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ABSTRACT
We study the potential flow of information in interaction
networks, that is, networks in which the interactions be-
tween the nodes are being recorded. The central notion in
our study is that of an information channel. An informa-
tion channel is a sequence of interactions between nodes
forming a path in the network which respects the time or-
der. As such, an information channel represents a poten-
tial way information could have flown in the interaction
network. We propose algorithms to estimate information
channels of limited time span from every node to other
nodes in the network. We present one exact and one more
efficient approximate algorithm. Both algorithms are one-
pass algorithms. The approximation algorithm is based
on an adaptation of the HyperLogLog sketch, which al-
lows easily combining the sketches of individual nodes in
order to get estimates of how many unique nodes can be
reached from groups of nodes as well. We show how the
results of our algorithm can be used to build efficient influ-
ence oracles for solving the Influence maximization prob-
lem which deals with finding top k seed nodes such that
the information spread from these nodes is maximized.
Experiments show that the use of information channels is
an interesting data-driven and model-independent way to
find top k influential nodes in interaction networks.

Keywords
Influence Maximization, Influence estimation, Informa-
tion flow mining

1. INTRODUCTION
In this paper, we study information propagation by

identifying potential “information channels” based on in-
teractions in a dynamic network. Studying the propa-
gation of information through a network is a fundamen-
tal and well-studied problem. Most of the works in this
area, however, studied the information propagation prob-
lem in static networks or graphs only. Nevertheless, with
the recent advancement in data storage and processing,
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Figure 1: (a) An example Interaction graph. (b)
The interaction in reverse order of time.

it is becoming increasingly interesting to store and ana-
lyze not only the connections in a network but the com-
plete set of interactions as well. In many networks not
only the connections between the nodes in the network
are important, but also and foremost, how the connected
nodes interact with each other. Examples of such net-
works include email networks, in which not only the fact
that two users are connected because they once exchanged
emails is important, but also how often and with whom
they interact. Another example is that of social networks
where people become friends once, but may interact many
times afterward, intensify their interactions over time, or
completely stop interacting. The static network of inter-
actions does not take these differences into account, even
though these interactions are very informative for how in-
formation spreads. To illustrate the importance of taking
the interactions into account, Kempe et al. [12] showed
how the temporal aspects of networks affect the properties
of the graph.

Figure 1a gives an example of a toy interaction network.
As can be seen, an interaction network is abstracted as a
sequence of timestamped edges. A central notion in our
study is that of an information channel ; that is, a path
consisting of edges that are increasing in time. For in-
stance, in Figure 1a, there is an information channel from
a to e, but not from a to f . This notion of an informa-
tion channel is not new, and was already studied under
the name time-respecting path [12] and is a special case of
temporal paths [26].In contrast to earlier work on informa-
tion channels we additionally impose a constraint on the
total duration of the information channel, thus reflecting
the fact that in influence propagation the relevance of the
message being propagated may deteriorate over time. To
the best of our knowledge, our paper is the first one to
study the notion of temporal paths with time constraints
in influence propagation on interaction networks.
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We propose a method to identify the most influential
nodes in the network based on how many other nodes they
could potentially reach through an information channel of
limited timespan. As such, the information channels form
an implicit propagation model learned from data. Most
of the related work in the area of information propaga-
tion in interaction or dynamic networks uses probabilis-
tic models like the independent cascade(IC) model or the
Linear Threshold(LT) model, and tries to learn the influ-
ence probabilities that are assumed to be given by these
models [13, 4, 3, 6]. Another set of recent work focuses
on deriving the hidden diffusion network by studying the
cascade information of actions [10, 11] or cascade of in-
fection times [8, 24]. These paper, however, use a very
different model of interactions. For example, the work by
Goyal et al. [10, 11], every time an activity of a node a
is repeated within a certain time span by a node b that
is connected to a in the social graph, this is recorded as
an interaction. Each user can execute each activity only
once, and the strength of influence of one user over the
other is expressed as the number of different activities
that are repeated. While this model is very natural for
certain social network settings, we believe that our model
is much more natural for networks in which messages are
exchanged, such as for instance email networks because
activities such as sending an email can be executed repeat-
edly and already include the interaction in itself. Further-
more, [11] is not based on information channels, but on
the notion of credit-distribution, and [10] does not include
the time-respecting constraint for paths.

One of the key differentiators of the techniques intro-
duced here and earlier work is that next to an exact algo-
rithm, we also propose an efficient one-pass algorithm for
building an approximate influence oracle that can be used
to identify top-k maximal influencers. Our algorithm is
based on the same notion as shown in so-called sliding
window HyperLogLog sketch [15] leading to an efficient,
yet approximate solution. Experiments on various inter-
action networks with our algorithm show the accuracy
and scalability of our approximate algorithm, as well as
how it outperforms algorithms that only take into account
the static graph formed by the connected nodes.

The contribution of this paper are as follows.

• Based on the notion of an Information Channel, we
introduce the Influence Reachability Set of a node
in a interaction network.

• We propose an exact but memory inefficient algo-
rithm which calculates the Influence Reachability
Set of every node in the network in one pass over
the list of interactions.

• Next to the exact algorithm, an approximate sketch-
based extension is made using a versioned Hyper-
LogLog sketch.

• With the influence reachability sets of the nodes
in our interaction network, we identify top-k influ-
encers in a model-independent way.

• We propose a new Time Constrained Information
Cascade Model for interaction networks derived from
the Independent Cascade Model for static networks.

• We present the results of extensive experiments on
six real world interaction network datasets and demon-
strate the effectiveness of the time window based in-
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Figure 2: Interaction network example with mul-
tiple information channels between node c and f

fluence spread maximization over static graph based
influence maximization.

2. PRELIMINARIES
Let V be a set of nodes. An interaction between nodes

from V is defined as a triplet (u, v, t), where u, v ∈ V ,
and t is a natural number representing a time stamp. The
interaction (u, v, t) indicates that node u interacted with
node v at time t. Interactions are directed and could
denote, for instance, the sending of a message. For a
directed edge u → v, u is the source node and v is the
destination node. An interaction network G(V, E) is a set
of nodes V , together with a set E of interactions. We
assume that every interaction has a different time stamp.
We will use n = |V | to denote the number of nodes in
the interaction network, and m = |E| to denote the total
number of interactions.

Time Constrained Information Cascade Model: For
interaction networks, influence models such as the Inde-
pendent Cascade Model or Linear Threshold Model no
longer suffice as they do not take the temporal aspect
into account and are meant for static networks. To ad-
dress this shortcoming, we introduce a new model of Infor-
mation Cascade for Interaction networks. The Time Con-
strained Information Cascade Model (TCIC) is a variation
of the famous Independent Cascade Model. This model
forms the basis of our comparison with other baselines
SKIM [6], PageRank and High Degree. We say a node is
infected if it is influenced. For a given set of seed nodes
we start by infecting the seed nodes at their first inter-
action in the network and then start to spread influence
to their neighbors with a fixed probability. The influence
spread is constrained by the time window(ω) specified;
i.e, once a seed node is infected at time stamp t it can
spread the infection to another node via a temporal path
only if the interaction on that path happens between time
t and t + ω. For sake of simplicity we use a fixed infec-
tion probability in our algorithms to simulate the spread
nevertheless node specific probabilities or random proba-
bilities could easily be used as well. In Algorithm 1 we
present the algorithm for the TCIC model.

In order to Find highly influential nodes under the TCIC
model we introduce the notion of Information Channel.

Definition 1. (Information Channel) Information Chan-
nel ic between nodes u and v in an interaction network
G(V, E), is defined as a series of time increasing inter-
actions from E satisfying the following conditions: ic =
(u, n1, t1), (n1, n2, t2), ...(nk, v, tk) where t1 < t2 < .. <
tk. The duration of the information channel ic is dur(ic) :=
tk − t1 + 1 and the end time of the information channel
ic is end(ic) := tk. We denote the set of all information
channels between u and v as IC(u, v), and the set of all
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Algorithm 1 Simulation with a given seed set and win-
dow

Input: G(V,E) the interaction graph given as a time-
ordered list `G of (u, v, t), ω, and S the seed set. p is
the probability of infection spread on interaction.
Output: Number of nodes influenced by the seed.
Initially all nodes are inactive and for all activateTime
is set to -1.
for all (u, v, t) ∈ `G do

if u ∈ S then
u.isActive=true
u.activateTime=t

end if
if u.isActive & (t− u.activateT ime) ≤ ω then

With probability p
v.isActive=true
if u.activateTime > v.activateTime then

v.activateTime=u.activateTime
end if

end if
end for
Return: Count of nodes for which isActive is true.

information channels of duration ω or less as ICω(u, v).

Notice that there can exist multiple information channels
between two nodes u and v. For example, in Fig 2 there
are 2 information channels from a to f . The intuition
of the information channel notion is that node u could
only have sent information to node v if there exists a
time respecting series of interactions connecting these two
nodes. Therefore, nodes that can reach many other nodes
through information channels are more likely to influence
other nodes than nodes that have information channels to
only few nodes. This notion is captured by the influence
reachability set.

Definition 2. (Influence reachability set) The Influence
reachability set (IRS) σ(u) of a node u in a network
G(V, E) is defined as the set of all the nodes to which u
has an information channel:

σ(u) := {v ∈ V | IC(u, v) 6= ∅} .

Similarly, the influence set for a given maximal duration
ω is defined as

σω(u) = {v ∈ V | ∃ic ∈ IC(u, v) : dur(ic) ≤ ω} .

The IRS of a node may change depending on the maximal
duration ω. For example, in Figure 2 σ3(a) = {b, c, d} and
σ5(a) = {b, c, d, f}. This is quite intuitive because as the
maximal duration increases, longer paths become valid,
hence increasing the size of the influence reachability set.
Once we have the IRS for all nodes in a interaction net-
work for a given window we can efficiently answer many
interesting queries, such as finding top k influential nodes.
Formally, the algorithms we will show in the next section
solve the following problem:

Definition 3. (IRS-based Oracle Problem) Given an in-
teraction network G(V, E), and a duration threshold ω,
construct a data structure that allows to efficiently an-
swer the following type of queries: given a set of nodes
V ′ ⊆ V , what is the cardinality of the combined influence
reachability sets of the nodes in V ′; that is:

∣∣⋃
v∈V ′ σω(v)

∣∣.

First we will present an exact but memory inefficient so-
lution that will maintain the sets σω(v) for all nodes v.
Clearly this data structure will allow to get the exact car-
dinality of the exact influence reachability sets, by tak-
ing the unions of the individual influence reachability sets
and discarding duplicate elements. The approximate al-
gorithm on it’s turn will maintain a much more memory
efficient sketch of the sets σω(v) that allows to take unions
and estimate cardinalities.

3. SOLUTION FRAMEWORK
In this section, we present an algorithm to compute

the IRS for all nodes in an interaction network in one
pass over all interactions. In the following all definitions
assume that an interaction network G(V, E) and a thresh-
old ω have been given. We furthermore assume that the
edges are ordered by time stamp, and will iterate over the
interactions in reverse order of time stamp. As such, our
algorithm is a one-pass algorithm, as it treats every in-
teraction exactly once and, as we will see, the time spent
per processed interaction is very low. It is not a streaming
algorithm because it can not process interactions as they
arrive. The reverse processing order of the edges is essen-
tial in our algorithm, because of the following observation.

Lemma 1. Let G(V, E) be an interaction network, and
let (u, v, t) be an interaction with a time stamp before
any time stamp in E ; i.e., for all interactions (u′, v′, t′) ∈
E , t′ > t. G′(V, E ∪ {(u, v, t)}) denotes the interaction
network that is obtained by adding interaction (u, v, t) to
G. Then, for all w ∈ V \ {u}, IRSω(w) is equal in G and
G′.

Proof. Suppose that IRSω(w) changes by adding (u, v, t)
to E . This means that there must exist an information
channel ic from w to another node in G′ that did not
yet exist in G. This information channel hence necessar-
ily contains the interaction (u, v, t). As t was the earliest
time in the interaction network G′, (u, v, t) has to be the
first interaction in this information channel. Therefore w
must be u and thus w 6∈ V \ {u}.

This straightforward observation logically leads to the
strategy of reversely scanning the list of interactions. Ev-
ery time a new interaction (u, v, t) is added, only the IRS
of the source node u needs to be updated. Notice that
there is no symmetric definition for the forward scan of a
list of interactions; if a new interaction arrives with a time
stamp later than any other time stamp in the interaction
network, potentially the IRS of every node in the network
changes, leading to an unpredictable and potentially un-
acceptable update time per interaction.

In order to exploit the observation of Lemma 1, we keep
a summary of the interactions processed so far.

Definition 4. (IRS Summary) For each pair u, v ∈ V ,
such that ICω(u, v) 6= ∅, λ(u, v) is defined as the end time
of the earliest information channel of length ω or less from
u to v. That is:

λ(u, v) := min({end(ic) | ic ∈ ICω(u, v)})

The IRS summary ϕω(u) is now defined as follows:

ϕω(u) = {(v, λ(u, v)) | v ∈ IRSω(u)} .

That is, we will be keeping for every node u the list
of all other nodes that are reachable by an information
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channel of duration at most ω. Furthermore, for ev-
ery such reachable node v, we keep the earliest time it
can be reached from u by an information channel. The
IRS of a node u can easily be computed from ϕω(u) as
σω(u) = {v | ∃t : (v, t) ∈ ϕ(u)}. On the other hand, the
information stored in the summary consisting of ϕ(u) for
every u is sufficient to efficiently update it whenever we
process the next edge in the reverse order as we shall see.

Example 1. In Figure 2, ϕ3(a) = {(b, 1), (d, 2), (c, 4)}
and ϕ3(c) = {(f, 5), (e, 3)}. There are 2 information chan-
nels between c and f , one with dur(ic) = 1 and end(ic) =
8 and another with dur(ic) = 3 and end(ic) = 5 and
hence λ(c, f) = 5.

3.1 The Exact algorithm
We illustrate our algorithm using the running example

in Figure 1a. Table 1b shows all the interactions for the
graph reverse ordered by time stamp. Recall that we pro-
cess the edges in time decreasing order. The algorithm
is detailed in Algorithm 2. First, we initialize all ϕ(u) to
the empty set. Then, whenever we process an interaction
(u, v, t), we know from Lemma 1 that only the summary
ϕ(u) may change. The following lemma explains how the
summary ϕ(u) changes:

Lemma 2. Let G(V, E) be an interaction network, and
let (u, v, t) be an interaction with a time stamp before
any time stamp in E ; i.e., for all interactions (u′, v′, t′) ∈
E , t′ > t. G′(V, E ∪ {(u, v, t)}) denotes the interaction
network that is obtained by adding the interaction (u, v, t)
to G. Let ϕ′(u) denote the summary of u in G′ and ϕ(u)
that in G. Then, ϕ′(u) =↓ ({(v, t)} ∪ ϕ(u) ∪ {(z, t′) ∈
ϕ(v) | t′ − t+ 1 ≤ ω}), where ↓ (A) denotes A \ {(v, t) ∈
A | ∃(v, t′) ∈ A : t′ < t}.

Proof. Let ic be an information channel of duration
maximally ω from u to z in G′ that minimizes end(ic).
Then there are three options: (1) ic is the information
channel from u to v formed by the single interaction (u, v, t)
that was added. The end time of this information chan-
nel is t. (2) ic was already present in G, and hence
(z, end(ic)) ∈ ϕ(u), or (3) ic is a new information channel.
Using similar arguments as in the proof of Lemma 1, we
can show that ic needs to start with the new interaction
and that the remainder of ic forms an information channel
ic′ from v to z in G with end(ic′) = end(ic). In that case
(z, end(ic)) ∈ ϕ(v). Given the constraint on duration we
furthermore need to have end(ic) − t + 1 ≤ ω. Hence,
ϕ′(u) needs to be a subset of {(v, t)} ∪ ϕ(u) ∪ {(z, t′) ∈
ϕ(v) | t′ − t + 1 ≤ ω}, and we can obtain ϕ′(u) by only
keeping those pairs that are not dominated.

Example 2. Figure 1a represents a small interaction net-
work and Table 1b shows the edges in order of time. For
ω = 3 the Influence Summary Set will update as follows:

a b c d e f

ϕ {} {} {} {} {} {}
(b,c,8)−→ a b c d e f

ϕ {} (c,8) {} {} {} {}
(e,c,7)−→ a b c d e f

ϕ {} (c, 8) {} {} (c,7) {}
(b,e,6)−→ a b c d e f

ϕ {} (c,7)(e,6) {} {} (c, 7) {}

(a,b,5)−→

a b c d e f

ϕ
(b,5)
(c,7)
(e,6)

(c,7)
(e,6)

{} {} (c, 7) {}

(e,b,4)−→

a b c d e f

ϕ
(b,5)
(c,7)
(e,6)

(c,7)
(e,6)

{} {} (c,7)
(b,4)

{}

(d,e,3)−→

a b c d e f

ϕ
(b,5)
(c,7)
(e,6)

(c,7)
(e,6)

{} (e,3)
(b,4)

(c,7)
(b,4)

{}

(e,f,2)−→

a b c d e f

ϕ
(b,5)
(c,7)
(e,6)

(c,7)
(e,6)

{} (e,3)
(b,4)

(c,7)
(b,4)
(f ,2)

{}

(a,d,1)−→

a b c d e f

ϕ

(b,5)
(c,7)
(e,3)
(d,1)

(c,7)
(e,6)

{} (e,3)
(b,4)

(c,7)
(b,4)
(f,2)

{}

While processing the edge (b, e, 6), first we add (e, 6) in
the summary of d and then add (c, 7) from the summary of
e in summary of b. As the summary of b already had (c, 8),
the value will be updated. Next, during the processing of
edge (a, b, 5) the summary of a is updated first by adding
(b, 5) then while merging the summary of b in a we will
ignore (e, 8) because the duration of the channel is 4 and
the permitted window length is 3. The only addition is
hence (c, 7).

Theorem 1. Algorithm 2 updates the IRS summary
correctly.

Proof. This proof follows by induction. For the empty
list of transactions, the algorithm produced the empty
summary. This is our base case. Then, for every in-
teraction that is added in the for loop, it follows from
Lemma 1 and Lemma 2 that the summaries are correctly
updated to form the summary of the interaction graph
with one more (earlier) interaction. After all interactions
have been processed, the summary is hence that of the
complete interaction graph.

Lemma 3. Algorithm 2 runs in time O(mn) and space
O(n2), where n = |V | and m = |E|.

Proof. Each edge in E is processed exactly once and
for each edge, both Add and Merge are called once. We
assume that the summary sets ϕ(u) are implemented with
hash tables such that looking up the element (v, t) for a
given v takes constant time only. Under this assumption,
the Add function has constant complexity. The Merge
function calls Add for every item in ϕ(v) at least once.
The number of items in ϕ(v) is upper bounded by n and
hence the time complexity of one merge operation is at
most O(n). This leads to the upper bound O(mn) in
total.

For the space complexity, note that in the worst case
for each node there is an information channel to every
other node of duration at most ω. In that case, the size
of the individual summary ϕ(v) of every node v is O(n)
which leads to a space complexity of O(n2) in total.

As we can see from Lemma 3 the memory requirements
for the exact algorithm is in worst case quadratic in the
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Algorithm 2 Influence set with Exact algorithm

Input: Interaction graph G(V, E). `G is the list of inter-
actions reversely ordered by time stamp
Threshold ω (maximum allowed duration of an influ-
ence channel)

Output: ϕ(u) for all u ∈ V

function Add(ϕ(u),(v, t))

if ∃t
′

: (v, t
′
) ∈ ϕ(u) then

. There is at most one such entry

if t < t
′

then
ϕ(u) = (ϕ(u) \ (v, t

′
)) ∪ (v, t)

end if
else

ϕ(u) = ϕ(u) ∪ {(v, t)}
end if

end function

function Merge(ϕ(u),ϕ(v),t,ω)
for all (x, tx) ∈ ϕ(v) do

if tx − t < ω then Add(ϕ(u),(x, tx))
end if

end for
end function

Initialize: ϕ(u)← ∅ ∀u ∈ V
for all (u, v, t) ∈ `G do

Add(ϕ(u),(v, t))
Merge(ϕ(u),ϕ(v),t,ω)

end for

number of nodes of the graph. This will not scale well
for large graphs as we want to keep this data structure in
memory for efficient querying. Hence in the next section
we will present an approximate but more memory and
time efficient version of the algorithm.

3.2 Approximate Algorithm
Algorithm presented in the previous section computes

the IRS exactly, albeit at the cost of high space com-
plexity and update time. In this section, we describe an
approximate algorithm which is much more efficient in
terms of memory requirements and update time. The
approximate algorithm is based on an adaptation of the
HyperLogLog sketch [9].

3.2.1 HyperLogLog Sketch
A HyperLogLog (HLL) sketch [9] is a probabilistic data

structure for approximately counting the number of dis-
tinct items in a stream. Any exact solution for counting
the number of distinct items in a stream would require
O(N) space with N the cardinality of the set. The HLL
sketch, however, approximates this cardinality with no
more than O(log(log(N))) bits. The HLL sketch is an
array with β = 2k cells (c1, . . . , cβ), where k is a constant
that controls the accuracy of the approximation. Initially
all cells are 0. Every time an item x in the stream ar-
rives, the HLL sketch is updated as follows: the item x is
hashed deterministically to a positive number h(x). The
first k bits of this number determines the 0-based index of
the cell in the HLL sketch that will be updated. We de-
note this number ι(x). For the remaining bits in h(x), the
position of the least significant bit that is 1 is computed.
This number is denoted ρ(x). If ρ(x) is larger than cι(x),
cι(x) will be overwritten with ρ(x).

For example, suppose that we use a HLL sketch with
β = 22 = 4 cells. Initially the sketch is empty:

0 0 0 0

Suppose now item a arrives with h(a) = 1110100110010110b.
The first 2 bits are used to determine ι(a) = 11β = 3. The
rightmost 1 in the binary representation of h(a) is in posi-
tion 2, and hence c3 becomes 2. Suppose that next items
arrive in the stream with (cι(x), ρ(x)) equal to: (c1, 3),
(c0, 7), (c2, 2), and (c1, 2), then the content of the sketch
becomes:

7 3 2 2

It is clear that duplicate items will not change the sum-
mary. Furthermore, for a random element x, P (ρ(x) ≥
`) = 2−`. Hence, if d different items have been hashed
into cell cι, then P (cι ≥ `) = 1 − (1 − 2−`)d. This prob-
ability depends on d, and all ci are independent. Based
on a clever exploitation of these observations, Flajolet et
al. [9] showed how the number of distinct items in a stream
can be approximated from the HLL sketch. Last but not
least, two HLL sketches can easily be combined into a sin-
gle sketch by taking for each index the maximum of the
values in that index of both sketches.

3.2.2 Versioned HLL Sketch
The HLL sketch is an excellent tool for our purpose; ev-

ery time an edge (a, b) needs to be processed (recall that
we process the edges in reverse chronological order), all
nodes reachable by an information channel from b, are also
reachable by an information channel from a. Therefore,
if we keep the list of reachable nodes as a HLL sketch,
we can update the reachable nodes from a by unioning
in the HLL sketch of the reachable nodes from b into the
HLL sketch of those reachable from a. One aspect, how-
ever, that is not taken into account here is that we only
consider information channels of length ω. Hence, only
those nodes reachable from b by an information channel
that ends within time window ω should be considered.
Therefore, we developed a so-called versioned HLL sketch
vHLL. The vHLL maintains for each cell ci of the HLL
a list Li of ρ(x)-values together with a timestamp and is
updated as follows: let tcurrent be the current time; peri-
odically entries (r, t) with t−tcurrent+1 > ω are removed
from vHLL. Whenever an item x arrives, ρ(x) and ι(x)
are computed, and the pair (ρ(x), tcurrent) is added to the
list Lι(x). Furthermore, all pairs (r, t) such that r ≤ ρ(x)
are removed from Lι(x). The rationale behind the update
procedure is as follows: at any point in time tcurrent we
need to be able to estimate the number of elements x that
arrived within the time interval [tcurrent, tcurrent+ω−1].
Therefore it is essential to know the maximal ρ(x) of all x
that arrived within this interval. We keep those pairs (r, t)
in Lι such that r may, at some point, become the maxi-
mal value as we shift the window further back in time. It
is easy to see that any pair (r, t) such that r ≤ ρ(x) for a
newly arrived x at tcurrent will always be dominated by
(ρ(x), tcurrent). On the other hand, if ρ(x) < r we still do
have to store (ρ(x), tcurrent) as (r, t) will leave the window
before (ρ(x), tcurrent) will.

Example 3. Suppose that the elements e, d, c, a, b, a have
to be added to the vHLL. Recall that we process the
stream in reverse order, hence the updates are processed
in the following order: (a, t6), (b, t5), (a, t4), (c, t3), (d, t2),
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(e, t1). Let ι and ρ be as follows for the elements in V :

item a b c d e
ι 1 3 3 2 2
ρ 3 1 2 2 1

The subsequent vHLL sketches are respectively the fol-
lowing:

{} {} {} {}
(a,t6)−→ {} (3, t6) {} {}
(b,t5)−→ {} (3, t6) {} (1, t5)
(a,t4)−→ {} (3, t4) {} (1, t5)
(c,t3)−→ {} (3, t4) {} (2, t3)
(d,t2)−→ {} (3, t4) (2, t2) (2, t3)
(e,t1)−→ {} (3, t4) (2, t2), (1, t1) (2, t3)

Notice that also two vHLL sketches can be easily com-
bined by merging them. For each cell ι, we take the union
of the respective lists Lι and L′ι and remove all pairs (r, t)
in the result that are dominated by a pair (r′, t′) that
came from the other list with t′ < t and r′ ≥ r. If the
lists are stored in order of time, this merge operation can
be executed in time linear in the length of the lists.

Example 4. Consider the following two vHLL sketches:

{} (3, t4) (1, t1), (2, t2) (2, t3)

{(5, t1)} (3, t2) (4, t3) (1, t4)

The result of merging them is:

{(5, t1)} (3, t2) (1, t1), (2, t2), (4, t3) (2, t3)

Note that adding versioning to the HLL sketch comes
at a price.

Lemma 4. The expected space for storing a vHLL sketch
for a window length ω is O(β(log(ω)2)).

Proof. The size of each pair (r, t) stored in a list Lι is
dominated by t and takes space O(log(ω)). In worst case,
all elements in the window xcurrent, . . . , xcurrent+ω−1 are
different and all arrive into the same cell cι. In that case,
the expected number of pairs in Lι is E[X1 +X2 + . . .+
Xω−1] where Xi denotes the following statistical vari-
able: Xi equals 1 if (ρ(xi), tcurrent+i−1) is in Lι and
0 otherwise. This means that Xi = 1 if and only if
ρ(xi) > max{ρ(x1), . . . , ρ(xi−1))}. As each ρ(xj), j ≤ i
has the same chance to be the largest, P (Xi = 1) ≤ 1

i
.

Hence we get:

E[|Lι|] ≤ E[X1 + . . .+Xω−1] ≤
ω∑
i=1

1

i
= O(log(ω)) .

3.2.3 vHLL-Based Algorithm
The approximate algorithm is very similar to the ex-

act algorithm 2; instead of using exact sets we use the
more compact versioned HyperLogLog sketch. Add and
Merge are the only functions which need to be updated
as per the new sketch everything else will remain the
same as shown in algorithm 2. We will just present the
ApproxAdd and ApproxMerge functions in Algorithm 3.

Lemma 5. The expected time complexity for Algorithm 3
is O(mβ(log(ω))2), where n = |V | and m = |E|.

Algorithm 3 Approximate Algorithm for IRS

function ApproxAdd(ϕ(u),(ρ(v), t),ι(v))

if ∃(ρ, t
′
) ∈ Lι : (ρ, t

′
) dominates (ρ(v), t) then

Ignore (ρ(v), t)
else

if ∃(ρ, t
′
) ∈ Lι : (ρ(v), t) dominates (ρ, t

′
) then

remove (ρ, t
′
) from Lι

end if
Append (ρ(v), t) in Lι

end if
end function
function ApproxMerge(ϕ(u),ϕ(v),t,ω)

while i < β do
for all (x, tx) ∈ Li do . Iterate over ϕ(v)

if tx − t < ω then
ApproxAdd(ϕ(u),(x, tx), i)

end if
end for
i+ +

end while
end function

Proof. In the ApproxMerge function the while loop
will run for β iterations and the inner for loop will run for
an expected of log(ω) items(from Lemma 4). Hence time
complexity would be O(β log(ω)O(ApproxAdd)).

Now in the ApproxAdd function there are at-most
log(ω) comparisons, hence O(ApproxAdd) = O(log(ω)).
For each edge ApproxAdd and ApproxMerge are called
only once. Hence O(mβ(log(ω))2) is the expected time
complexity.

Lemma 6. The expected space complexity for the Al-
gorithm 3 is O(nβ(log(ω))2), where n = |V | and m = |E|.

Proof. From Lemma 4 the expected size of one vHLL
sketch is O(β(log(ω))2). There will be only one vHLL
sketch for each node, hence, expected space complexity is
O(nβ(log(ω))2).

4. APPLICATIONS

4.1 Influence Oracle:
Given the Influence Reachability Set of an interaction

network computing the influence spread of a given seed
set, S ⊆ V is straightforward. The influence spread for
seed set S is computed as:

Inf (S) =
⋃
u∈S

σ(u) (1)

HyperLogLog sketch union requires taking the maximum
at each bucket index ι which is very efficient, so the the
time complexity would be O(|S|`).

4.2 Influence Maximization:
Influence Maximization deals with the problem of find-

ing top k seed nodes which will maximize the influence
spread. After the pre processing stage of computing IRS
we can use a greedy approach to find the top-k seed nodes
by using the Influence oracle. First we show the complex-
ity of the top-k most influential nodes problem is NP-
hard and then show that the Influence oracle function is
monotone and submodular. Hence we can use a greedy
approximation approach.
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Lemma 7. Influence maximization under the Influence
Reachability Set model is NP-hard.

Proof. Given the Influence Reachability Set for all the
nodes the problem of finding a subset of k nodes such that
the union is maximum is a problem which is similar to the
problem of maximum coverage problem. As the later is
a NP-hard problem we deduce that the given problem is
NP-hard.

Lemma 8. The influence function σ(S) is submodular
and monotone.

Proof. First we will prove that Inf (S) is a submodu-
lar function. Let S and T be two sets of seed nodes such
that S ⊂ T . Let x be another node not in T . Now,
let the marginal gain of adding x in S, i.e., Inf(S +
x) − Inf(S) = P . P is the set of those nodes for which
there is no path from S and hence these should belong
to Inf(x). Let the marginal gain of adding x in T ,i.e.,
Inf(T+x)−Inf(T ) = P ′. It is clear that P ′ ⊆ P , as oth-
erwise there will be a node u for which there is a path from
S but not from T and this is not possible given S ⊂ T .
Hence Inf(S + x)− Inf(S) ≥ Inf(T + x)− Inf(T ).

It is obvious to see the that Inf is monotone as it is
a increasing function, adding a new node in the seed set
will never decrease the influence, and hence if S ⊂ T then
Inf (S) ≤ Inf (T )

Greedy Approach for Influence Maximization:
Algorithm 4 outlines the details for the greedy approach.

We start by first sorting the nodes based on the size of the
Influence Reachability Set. The node with maximum IRS
set size becomes the most influential node and is taken as
the first node in seed set. Next at each stage we iterate
through the sorted list and check the gain by using in-
fluence oracle of the already selected nodes and the new
node. The node which results in maximum gain is added
into the seed set.

Algorithm 4 Influence Maximization using IRS

Input: The Influence set σu∀u ∈ V and the number of
seed nodes to find is k
initialize selected← ∅ ∧ covered← ∅
Sort u ∈ V descending with respect to |σu|. Save this
sorted list as `
while selected < k do

gain = 0 ; us = ∅
for all u ∈ ` do

if |covered ∪ σu| − |covered| > gain then
gain = |covered ∪ σu| − |covered|
us = {u}

end if
if gain > σu then

break;
end if

end for
selected← selected ∪ us; covered← covered ∪ σus

end while

5. RELATED WORK
The problem of Influence Maximization and Influence

spread prediction is a well know problem. Broadly, the
work in this area can be categorized into two main cate-
gories. The first category is based on static graphs [7, 23,

13, 6] where the underlying graph is already given and
the probability of a node getting influenced is derived
from probabilistic simulations. The second category is
data driven, where the underlying influence graph is de-
rived based on a relationship such as friendship between
two users or common action within a specified time [24,
8, 11, 10]. The static graph approaches do not capture
the dynamics of real networks such as social media and
hence the data driven approaches are more suitable.

Static graph.
The Influence Maximization problem in social network

was first studied by Richardson et al. [7, 23] where they
formalized the problem with a probabilistic model. Later
Kempe et al. [13] proposed a solution using discrete op-
timization. They proved that the Influence Maximiza-
tion problem is NP-hard and provided a greedy algo-
rithm to select seed sets using maximum marginal gain.
As the model is based on Monte Carlo simulations, it is
not scalable for large graphs. Later improvements were
proposed by Chen et al. [4] using the DegreeDiscoun-
tand prefix excluding maximum influence in-arborescence
(PMIA) [3] algorithms. Both algorithms are heuristic-
based. Leskovec et al. proposed the Cost-Effective Lazy
Forward (CELF) [17] mechanism to reduce the number
of simulations required to select seeds. All of the above-
mentioned studies focus on static graph and do not take
the temporal nature of the interactions between different
nodes into consideration. The latest work on the static
graph Influence Maximization problem by Cohen et al. [6]
is the fastest we have come across which scales to very
large graphs. We compare our seed sets and their in-
fluence spread with the seeds selected by their algorithm
SKIM. Related work on information flow mining on static
graph may be found in [14, 17, 19, 22, 21]. Lie et al.
in [20] and Chen et al. in [2] independently proposed
the first time constrained Influence Maximization solu-
tions for static graph. Their work considers the concept
of time delay in information flow. They assign this delay
at individual node level based on different probabilistic
models and not the information channels or pathways be-
tween the nodes.

Data Driven approach.
There are a few recent work which consider the tempo-

ral aspect of the graph and are based on real interaction
data. Goyal et al. [11] proposed the first data based ap-
proach to find influential users in a social network by con-
sidering the temporal aspect in the cascade of common
actions performed by users, instead of using just static
simulation of the friendship network. However, their work
does not consider the time constraint in the information
flow. In [10] they do use a time window based approach
to determine true leaders in the network. However, the
time window they consider is for direct influence only,
i.e., once a user performs an action how many of his/her
friends repeat that action in that time window. They
have some additional assumptions like information prop-
agation is non-cyclic and if one user performs an action
more then once, they use only the time stamp of the first
action. Our approach does not make such assumptions
and identifies influential nodes without any constraints
on the number of times a user performs an action or that
the propagation graph needs to be a DAG. The time con-
straints we impose are on the path of information flow
from the start of the action. Also, our proposed solu-
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Table 1: Comparison of related work on different parameters
Gomez-
Rodriguez
[24]

Cohen
[6]

Du,N
[8]

Tang
[25]

Goyal
[11,
10]

Kempe
[13]

Lei
[20]

IRS

Static Graph(S), Data or Cascade (C),
Interaction Network (I)

C S C S C S S I

Considers information channel or path-
ways?

Yes No Yes No Yes No No Yes

Time window constrained Yes No Yes No Yes No No Yes
Approx sketching or sampling Yes Yes Yes Yes No No Yes Yes
One Pass algorithm No Yes No No Yes No Yes Yes

tion just needs a single pass over the propagation graph
whereas Goyal’s work do a single pass over the action log
but multiple passes on the social network to find the child
nodes. Our sketch based approximation further improves
the time and space complexity.

There are a few more recent works on data driven ap-
proach by Gomez-Rodriguez et al. [24] and Du et al. [8].
These works try to derive the underlying hidden influence
network and the influence diffusion probabilities along ev-
ery edge from a given cascade of infection times for each
node in the network. Du et al. [8] proposed a scalable
algorithm called ConTinEst, which finds most influential
nodes from the derived influence network. ConTinEst
uses an adaption of a randomized neighborhood estima-
tion algorithm [5] to find the most influential node in the
network. But getting the cascade data of infection times
for every network is not always possible. For example in
an email or a messaging network, we may have access only
to interactions between the users and not to the actual in-
dividual infection time. To the best of our knowledge our
work is the first to try to predict and maximize influence
in a network in which only the interaction data is avail-
able and no other action cascade or relationship between
users is provided.

In Table 1 we give a brief comparison matrix of our IRS
approach with some of the other works in Influence Max-
imization. We compare against the type of input each
approach considers; i.e, a static graph (S), action cascade
or infection time based event cascades (C) or interaction
network based (I). We also compare if in the modeling
of the information propagation in the approach considers
information pathways or channels to do influence max-
imization and if the pathways have time window based
constrains. For performance comparison, we see if they
do use some sampling or sketching techniques to improve
performance and if the algorithm is a one pass algorithm.

6. EXPERIMENTAL EVALUATION
In this section, we address the following questions:
Accuracy of Approximation. How accurate is the

approximation algorithm for the Oracle problem? In other
words, how well can we estimate the size of the IRS set
based on the versionned HLL sketch?

Efficiency. How efficient is the approximate algorithm
in terms of processing time per activity, and how does
the window length ω impact the efficiency? How long
does it take to evaluate an Oracle query based on the IRS
summary?

Effectiveness. How effective is the identification of in-
fluential nodes using IRS to maximize the influence spread
under the Time-Constrained Information Cascade Model?
To this end, we compare our algorithm to a number of

competitors:

• SKIM is the only algorithm which scale to large
datasets in few minutes time. We ran SKIM us-
ing the same parameters Cohen et al. [6] use in their
paper for all the experiments. SKIM is from the cat-
egory of algorithms which considers a static graph
and takes input in the form of a DIAMICS format
graph. Hence we convert the interaction network
data into the required static graph format by re-
moving repeated interactions and the time stamp of
every interaction.

• ConTinEst(CTE) [8] is the latest data driven al-
gorithm which works on static networks where the
edge weights corresponds to the associated trans-
mission times. The edge weight is obtained from a
transmission function which in turn is derived from
an cascade of infection time of every node. As we
assume that only the interaction between different
nodes of a network is being observed and no other in-
formation such as the Infection time cascade is avail-
able, we transform the interactions into a static net-
work with edge weights as required by ConTinEst.
The first time a node u appears as the source of
an interaction we assign the infection time ui for
the source node as the interaction time. Then each
interaction (u, v, t) is transformed into an weighted
edge (u, v) with the edge weight as the difference of
the interaction time and the time when the source
gets infected, i.e, t − ui. We ran the same code as
published by the authors with the default settings
on the transformed data.

• The popular baselines PageRank(PR) and High De-
gree(HD)[13]. Here we select the k nodes with re-
spectively the highest PageRank and out-degree. No-
tice that for PageRank we reversed the direction of
the interaction edges, as PageRank measures incom-
ing “importance” whereas we need outgoing “influ-
ence.” By reversing the edges this aspect is cap-
tured. To make a fair comparison with our algo-
rithm that takes into account the overlap of the in-
fluence of the selected top-influencers, we developed
a version of HD that takes into account overlap.
That is, we select a set of nodes that together have
maximal outdegree. In our experiments we call this
method the Smart High Degree approach (SHD).
Notice that SHD is actually a special case of our
IRS algorithm, where we set ω = 0.

We also ran some performance experiments comparing
the competitors to our IRS algorithm. In the interpre-
tation of these results, however, we need to take into ac-
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Table 2: Characteristics of interaction network
along with the time span of the interactions as
number of days.

Dataset |V|[.103] |E|[.103] Days
Enron 87.3 1,148.1 8,767
Lkml 27.4 1,048.6 2,923
Facebook 46.9 877.0 1,592
Higgs 304.7 526.2 7
Slashdot 51.1 140.8 978
US-2016 4,468 44,638 16

count that the static methods require the graph to be pre-
processed and takes as input the flattened non-temporal
graph, which is in some cases significantly smaller as it
does not take repetitions of activities into account.

6.1 Datasets and Setup
We ran our experiments on real-world datasets obtained

from the SNAP repository [18] and the koblenx network
collection [16]. We tested with social (Slashdot, Higgs,
Facebook) and email (Enron, Lkml) networks. As the real
world interaction networks available from previous works
were not large enough to test the scalability of our al-
gorithm, we created another dataset by tracking tweets
related to the US Election 2016. We follow the same
technique used to create the Higgs data set of the SNAP
repository. Statistics of these data sets are reported in
Table 2. These datasets are available online, sorted by
time of interaction. We kept the datasets in this order, as
our algorithm assumes that the interactions are ordered
by time. This assumption is reasonable in real scenarios
because the interactions will always arrive in increasing
order of time and it is hence plausible that they are stored
as such. The overall time span of the interactions varies
from few days to many years in the data sets. There-
fore, in our experiments we express the window length
as a percentage of the total time span of the interaction
network.

The performance results presented in this section are
for the C++ implementation of our algorithm. All ex-
periments were run on a simple desktop machine with
an Intel Core i5-4590 CPU @3.33GHz CPU and 16 GB
of RAM, running the Windows 10 operating system. For
the larger dataset US-2016 the memory required was more
than 16 GB. hence, we ran the experiments for the US-

2016 dataset on a Linux system with 64 GB of RAM.

6.2 Accuracy of the Approximation
In order to test the accuracy of the approximate algo-

rithm, we compared the algorithm with the exact version.
We compute the average relative error in the estimation
of the IRS size for all the nodes, in function of the num-
ber of buckets (β = 2k). Running the exact algorithm
is infeasible for the large datasets due to the memory re-
quirements, and hence, we test only on the Slashdot and
Higgs datasets to measure accuracy. We tested accuracy
at different window lengths. The results are reported in
Table 3. As expected from previous studies, the accuracy
increases with β. There is a decrease in accuracy with
increasing window length because as the window length
increases, the number of nodes with larger IRS increases
as well, resulting in a higher average error. β values be-
yond 512 yield only modest further improvement in the

Table 3: Average relative error in the estimation
of the IRS size for all the nodes as a function of b
for different window length.

Dataset β
window %

1 10 20

Higgs

16 0.075 0.116 0.113
32 0.044 0.081 0.053
64 0.026 0.056 0.046
128 0.008 0.015 0.017
256 0.005 0.008 0.009
512 0.002 0.006 0.007

Slashdot

16 0.048 0.055 0.105
32 0.023 0.044 0.042
64 0.013 0.022 0.33
128 0.011 0.04 0.05
256 0.01 0.026 0.025
512 0.005 0.019 0.02

Table 4: Memory used in MB to process all the
interactions at different window length ω

Datasets ω = 1 ω = 10 ω = 20

Slashdot 194.9 385.4 431.5
Higgs 1008.6 1138.3 1229.8
Enron 416.3 426 426.3
Facebook 247.4 470 496.2
Lkml 228.5 282.5 295.2
US-2016 50,449 56,829 59,104

accuracy. Therefore, we used β = 512 as default for all of
the next experiments.

6.3 Runtime and Memory usage of the Ap-
proximation Algorithm

We study the runtime of the approximation algorithm
on all the datasets for different window lengths ω. The
runtime increases with the increasing window length, as
expected given that the number of nodes in the IRS in-
creases, resulting in more elements in the vHLL to be
merged. We study the processing time in function of the
time window ω. Here we vary ω from 1% to 100%. The
results are reported in Figure 3. It is interesting to see
in Figure 3 that the processing time becomes almost con-
stant as soon as the window length reaches 10%. This
is because the IRS does not change much once the time
window is large enough. This behavior indicates that at
higher window lengths the analysis of the interaction net-
work becomes similar to that of the underlying static net-
work. As the algorithm is one pass it scales linearly with
the input size. For the largest data set US-2016 with
approx 45 million interactions the algorithm was able to
parse all the interactions in just 8 min.

As shown in Table 4, we observe that the space con-
sumption is essentially dependent on the number of nodes
and not on the number of interactions on the network. For
example, on Enron dataset the total space requirement is
just 295 MB for ω = 20%, whereas for Higgs the mem-
ory requirement is 1229 MB, as the number of nodes for
this data set is 4 times that of Enron. It is natural to see
a slight increase in the space requirement with window
length ω as the lists in the vHLL sketches become larger.

6.4 Influence Oracle Query Efficiency
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Figure 4: Influence spread prediction query time
in milliseconds for window length, ω = 20% as a
function of the seed set size.

Now, we present the query time for the Influence Oracle
using IRS. After the pre-processing step of computing the
IRS for all nodes, querying the data structure is very
efficient. We pick seed nodes randomly and query the data
structure to calculate their combined influence spread. In
Figure 4 we report the average query time for randomly
selected seeds. We observe that, irrespective of the graph
size the query time is mostly the same for all graphs. This
is because the complexity of the versionned HyperLogLog
union is independent of the set size. As expected, query
time increases with the number of seed nodes. Even for
numbers of seed nodes as large as 10, 000, the query time
is just few milliseconds.

6.5 Influence Maximization
Our next goal is to study how the Influence Reachability

Set could be used to solve the problem of Influence Max-
imization. First we do an effectiveness analysis and then
an efficiency comparison with the baseline approaches.

Effectiveness analysis:
We compare the influence spread by running the Time

Constrained Information Cascade Model with infection
probabilities of 50% and 100%. We compare our sketch
based algorithm with the latest sketch based probabilis-
tic approach SKIM [6] and ConTinEst(CTE) [8]. As Both
SKIM and ConTinEst require a specific input format of
the underlying static graph we ran a pre-processing phase
to generate the required graph data from the interac-
tion network. We ran both SKIM and ConTinEst using
the code published by the respective authors. We also

Table 5: Common seeds between different win-
dow length for top 10 seeds

Datasets 1% - 10% 1% - 20% 10% - 20%

Slashdot 0 0 7
Higgs 3 1 3
Enron 0 0 6
Facebook 4 4 9
Lkml 1 0 5
US-2016 6 6 10

compare with other popular baselines PageRank(PR) and
High Degree(HD)[13] by selecting top k nodes with high-
est page rank and highest out degree. We used 0.15 as
the restart probability and a difference of 10−4 in the L1
norm between two successive iterations as the stopping
criterion. We also introduced a variation of High Degree
called Smart High Degree(SHD) in which instead of select-
ing top k nodes with highest degree we select nodes using
a greedy approach to maximize the distinct neighbors.

The results of our comparison are reported in Figure 5.
We observe that in all the datasets the influence spread
by simulation through the seed nodes selected by our
IRS exact algorithm is consistently better than that of
other baselines. The IRS approx approach results in lesser
spread but still it is best for Lkml dataset and is close
to other baselines in other datasets. In other datasets
like Enron or Facebook the nodes with highest degree are
the same node for which the longer temporal paths ex-
ists hence the spread is similar. SKIM and ConTinEst
both perform worst at smaller windows but with higher
window lengths their performance increases; this is be-
cause for higher window lengths there is less pruning of
the information channels resulting in a very small change
in the Influence reachability set size. Hence, the behav-
ior is the same as the analysis of the static graph and
the time window does not have much effect on the Influ-
ence Reachability Set. The Smart High Degree approach
out-performs High Degree in all of the cases. For smaller
values of k the spread is very similar because of common
seeds, for example 4 out of 5 seeds are common in Slash-

dot as nodes with highest page Rank is the also the node
with highest degree and highest IRS set size at ω = 1%.
But as k increases IRS performs much better.

Efficiency analysis:
Next, we compared the time required to find the top

50 seeds. The results are reported in Table 6. For IRS
we report time taken by the more efficient IRS approx
approach. The IRS approach takes more time for Enron

and Lkml as compare to other baselines because the IRS
approach depends on the number of interactions. While
IRS is slower than Page Rank and Smart High Degree for
smaller datasets it scales linearly with the size and takes
8 times less time for the US-2016 dataset with millions
of nodes and interactions. For SKIM the time required
to find top k seeds is quite low. However, it requires
preprocessed data in the DIMACS graph format [1] and
the pre-processing step takes up to 10 hours for the US-

2016 dataset. ConTinEst does not scale so well for large
graphs and is the slowest in all dataseta. For the US-

2016 dataset the memory requirements were so high that
it could not even finish the processing. IRS provides a
promising tradeoff between efficiency and effectiveness,
especially for smaller window lengths when the tempo-

279



 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 5  10  15  20  25  30  35  40  45  50

S
p
re

a
d

top k

PR
HD

SHD
SKIM

IRS(Approx)
IRS(Exact)
ConTinEst

(a) Lkml (ω = 1%)

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 5  10  15  20  25  30  35  40  45  50

S
p
re

a
d

top k

PR
HD

SHD
SKIM

IRS(Approx)
IRS(Exact)
ConTinEst

(b) Enron (ω = 1%)

 0

 1000

 2000

 3000

 4000

 5000

 6000

 5  10  15  20  25  30  35  40  45  50

S
p
re

a
d

top k

PR
HD

SHD
SKIM

IRS(Approx)
IRS(Exact)
ConTinEst

(c) Facebook (ω = 1%)

 6000

 7000

 8000

 9000

 10000

 11000

 5  10  15  20  25  30  35  40  45  50

S
p
re

a
d

top k

PR
HD

SHD
SKIM

IRS(Approx)
IRS(Exact)
ConTinEst

(d) Lkml (ω = 20%)

 20000

 25000

 30000

 35000

 5  10  15  20  25  30  35  40  45  50

S
p
re

a
d

top k

PR
HD

SHD
SKIM

IRS(Approx)
IRS(Exact)
ConTinEst

(e) Enron (ω = 20%)

 15000

 16000

 17000

 18000

 19000

 20000

 5  10  15  20  25  30  35  40  45  50

S
p
re

a
d

top k

PR
HD

SHD
SKIM

IRS(Approx)
IRS(Exact)
ConTinEst

(f) Facebook (ω = 20%)

 12000

 13000

 14000

 15000

 16000

 17000

 5  10  15  20  25  30  35  40  45  50

S
p
re

a
d

top k

PR
HD

SHD
SKIM

IRS(Approx)
IRS(Exact)
ConTinEst

(g) Lkml (ω = 1%)

 20000

 25000

 30000

 35000

 40000

 45000

 50000

 5  10  15  20  25  30  35  40  45  50

S
p
re

a
d

top k

PR
HD

SHD
SKIM

IRS(Approx)
IRS(Exact)
ConTinEst

(h) Enron (ω = 1%)
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(i) Facebook (ω = 1%)
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(j) Lkml (ω = 20%)
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(k) Enron (ω = 20%)
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(l) Facebook (ω = 20%)

Figure 5: Comparing the spread of the influence of top k seeds using Simulation Algorithm for different
seed size at different window length ω at Infection probability 50%(a-f) and 100%(g-l) respectively.

Table 6: Time in seconds to find top 50 seeds by
IRS(approx) and all other baseline approach.

Datasets IRS SKIM PR HD SHD CTE

Slashdot 1.1 1.2 21.9 0.9 2.1 694
Higgs 2.2 4.3 29.8 0.7 1.5 3,802
Enron 93.7 2.2 49.4 0.4 8.1 1,349
Facebook 10.3 1.1 35.6 0.5 2.9 790
Lkml 117.9 1.7 29.8 0.5 22.9 733
US-2016 498 23.6 4,261 47.4 3,338.4 -

ral nature of the graph has a higher role in determining
the influential nodes.

Effect of window on top k seeds:

To see the effect of the time window on the most in-
fluential nodes we study the common seeds between dif-
ferent window lengths. We observed that the top k seeds
change drastically as we change the window length, espe-
cially when the window length is small. But for window
lengths greater than 10% the top k seeds do not change
much. For US-2016 the top 10 seeds are exactly the same
for the 10% and 20% window. In Table 5 we have re-
ported the common seeds among different top 10 seeds
at different window lengths. There are no common seeds
between the top 10 seeds found for window lengths of 1%
and 10% for Slashdot and Enron and only 3− 4 common
seeds for Higgs, Facebook and Lkml. This shows that for
different window lengths there are different nodes which
become most influential and hence it is necessary to con-
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sider window length while doing Influence maximization.

7. CONCLUSION
We studied the problem of information propagation in

an interaction network—a graph with a sequence of time
stamped interactions. We presented a new time con-
strained influence channel based approach for Influence
Maximization and Information Spread Prediction. We
presented an exact algorithm, which is memory inefficient,
but it set the stage for our main technique, an approxi-
mate algorithm based on a modified version of Hyper-
LogLog sketches, which requires logarithmic memory per
network node, and has fast update time. One interesting
property of our sketch is that the query time of the Influ-
ence Oracle is almost independent of the network size. We
showed that the time taken to do influence maximization
by a greedy approach on our sketch is very time efficient.
We also showed the effect of the time window on the in-
fluence spread. We conclude that smaller window lengths
have very high impact on the Information propagation
and hence it is important to consider the spread window
to do Influence maximization.
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