregated variance over the remaining unknown dis-
tances is minimized.

Aggregated variance, AggrVar is formalized in one of the
two natural ways, average variance or largest variance:
(1) Average variance over the remaining unknown distances:

∑

σ2
du(i′,j′)

|Du| − 1
, du(i′, j′) ∈ {Du − du(i, j)}. (1)

(2) Largest variance over the remaining unknown distances:

max
du(i′,j′)

σ2
du(i′,j′), d

u(i′, j′) ∈ {Du − du(i, j)}. (2)

Considering Example 1, this problem will seek to choose
the next best question (i.e., edge or object pair) from Du =
{(i, l), (j, l), (k, l)}.

3. PROBLEM 1: AGGREGATION OF WORK-

ERS FEEDBACK
In this section, we describe our proposed solution Conv-

Inp-Aggr of aggregating multiple feedbacks on a single ob-
ject pair (i.e., an edge).
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Figure 2: Worker Feedback Aggregation
In general, given a set of m different feedbacks

f1(i, j), f2(i, j), . . . fm(i, j), where each feedback is a ran-
dom variable describing distance on an object pair (i, j),
such that the set of random variables are independently dis-
tributed, our objective is to define a new random variable
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whose distribution represents the average of the underlying

input pdfs, i.e., pdf of f1(i,j)+f2(i,j)+...+fm(i,j)
m

. The inde-
pendence assumption allows us to use the prior technique of
sum-convolution [1] to obtain the sum of the input pdfs and
then averaging that convolved pdf to obtain the average.

Algorithm 1 Conv-Inp-Aggr

1: Input: Set of m feedbacks for (i, j).
2: Perform a sequence of m− 1 Sum-convolutions over the

feedback pdfs.
3: Calculate dk(i, j) by re-calibrating the resultant pdf of

previous step into pre-specified adjusted range. This
step require averaging over the bucket values and real-
locate the probability masses accordingly.

4: return dk(i, j)

We illustrate this approach using the first two feedbacks
for the pair (i, j) in our running example in Figure 1(a).
The first worker’s feedback (denoted as f1(i, j)) of 0.55 is
converted into a pdf. This is shown in Figure 2(a) as a 4-
bucket histogram (i.e., with ρ = 0.25, buckets with bound-
aries [0−0.25], [0.25−0.5], [0.5−0.75], [0.75−1.0], and centers
at 0.125, 0.375, 0.625, 0.875 respectively). As the feedback
value 0.55 is in [0.5−0.75], we can assign a probability mass
of 1 to this bucket, and 0 to all other buckets. However,
if we have prior information that the worker is only correct
80% of the time (correctness probability p = 0.8), we can as-
sign a probability mass of 0.8 to the bucket [0.5− 0.75], and
distribute the remaining probability mass uniformly among
the remaining three buckets. This latter approach is used
to generate the pdf illustrated in Figure 2(a). Similarly,
Figure 2(b) shows the pdf for feedback 2 of (i, j).
The sum-convolution of these two pdfs is presented in Fig-

ure 2(c). Since the centers of the buckets of each of the indi-
vidual pdf are between [0.125, 0.875], their sum can be any
value between [0.25, 1.75]. For each discrete value x between
[0.25, 1.75], the probability of f1(i, j)+f(2(i, j) equal to x is
calculated by computing the joint probability of f1(i, j) = x′

and f2(i, j) = x”, such that, x′ + x” = x.
With m = 2 feedbacks, the bucket values are then reas-

signed to the centers as follows: 0.25 → 0.125, 0.5 → 0.25,
. . ., 1.75 → 0.875. After this is done, if we have a trans-
formed bucket center with non-zero probability that does
not correspond to any of the input buckets, then the mass
of that bucket is redistributed to its closest bucket. When
two buckets are equally close, the mass is equally divided
between the two buckets. As an example, since 1.0 → 0.5
after averaging, but 0.5 does not correspond to any bucket
center , the probability mass of Pr(f1(i, j) + f2(i, j) = 1.0)
gets uniformly split between its two closest centers 0.375 and
0.625. The resultant distribution is given in Figure 2(d).
Figure 1(b) shows the aggregation results for (i, j) of Fig-

ure 1(a) with worker being completely accurate (p = 1.0)
and with ρ = 0.5.
Running Time: If each pdf is approximated using an

equi-width histogram of width ρ, the time to perform aver-
age convolution involvingm different pdfs is O(m×1/ρ2) [1].

4. PROBLEM 2: ESTIMATION OF UNKNOWN

DISTANCES
In this section, we present our proposed solutions of the

problem 2- i.e., how to estimate the distance of the unknown

object pairs from the given known distances. Using Ex-
ample 1, this step is to estimate three unknown distances
Du = {(i, l), (j, l), (k, l)}, by leveraging the three known dis-
tances. We present two alternative solutions - an optimal
solution by computing joint distribution that is exponential
to the number of object pair

(

n

2

)

, and a much faster heuristic
alternative.

4.1 Algorithms for Optimal Solution
Recall our proposed formulation in Section 2.2 and note

that the optimal solution of computing the unknown dis-
tances is to first produce a joint distribution Pr(D) on a
high-dimensional space over all

(

n

2

)

object pairs. This is due
to our underlying abstraction that assumes that all objects
are connected to each other which gives rise to a complete
graph - hence the distribution of an unknown edge can not
simply be learned in isolation. Once the joint distribution is
obtained, the unknown pdfs are to be computed as marginals
from the joint distribution. We investigate and design algo-
rithms for the following two scenarios:

(1) As demonstrated in Example 1, our problem can unfor-
tunately be both over as well as under-constrained. In fact,
when the known pdfs are inconsistent (i.e., do not satisfy
triangle inequality), there may not be any feasible solution
to compute Pr(D) that satisfies all the known pdfs. At the
same time, a part of our solution space may still be under-
constrained, especially the part that involves the unknown
pdfs where multiple feasible solutions may exist.

(2) For the special case when the known pdfs are consistent,
the scenario is merely under-constrained and may have mul-
tiple feasible solutions, as we describe in Section 4.1.2.

4.1.1 Combined Case

For this scenario, the problem of computing the joint dis-
tribution is formalized as an optimization problem (Prob-
lem 2) with the objective to minimize a weighted linear
combination of least square and negative entropy (notice
−Pr(w) logPr(w) is the entropy), i.e., f(W) = α×||AW−
b||2 + β ×∑

w∈W
Pr(w) logPr(w) is to be minimized. The

first part of the formulation is designed for the over-constrained
settings, i.e., we satisfy the known pdfs as closely as possi-
ble if there is no feasible solution, whereas the second part
of the formulation is to handle under-constrained nature of
the problem through maximum entropy modeling that will
choose the joint distribution model that is consistent with
all the constraints but otherwise is as uniform as possible.
From the joint distribution Pr(D), we obtain the unknown
distance pdfs by computing appropriate marginals.

Lemma 1. f(W) is convex.

Proof. (Sketch) It can be shown that the linear aggre-
gation of two convex functions is always convex [3], which
proves the above lemma.

Algorithm LS-MaxEnt-CG: Based on Lemma 1 f(W) is
convex. We propose Algorithm LS-MaxEnt-CG, by appropri-
ately adapting nonlinear conjugate gradient algorithms [27,
10] that are popular iterative algorithms to solve such non-
linear convex optimization problems. The overall pseudo-
code is presented below in Algorithm 2.
Using Example 1 with ρ = 0.5, the joint distribution pro-

duces the probability for each of the 26 buckets that sum
up to 1. From this joint distribution, the marginal distribu-
tions can be computed for the three unknown edges. (i, l) :
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Algorithm 2 LS-MaxEnt-CG

1: Input: matrix A, constraint vector b, vector W with
1
ρ

(n
2
) unknown variables, tolerance error η.

2: Initialize W with the steepest direction in the first iter-
ation ∆W0 = −∇Wf(W0)

3: In the i-th iteration, compute β′
i using Fetcher-Reeves

method [11].
4: Update the conjugate direction: si = ∆Wi + β′

isi−1.
5: Perform a line search to obtain α′

i, α
′
i = argmin

α′

f(Wi+

α′si).
6: Update the position: Wi+1 = Wi + α′

isi
7: Repeat Steps 3− 7 to until the error ≤ η.
8: return f(W)

[0.25 : 0.366, 0.75 : 0.634],(j, l) : [0.25 : 0.366, 0.75 : 0.634],
(k, l) : [0.25 : 0.366, 0.75 : 0.634].

Running Time: It has been shown in [10] that conjugate
gradient has a running time complexity of O(m′√κ), where
m′ is the number of non-zero entries in the matrix A and κ
is the number of iteration before convergence. However, in
our case, as described in Section 2.2, the size of the input
matrix A itself is exponential to the number of object pairs.

4.1.2 Under-Constrained Case

For the under-constrained settings, the optimization func-
tion becomes simpler, with the objective to maximize en-
tropy f(W) = −

∑

w∈W
Pr(w) logPr(w), while satisfying

the known constraints. Each constraint Ci is a restriction

on some subset of these possible ( 1
ρ
)(

n

2
) cells to sum up to

some observed value p(Ci). More specifically, each Ci =
∑

(wi × Ii,j), where Ii,j = 1 if j-th cell is included in the
constraint Ci, and 0 otherwise.

Algorithm MaxEnt-IPS: It has been shown that the ob-
jective function always has a unique solution as long as the
constraints are consistent [21]. Of course, this problem can
be solved using a general purpose optimization algorithm.
However, we propose MaxEnt-IPS, an iterative proportional
scaling (or IPS) algorithm [23, 21] that exploits the struc-
tural property of the objective function and uses the obser-
vation that the optimal wi values can be expressed in the
following product form.

wµ
j = µ0ΠCi

µi
Ii,j

For each constraint Ci, there is a constraint µi that gets
updated inside the IPS algorithm and µ0 is a normalization
constant to ensure that all cells add up to 1. This algorithm
iteratively updates the µi’s and the cell values wi’s. It is
guaranteed to converge to the optimal solution as long as
all constraints are consistent. Once the histogram buckets
W and hence the joint distribution Pr(D) is computed, the
unknown marginals are obtained similarly as before. We
omit further details and the pseudo-code for brevity but refer
to [23, 21] for for more information on the IPS method.
MaxEnt-IPS does not converge for the input presented in

Example 1 (b), as it is over-constrained. However, if we
modify the example such that the aggregated feedback for
(j, k) is 0.75 instead of 0.25, then the following outputs are
obtained for the three edges: (i, l) : [0.25 : 0.333, 0.75 :
0.667],(j, l) : [0.25 : 0.333, 0.75 : 0.667], (k, l) : [0.25 :
0.333, 0.75 : 0.667].

Running Time: The maximum entropy modeling is known

to be NP-hard [18]. The MaxEnt-IPS algorithm terminates
based on the convergence of all the µ’s. In each iteration it
makes updates to all the buckets in the joint distribution,

which is exponential in size (O( 1
ρ
)(

n

2
))). If MaxEnt-IPS re-

quires κ iterations to converse, the asymptotic complexity

of this algorithm is exponential, i.e., O(κ× ( 1
ρ
)(

n

2
)).

4.2 Efficient Heuristic Algorithm
Both the problem variants and their respective solutions

studied in Sections 4.1.1 and 4.1.2 first compute the joint
distribution over an

(

n

2

)

-dimensional space as optimization
problems. After that, the unknown distributions are com-
puted from the joint distribution. Even with n = 5 objects
and ρ = 0.5, the joint distribution is to be computed on

an 2(
5

2
) = 210 dimensional space. Due to its exponential

nature, computing the joint distribution is practically im-
possible as n increases. As a realistic alternative, we next
present Tri-Exp, an efficient heuristic algorithm that avoids
computing the entire joint distribution, but explores the in-
dividual triangles in a greedy manner to estimate the pdfs of
the unknown edges. The pseudo-code is presented in Algo-
rithm 3. ݈݇

j� 0.750.25

1.0
?

?

?

?

0.25

1.0

0.75

0.0

0.0

Figure 3: Example to Illustrate Tri-Exp

While Algorithm Tri-Exp avoids computing the joint dis-
tribution and instead performs a greedy exploration over the
individual triangles one-by-one, there are still considerable
challenges - each unknown object pair (edge) is involved in
n − 2 different triangles (with different triangle inequality
constraints) and the algorithm must be adapted to estimate
the pdf of the unknown edge such that it satisfies all the
triangles. In particular, it encounters two scenarios.

Scenario 1: During execution, the algorithmmay encounter
some triangles which have two edges already known and only
the third edge is to be estimated. For such cases, the algo-
rithm will greedily select that unknown edge that completes
the highest number of triangles, once estimated. When an
unknown edge is involved in multiple triangles with two
edges known for each triangle, then the final estimated pdf
must satisfy the triangle inequality property of all the tri-
angles. We first estimate the pdf of the unknown edge con-
sidering each triangle, following which the final pdf is com-
puted by performing the sum-convolution and averaging the
convolved pdf (recall Section 3), such that the triangle in-
equality property is satisfied for all the triangles.

Scenario 2: Another scenario that is likely to occur is when
there only exists triangles with two unknown edges. In such
cases, both of the unknown edges are jointly estimated, by
relying on the known edge.

Solution Considering Scenario 1: As an example, con-
sider Figure 3 and note that based on this greedy selection,
at the very first iteration, it will select (i, k) for estimation,
as that will complete at least one triangle △i,k,l (because,
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the two edges of this triangle are already known and the
third edge is to be estimated), whereas none of the other
unknown edges will complete any triangle. Considering tri-
angle △i,j,k, the algorithm will have to apply the triangle
inequality property to select the possible ranges of values
that (i, j) is allowed to take.

Our method will estimate the pdf of (i, k) as Pr((i, k) =
0.25) = 0.0, Pr((i, k) = 0.75) = 1.0 considering △i,j,k. Af-
ter that, (i, k) should also be estimated considering another
triangle △i,l,k. The final pdf of (i, k) must satisfy the trian-
gle inequality property of both of these triangles.

Algorithm 3 Tri-Exp: heuristic distance estimation algo-
rithm

1: Input: known and unknown distance edges.
2: if There exists triangles with one unknown and two

known edges then
3: Greedily select that unknown edge and estimate it

such that it results in the maximum number of tri-
angles with all known edges

4: else
5: When no such triangle is found, consider a triangle

and estimate two unknown edges jointly
6: end if
7: Perform sum convolution and averaging for all associ-

ated triangles such that triangle inequality is satisfied
8: Repeat steps 2− 7 until all edges are estimated
9: return distance edges

Solution Considering Scenario 2: Consider Figure 3
again and assume that (i, k) is estimated in iteration one.
Even after that, both △i,j,l and △j,k,l have two unknown
edges.

In △j,k,l, where both (k, l) and (j, l) are unknowns and are
to be estimated using the pdf of the known edge (j, k). With-
out further knowledge, we calculate the joint distribution for
(j, l) and (k, l) by assigning uniform probability to each of
these possible values. Once, we get the joint distribution,
we calculate the pdfs for both (j, k) and (j, l) which will be
exactly equal to each other, which is {0.25 : 0.5, 0.75 : 0.5}.
As before, when multiple triangles are involved with an un-
known edge, the pdf of that edge needs to be estimated
considering triangle inequality property of all the involved
triangles.
Tri-Exp outputs the following pdfs for the example in Fig-

ure 3 (i, k) : [0.25 : 0.5, 0.75 : 0.5], (k, l) : [0.25 : 0.61, 0.75 :
0.39], (j, l) : [0.25 : 0.43, 0.75 : 0.57], (i, l) = [0.25 : 0.4, 0.75 :
0.6]
Running Time: Time complexity of Tri-Exp isO(|Du|(n×

1
ρ

2
+ log(|Du|)), where |Du| is the number of unknown pairs,

ρ is the histogram-width, and n is the number of objects. At
worst case, |Du| = O(n2); in such cases, the algorithm takes
cubic time to run. Nevertheless, this analysis shows that
the running time of Tri-Exp is substantially superior than
its exponential counterparts, LS-MaxEnt-CG or MaxEnt-IPS.

5. PROBLEM 3: ASKING THE NEXT BEST

QUESTION
If there is still considerable “uncertainty” in the learned

/ estimated distances and we have an opportunity to solicit
additional feedback, we investigate (in this third problem)
which object pair should we choose to solicit the next feed-

back on. There are several variants of this problem. In the
online variant, we have the liberty of asking one question at
a time and continue the process until all initially unknown
pdfs converges “satisfactorily”, or a budget B expires. The
budget could be used to specify a limit on the number of
questions to be asked, or the maximum number of workers
to be involved. In the offline variant, we need to decide all
questions ahead of time so that the fixed budget expired.
In the hybrid variant, we could solicit workers feedbacks for
several batches of say k questions per iteration. In this pa-
per we mainly focus on the online variant, but also present
a simple extension to solve the offline problem.

Modeling Possible Worker feedback: Recall the defini-
tion of Problem 3 and note that from a given candidate set
of questions Du (where each question is on an object pair),
the problem is to select that question which minimizes the
aggregated variance AggrVar most. The challenge, however,
is to be able to anticipate possible workers responses that
is currently unknown, to be able to guide the optimization
problem. A question Q(i, j) ∈ Du is essentially a random
variable whose distribution has been estimated already by
solving Problem 2. Without any further information, the
framework has the following limited options to make guesses
about future responses of the workers:

(1) The response pdf from the m workers, when aggre-
gated, will be the same as the current estimated pdf of
du(i, j). Under this scenario, the framework does not learn
anything new about d(i, j) and hence AggrVar remains un-
changed. We therefore do not use this option in our algo-
rithm.

(2) The aggregated response of the worker will be iden-
tical to some measures of the current pdf that dictates its
central tendency; for example the mean µ of the current pdf
can used as the anticipated value of the future aggregated
feedback.

In this latter case, the pdf of du(i, j) changes (its variance
becomes 0), and it is also likely to affect the pdfs of other
edges (i.e., the joint distribution changes). More intuitively,
when a pdf is represented by its mean, the other pdfs (edges)
involved with it are likely to demonstrate lower divergence,
hence tighter distribution. As described later, this option is
used in our algorithm for selecting the next best question.

Consider a very simple example with 3 objects (i, j, k)
that satisfy triangle inequality such that (i, j) : Pr(d(i, j) =
0.125) = 1; (i, k) : Pr(d(i, k) = 0.125) = 0.9, P r(d(i, k) =
0.375) = 0.1. To satisfy triangle inequality, the pdf of the
third edge (j, k) must be between [0.0, 0.5]. However, if we
substitute (i, k) with its mean 0.15 (considering it as a can-
didate question), the pdf of (j, k) becomes tighter and only
between [0, 0.275]. It is easy to notice that the latter pdf
of (j, k) will result in a smaller variance in comparison with
the former one.

Algorithm Next-Best-Tri-Exp: The algorithm for com-
puting the next best question runs in iteration and considers
each candidate question Q(i, j) in turn. Then, it considers
the impact of changing the current pdf of the object pair to
its mean (to emulate workers’ feedback). This is done by
re-estimating the pdfs in Du − du(i, j). For that, it uses a
sub-routine to solve Problem 2, described in Section 4 using
any of LS-MaxEnt-CG, MaxEnt-IPS, or Tri-Exp algorithms.
Once the unknown pdfs in {Du − du(i, j)} are re-estimated,
it computes AggrVar using either Equation 1 or 2 and main-
tains the so-far best question by choosing the minimum.
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Once all the candidates are evaluated, the best candidate
is the one that results in the smallest AggrVar. The pseudo-
code is presented in Algorithm 4. Using Example 1, this

Algorithm 4 Next-Best-Tri-Exp: Selecting the next best
question

1: Input: known and estimated distance edges.
2: for du(i, j) ∈ Du do
3: Replace the distribution of du(i, j) by its mean
4: Select du(i, j) = argmax∀du(i,j)∈Du

AggrVar(du(i, j))
as the candidate question

5: end for
6: return du(i, j)

returns (i, l) as the next best question, as that minimizes
the AggrVar based on both formulation of aggregated vari-
ance. Running time: To choose the next best question,

this algorithms has to evaluate each candidate question in
Du. The primary computation time in each candidate ques-
tion is taken to invoke an algorithm to solve Problem 2 as a
subroutine. Therefore, the running time of this algorithm is
asymptotically O(|Du|× running time of the sub-routine).

Extension to the Offline Problem: If we need to decide
how to spend all the budget B ahead of time, we need to
decide all the questions offline, we note that the problem be-
comes computationally more challenging, as there will be an
exponential number of possible choices (

(

|Du|
B

)

, assuming the
budget allows for B questions) and the ordering of the ques-
tions also matters in reducing aggregate variance. However,
a simple extension to our current algorithm can effectively
solve this offline problem, where we run our online solution
B times to select the best B questions greedily. We present
experiments on this regard and show that our proposed so-
lution can be effective in solving the offline problem.

6. EXPERIMENTAL EVALUATION
Our development and test environment uses python 2.7 on

a Linux Ubuntu 14.04 machine, with Intel core i5 2.3 GHz
processor and a 6-GB RAM. All values are calculated as the
average of three runs.

6.1 Datasets Description
We use three real world datasets and one synthetic dataset

for our experiments. (1) Image: The real world dataset is
obtained from the PASCAL database2. A total of 24 images
of 3 different categories are extracted. We generate 3 subsets
of size 10, 5, 5 for which we have solicited all pair distance
information. Each pair is set up as a HIT (human intel-
ligence task) in Amazon Mechanical Turk (AMT) and we
solicit 10 different workers’ feedback on the similarity of the
images. A total of 50 different workers are involved in this
study. (3) SanFrancisco: We choose 72 locations from the
city of San Francisco and crawl traveling distances (both-
ways) among all pair of locations (2556 pairs) using google
api3. The purpose this dataset is to validate the scalabil-
ity of our algorithms. Here, we use the traveling distances
as worker feedback instead of explicitly soliciting the work-
ers’ feedback. (2) Cora: This is a real world publication
dataset of 1838 records, 190 real world entities. We use this

2http://host.robots.ox.ac.uk/pascal/VOC/databases.html
3https://developers.google.com/maps/

dataset to compare our algorithms with Entity Resolution
algorithms in [24]. We choose 3 random instances of this
dataset with 20 records, which constitutes of 190 edges. We
apply our algorithms in these instances and present our re-
sults. (4) Synthetic: We generate a large scale synthetic
dataset for performing efficiency experiments. Here, we vary
from 100 to 400 objects which gives rise from 4950 to 79800
object pairs.Additionally, another small synthetic dataset of
5 objects with 10 edges is generated.

6.2 Implemented Algorithms

(1) Worker Feedback Aggregation: We consider the
following algorithms:
(i) Conv-Inp-Aggr: This is our proposed convolution based

solution to aggregate workers feedback that is described in
Section 3.
(ii) BL-Inp-Aggr: We implement a baseline algorithm that

creates aggregated pdf by calculating the average probability
over each discrete bucket center of the input pdfs. Here we
ignore the ordinal nature of the feedback scale and treat each
bucket as a categorical value.

(2) Estimation of Unknown Edges: We are unaware of
any related works that study distance estimation in proba-
bilistic settings.
(i) Tri-Exp: This algorithm is described in Section 4.2.
(ii) LS-MaxEnt-CG: This algorithm is designed to estimate

the unknown edges considering both over and under con-
strained settings, described in section 4.1.1.
(iii) MaxEnt-IPS: This algorithm, described in section 4.1.2,

refers to the optimal estimation of unknown edges consider-
ing only under-constrained settings.
(iv) BL-Random: We design a baseline algorithm that is

similar to Tri-Exp. It estimates the unknown edges con-
sidering triangles; however, unlike Tri-Exp (which first at-
tempts to consider the edges that complete the highest num-
ber of triangles), BL-Random arbitrarily chooses unknown
edges and estimates them.

(3) Asking the Next Best Question: These algorithms
are designed to demonstrate the effectiveness of the next
best question in reducing AggrVar, as described in Section 5.
As LS-MaxEnt-CG and Maxent-IPS are computationally pro-
hibitive, we implement Tri-Exp and BL-Random as subrou-
tines to decide the next best questions. We divide these
algorithms into two parts - Online and Offline.

Online Algorithms: Here we solicit one question at a time
to the crowd (i) Next-Best-Tri-Exp: This is our proposed
solution in Section 5 that uses Tri-Exp at each iteration
as the subroutine to re-estimate the unknown edges. (ii)
Next-Best-BL-Random: This is again our proposed solution
in Section 5 that uses BL-Random at each iteration as the
subroutine.

Offline Algorithms: Here we solicit a set of questions ahead
of time. (i) Offline-Tri-Exp: This is the offline variant of
Next-Best-Tri-Exp described in Section 5.

(4) Entity Resolution(ER): As discussed in Section 7
on related works, under certain circumstances the problem
of entity resolution, in particular the techniques proposed
in [24], may be considered a special case of the distance
estimation problem considered in this paper. Consequently,
we experiment with the following algorithms:
(i) Next-Best-Tri-Exp-ER: This is a modified vesion of

Next-Best-Tri-Exp algorithm where we find the number of
questions that need to be asked so that Aggr-Var is zero.
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(ii) Rand-ER : We implement the Random algorithm from
[24]. We call this algorithm Rand-ER. This algorithm has
a proven complexity of O(nk), where n denotes the num-
ber of objects and k denotes the number of clusters/similar
entities.

6.3 Experimental Set up

Parameter Settings: Unless otherwise mentioned, we as-
sume ρ = 0.25. In other words, there are 4 equi-width buck-
ets with bucket range [0.0− 0.25), [0.25− 0.5), [0.5− 0.75),
[0.75 − 1.0) with centers at 0.125, 0.375, 0.625 and 0.875.
Depending on the value of p (worker correctness), the dis-
tribution of the known edges are created. For example, if a
worker provides a feedback of 0.8, with p = 60%, that edge
is created by assigning probability of 60% on distance 0.875,
and the remaining 40% probability is uniformly assigned to
the other buckets. In practice, correctness probability can
be obtained by asking a set of screening questions and then
by averaging their accuracy. The weight of λ is set to 0.5
(unless otherwise stated) for Problem 2.

Quality Experiments:(i)Worker Feedback Aggregation: We
use real data for this experiment as this dataset contains
multiple workers feedback. We consider each triangle in iso-
lation where all the edge distances are known. Hence, for
each edge with 10 different feebacks, we know the ground
truth distribution. We use Conv-Inp-Aggr and BL-Inp-Aggr

for aggregating two out of the three edges. Based on our re-
spective algorithm, we estimate the third edge. We then
compute the ℓ2 error of our estimated edge from the ground
truth distribution for the third edge. (ii) Unknown Edge Es-
timation: Since LS-MaxEnt-CG, MaxEnt-IPS are exponential
in the number of object pairs (i.e., S

nC2), we have to limit
our settings to a very small dataset with n = 5 nodes and
10 edges. We use the small Synthetic dataset, as well as a
subset of real world dataset for this experiment. For the
Synthetic dataset, we consider MaxEnt-IPS as the optimal
solution, and compare the effectiveness of the other three
algorithms by calculating the average ℓ2 error over the un-
known edges, compared to the optimal. Out of the 10 edges,
we randomly mark 4 edges as known (and create their dis-
tribution as described before), and estimate the remaining 6
unknown edges. For the Image dataset, all ground truth dis-
tributions are known for the selected 5 objects. Like above,
we mark 4 randomly chosen edges to be known and esti-
mate the remaining 6 edges by considering the 4 different
algorithms. As before, we present the average ℓ2 error - but
this time in comparison with the ground truth. (iii)Asking
the Next Best Question: We use the SanFrancisco dataset
for which we have all pair of ground truth information. At
each step, we replace the step of asking a question to the
crowd by the ground truth information. The default value
of p is 1.0 and the default budget B = 20 questions. Number
of known edges is is set to 90% of the total edges.

Application to ER: We use Cora dataset to perform com-
parison with ER methods. We assume that each edge is
described by a pdf with two ordinal buckets 0 (duplicate)
and 1 (not duplicate). We use number of questions as our
metric which is widely used in ER literature. This value
describes the number of questions to be asked before all the
entities are resolved. We use 3 random smaller instances of
size 20 Cora dataset to evaluate our algorithm.
Scalability Experiments: We use the large scale syn-

thetic dataset for the scalability experiments. We vary the

following 4 parameters: (i) number of objects n. (ii) num-
ber of buckets b′ to approximate the pdfs. (iii) number of
unknown edges |Du|. (iv) worker correctness p.When one of
these aforementioned parameters is varied, the other three
are kept constant. The default values for these 4 parame-
ters are, n = 100, |Du| = 40% of all edges, b′ = 4, p = 0.8.
Please note that we primarily present the scalability results
for Tri-Exp and BL-Random, as LS-MaxEnt-CG and MaxEnt-

IPS takes 1.5 days to converge even when n = 6.
6.4 Results
6.4.1 Summary of Results

Quality Experiments: Our first experiment on aggregat-
ing feedback suggests the superiority of Conv-Inp-Aggr over
BL-Inp-Aggr. For unknown edge estimation, the results in-
dicate that both Tri-Exp and LS-MaxEnt-CG perform better
than the baseline BL-Random. For both of them, we ob-
serve that with higher worker accuracy (correctness) p, the
error increases for all these competing algorithms. While
this may appear counter-intuitive, our post-analysis indi-
cates that this is due to the probabilistic nature of our pro-
posed framework and the algorithms, which are most ef-
fective, when the workers responses are truly probabilistic.
For the third problem, with more questions asked, the Ag-

grVar reduces. In both of these aforementioned scenarios,
Next-Best-Tri-Exp convincingly outperforms Next-Best-

BL-Random.

Application to ER: Our result demonstrates that Rand-ER
outperforms Next-Best-Tri-Exp-ER. This is expected since
our method is designed to solve a more general problem
than ER methods - the ER method assumes no worker un-
certainty (i.e., workers are always 100% accurate), and it
is dependent on the notion of transitive closure, which is a
very special case of triangle inequality.

Scalability Experiments: We show that Tri-Exp per-
forms reasonably well with the increasing number of objects,
buckets, known edges, or worker correctness. The computa-
tion time of BL-Random is similar to that of Tri-Exp, while
Tri-Exp is qualitatively superior. Therefore, we only present
the results of Tri-Exp in these experiments. The algorithms
that rely on computing joint distribution LS-MaxEnt-CG,
MaxEnt-IPS do not converge beyond a very small number of
objects (n = 5) even in days.
6.4.2 Quality Experiments

(i) Worker feedback aggregation: Figure 4(a) shows that
Conv-Inp-Aggr consistently outperforms the baseline.

(ii) Estimating Unknown Edges: We present the results for
estimating unknown edges in Figure 4(b) and 4(c). For
the synthetic data, LS-MaxEnt-CG is superior to the other
two methods, while Tri-Exp outperforms BL-Random. The
pattern remains the same for the real data as both LS-

MaxEnt-CG and MaxEnt-IPS exhibit superiority over BL-

Random. Tri-Exp peforms reasonably well for real data. The
fact that LS-MaxEnt-CG is the best performing algorithm for
the real data demonstrates that, in reality, workers may in-
deed provide inconsistent feedback that do not obey triangle
inequality, hence our proposed optimization model is appro-
priate to capture that settings.

(iii)Asking the Next Best Question: We first compare our
online algorithms Next-Best-Tri-Exp and Next-Best-BL-

Random.
(a) Varying p: We vary p and present AggrVar considering

maximum variance. Figure 6(a) presents the results for this
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Figure 5: Experiments for validating Offline algorithms
and Entity Resolution

experiment. While the maximum variance for Next-Best-

BL-Random and Next-Best-Tri-Exp decreases with increas-
ing worker accuracy, latter performs better than the former.
For average variance, we encounter the same pattern. Hence,
we omit the results for brevity.

(b) Varying B: Our goal here is to test how AggrVar re-
duces with the increasing number of questions (budget B).
Figure 6(b) and Figure 6(c) present the outcome of these
experiments. It is interesting to observe that with a fairly
small number of questions, the AggrVar reduces drastically
and the system reaches a stable state.

(c) Online vs Offline Experiment: Figure 5(a) presents
the result. As expected, Next-Best-Tri-Exp performs bet-
ter than the Offline-Tri-Exp, but with very small margin.
This result proves that Offline-Tri-Exp is very suitable for
traditional crowdsourcing framework as online algorithms
have high latency.

iv) Entity Resolution: Figure 5(b) shows the results for En-
tity Resolution. Although Next-Best-Tri-Exp-ER performs
a little worse than Rand-ER, we argue that our method is not
optimized for finding duplicate entities. Please notice that
our method can be applied to find duplicate entities while
it is not possible vice versa.

6.4.3 Scalability Experiments

(i) Worker feedback aggregation: We observe that the time
to aggregate workers feedback is akin to the triangle com-
putation time of Tri-Exp. For brevity, we omit the details.
(ii)Unknown Edge Estimation: We observe that both heuris-
tic algorithms are equally efficient. Hence, we just present
the results of Tri-Exp. (a) Varying n: Figure 7(a) presents
these results and indicates that Tri-Exp converges in a rea-
sonable time, even for higher values of n.
(b) Varying b′: Figure 7(b) presents these results and indi-
cates that Tri-Exp scales well with increasing b′.
(c) Varying |Dk|: Figure 7(c) presents these results and
shows that Tri-Exp is scalable with increasing number of
unknown edges and takes lesser time, as |Dk| increases.
(d) Varying p: Figure 7(d) indicates that the running time
of Tri-Exp is not affected by p.

(iii)Asking the Next Best Question: The running time of

Next-Best-Tri-Exp and Next-Best-BL-Random are similar
and dominated by the size of |Du|. These results are similar
to that of Figure 7(c) and omitted for brevity.

7. RELATED WORK

User Input Aggregation: Aggregation of opinions is stud-
ied in several prior works in AI [12, 8, 4]. An opinion is
described as a pdf over a set of categorical values. Since,
their methods do not consider the notion of distance, they
do not offer an easy extension to our problem. Aggrega-
tion of binary feedback(Yes/No) in crowdsourcing is studied
in [7, 14]. Their proposed models estimate both worker
accuracy and the true answer considering a bipartite graph
of workers and tasks. They do not extend beyond binary
feedback while we assume a numeric feedback model. [20]
study how to find the ranking of a tuple, where tuple scores
are given by probability distributions. While this problem
is fundamentally different from our first problem, their pro-
posed approach nevertheless justifies our proposed way of
convolving multiple pdfs for aggregation.

Distance Estimation: Distance estimation using crowd-
sourcing has gained a significant interest recently for solv-
ing a variety of computational problems that require dis-
tance estimation, such as top-k, clustering, entity resolution
(ER), etc [28, 26, 22]. In most of these works, the de-
pendency on distances is only indirect, as these works are
based on asking users to resolve Boolean similarity or rank-
ing questions, e.g., whether two objects are similar or not, or
whether one object should be ranked higher than the other.
In contrast, our work is the first to directly solicit, from
the crowd, the broader notion of numeric distances between
objects. In [28], the authors propose a crowdsourced clus-
tering method by leveraging matrix completion techniques,
where human workers are involved to annotate objects in a
deterministic settings. Entity resolution using crowdsourc-
ing have been studied in [25, 26, 24]. The closest related
work is that of [24]. The main differences between this work
and ours are: (a) the are only concerned with the Boolean
notion of objects equivalency, whereas we try to learn nu-
meric distances between objects, (b) they assume that the
crowd can make no mistake, which is unrealistic for distance
computations, and (c) they leverage the notion of transitive
closure, which is a much simpler notion compared to that of
triangle inequality. Therefore their main focus has been on
determining the optimal set of questions to ask the crowd,
whereas our focus has been on even more basic issues such
as how to aggregate uncertain user feedbacks and update
the probabilistic distribution models of the distances.
Asking Next Best Question: Our third problem for-

mulation borrows motivation from [16, 26, 6]. [16] describes
the problem of finding the maximum item from paiwise com-
parisons, [26] tackles entity resolution, and [6] studies top-k
queries in uncertain database. They all designed algorithms
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Figure 7: Scalability Experiments: 4 different parameters are varied. Our default settings is n = 100, p = 0.8, |Du| = 50%, b′ = 4.

for finding the next best question which maximize the ex-
pected accuracy for their respective problems. Both [16] and
[26] prove that finding next best question is NP-Complete.
In [6], authors construct a Tree of Possible Ordering(TPO)
in order to find the next best question. Although we em-
ploy the similar settings, our unique problem formulation
requires us to design novel solutions.

8. CONCLUSION
We present a probabilistic distance estimation framework

in crowdsourcing platforms that has wide applicability in
different domains. One of the novel contributions of the
work is to consider worker feedback with probabilistic inter-
pretation and describe the overall framework with three key
components.The effectiveness of our proposed solutions are
validated empirically using both real and synthetic data.
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