Poster Paper

O

proceedings

Vertex-Centric Graph Processing: Good, Bad, and the Ugly

Arijit Khan
Nanyang Technological University, Singapore
arijit. khan@ntu.edu.sg

ABSTRACT

We study distributed graph algorithms that adopt an itezatertex-
centric framework for graph processing, popularized by gas
Pregel system. Since then, there are several attempts te-imp
ment many graph algorithms in a vertex-centric framewaskyall

as efforts to design optimization techniques for improvihg ef-
ficiency. However, to the best of our knowledge, there has not
been any systematic study to compare these vertex-cemtpiei
mentations with their sequential counterparts. Our pagéresses
this gap in two ways. (1) We analyze the computational com-
plexity of such implementations with the notion of time-pessor
product, and benchmark several vertex-centric graph ithgos
whether they perform more work with respect to their besivkm
sequential solutions. (2) Employing the concept of baldrac-
tical Pregel algorithms, we study if these implementatisunfer
from imbalanced workload and large number of iterations.r Ou
findings illustrate that with the exception of Euler touretrélgo-
rithm, all other algorithms either perform asymptoticatipre work
than their best-known sequential approach, or suffer froai-
anced workload/ large number of iterations, or even both.alde
emphasize on graph algorithms that are fundamentally diffto

be expressed in vertex-centric frameworks, and concluddisy
cussing the road ahead for distributed graph processing.

1. INTRODUCTION

In order to achieve low latency and high throughput over mas-
sive graph datasets, data centers and cloud operatorsienssale-
out solutions, in which the graph and its data are partitioner-
izontally across cheap commodity servers in the clustee dik-
tributed programming model for large graphs has been pdpath
by Google’s Pregel framework [4], which was inspired by thékB
Synchronous Parallel (BSP) model [12]. It hides distribatre-
lated details such as data partitioning, communicatiodgetiging
system architecture, and fault tolerance behind an abstat
In Pregel, also known as tthink-like-a-vertexnodel, graph al-
gorithms are expressed as a sequence of iterations calped-su
steps. During a superstep, Pregel executes a user-definetibfu
for each vertex in parallel. The user-defined function djescihe
operation at a single vertexand at a single supersteéh The su-

(©2017, Copyright is with the authors. Published in Proc. 2oter-
national Conference on Extending Database Technology {BPBarch
21-24, 2017 - Venice, Italy: ISBN 978-3-89318-073-8, on Gpmceed-
ings.org. Distribution of this paper is permitted under tivens of the Cre-
ative Commons license CC-by-nc-nd 4.0

Series ISSN: 2367-2005 438

persteps are globally synchronous among all vertices, @sdage
are usually sent along the outgoing edges from each vertex.
With the inception of the Pregel framework, vertex-centtis-
tributed graph processing has become a hot topic in the aks
community (for a survey, see [13]). Although Pregel prosid
high-level distributed programming abstract, it suffersni effi-
ciency issues such as the overhead of global synchronizdiaye
volume of messages, imbalanced workload, and straggldr-
lem due to slower machines. Therefore, more advanced v
centric models (and its variants) have been proposed, asygn
chronous (GraphLab), asynchronous parallel (GRACE)dxdes:
asynchronous parallel (Giraph Unchained), data parddedghX
Pregelix), gather-apply-scatter (PowerGraph), timebaffiew (Na-
iad), and subgraph centric frameworks (NScale, Giraph¥#Ji-
ous algorithmic and system-specific optimization techegjwer:
also designed, e.g., graph partitioning and re-partitigncombin
ers and aggregators, vertex scheduling, superstep shargszag
reduction, finishing computations serially, among mangergh
While speeding up any algorithm is always significant in it&
right, there may be circumstances in which we would not bt
greatly from doing so. McSherry et. al. [5] empirically dem
strated that single-threaded implementations of manyrgedgo-
rithms using a high-end 2014 laptop are often an order of i
tude faster than the published results for state-of-thdistributec
graph processing systems using multiple commodity masetane
hundreds of cores over the same datasets. Surprisinglyfheétex
ception of [14], the complexity of vertex-centric graph @iighms
has never been formally analyzed. As one may realize, thist
a trivial problem — there are multiple factors involved in &-
tributed environment including the number of processoosmu-
tation time, network bandwidth, communication volume, aren-
ory usage. To this end, we make the following contributions.
e We formally analyze the computational complexity of ver
centric implementations with the notion of time-proce
product [12], and benchmark several vertex-centric gréy
gorithms whether they perform asymptotically more wot
comparison to their best-known sequential algorithms.

e \We use the concept of balanced, practical Pregel algor
[14] to investigate if these vertex-centric algorithmsfsr
from imbalanced workload and large number of iteratior

While the notion of balanced, practical Pregel algorithnas in-
troduced by Yan et. al. [14], they only considered the coteu
component-based algorithms. On the contrary, in this papeae:
port as many as fifteen different graph algorithms (Tablevhpse
vertex-centric algorithms were implemented in the literat Fi-
nally, we also identify graph workloads and algorithms tat dif-
ficult to be expressed in the vertex-centric framework, dgtlfght
some important research directions.

10.5441/002/edbt .2017.39

http://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2017.39

| | Graph ” Vertex-Centric ”

Best Sequential ” Vertex-Centric

Workload Algorithm | Complexity Algorithm | Complexity More Work? | BPPA?
1 Diameter (Unweighted) [6] O(mn) BFS [9] O(mn) No No
2 PageRank [4] O(mK) power iteration O(mK) No No
3 Connected Component Hash-Min [4] O(md) BFS [3 O(m +n) Yes No
4 Connected Component S-V [14] O((m + n)logn) BFS [3 O(m + n) Yes No
5 Bi-Connected Component 14 O((m + n)logn) DFS [3 O(m +n) Yes No
6 Weakly Connected Component 14 O((m + n)logn) BFS [3 O(m +n) Yes No
7 Strongly Connected Component 14 O((m + n)logn) DFS [11] O(m +n) Yes No
8 Euler Tour of Tree 14 O(n) DFS O(n) No Yes
9 Pre- & Post-order Tree Traversal 14 O(nlogn) DFS O(n) Yes Yes
10 Spanning Tree 14 O((m + n)logn) BFS O(m +n) Yes No
11 Minimum Cost Spanning Tree [10] O(dmlogn) Chazelle’s algorithm O(ma(m,n)) Yes No
12 | Betweenness Centrality (Unweighte: 8 O(mn) Brandes’ algorithm O(mn) No No
13 Single-Source Shortest Path 4 O(mn) Dijkstra with Fibonacci heap O(m + nlogn) Yes No
14 | All-pair Shortest Paths (Unweighted 6 O(mn) Chan'’s algoithm O(mn) No No
15 Graph Simulatiorf I [1] O(m2(ng +my)) Henzinger et. al. [2] O ((m +n) (mg + nyg)) Yes No

Table 1:Efficiency analysis for vertex-centric graph algorithmsiatles =n, # edges 3n, diameter =

(a) superstep 0 (b) Superstep 1 (C) Superstep 2
Figure 1:Vertex-centric algorithm for diameter computation in uiigited graphs

2. PRELIMINARIES

2.1 Time-Processor Product

Time-processor product was employed by Valiant [12] as acom
plexity measure of algorithms on the BSP model, defined by the
following parameters. (1) Bandwidth parametergisthat mea-
sures the permeability of the network to continuously seatffi¢
to uniformly-random destinations. The parametés defined such
that anh-relation will be delivered in timég. (2) Synchronization
periodicity is L, where the components at regular intervalsiof
time units are synchronized. In a superstep of periodiEity. lo-
cal operations anflL /g | -relation message patterns can be realized.
(3) The number of processorsjs Let w; be the amount of local
work performed by processoim a given superstep. Assumgand

messages sent/received by each vertiexO(d(v)) (or, O(din (v)+
dout(v))). (4) The algorithm terminates aftér(log n) supersteps.
Properties 1-3 offer good load balancing and linear costaahe
superstep, whereas property 4 impacts the total running tim

3. COMPLEXITY ANALYSIS

We summarize the complexity of fifteen vertex-centric graph
gorithms in Table 1. We shall discuss five of them in the follayv

3.1 Diameter Computation

We consider a vertex-centric algorithm [6] that computesetk-
act diameter of an unweighted graph. Let us denote the e@mgnt
e(v) of a vertexv as the largest hop-count distance frono any
other vertex in the graph. The diameteof the graph is defined
as the maximum eccentricity over all its nodes. Instead dfirfip
this largest vertex eccentricity one-by-one, the algarithiorks by
computing the eccentricity of all vertices simultaneously

We illustrate in Figure 1 the eccentricity computation noetlof
one vertex. Initially, each vertex adds it's own unique idthe
outgoing messages (sent along the outgoing edges) andalse t

r; be the number of messages sent and received, respectiyely, b history set, which resides in the local memory of that vertak

processoi. Letw = max?_; w;, andh = max?_, (max(s;, r;)).
Then, the time for a supersteprisax(w, gh, L).

If we have multiple processors, we can solve a problem more
quickly by dividing it into independent sub-problems andvsw
them at the same time, one at each processor. Given an iaput, Si
the running timel’(n) is the elapsed time from when the first pro-
cessor begins executing to when the last processor stopstag
A BSP algorithm for a given problem is called efficient if it®pes-
sor boundP(n) and time bound’(n) are such that time-processor
productP(n)T'(n) = O(S), wheresS is the running time of the
best-known sequential algorithm for the problem, provitieat L
and g are below certain critical values. Therefore, with this met
ric, we measure whether a vertex-centric algorithm pergonmore
work, compared to the problem’s best-known sequentialrétgu.

2.2 Balanced, Practical Pregel Algorithms

For an undirected graph, we denoted{y) the degree of vertex
v. On the other hand, let;,, (v) andd,.:(v) denote the in-degree
and out-degree, respectively, of vertexn a directed graph. A
Pregel algorithm is called a balanced, practical Pregedralgn
(BPPA) [14] if it satisfies the following. (1) Each vertexuses
O(d(v)) (or, O(din(v)+dout(v))) storage. (2) The time complex-
ity of the vertex-compute() function for each vertexs O(d(v))
(or, O(din(v) 4+ dout(v))). (3) At each superstep, the size of the

1k is # iterations for convergence,() functional inverse of Ackermann’s func-
tion. n, andm, the number of nodes and edges, respectively, in the quephgra

2For higher values o, the time-processor product would be even higher.

439

ter the initial superstep, the algorithm operates by ibegathrough
the set of received ids, which correspond to the verticdsstiva the
original messages. The receiving vertex then constru@saf sut-
going messages by adding each element of the incoming setwhi
was not seen yet. The reason for keeping a history of thenartigi
ing ids that were received earlier is to prevent the re-pyapan of

a message to the same vertices. The history set also sepento
the set of total messages by eliminating message paths thdd w
never result in the vertex’s eccentricity.

Assuming the graph is connected, each vertex will process a
message from each originating vertex exactly once. Theithgo
terminates when the largest eccentricity is calculated there-
fore, the diameter of the graph is equal to the number of stges
(minus 1, for the final, non-processing superstep).

Since each vertex generates a unique message, there dre tot
©(n) messages. Each message is pagd@d) times, resulting in
a message complexity @#(mn). There are totaD(J) supersteps.
Each vertex processesmessages; therefore, the overall computa-
tion cost isO(n?). Assuming bandwidth parametéy = O(1),
the time-processor product@(mn), which is equal to the com-
plexity of the best-known sequential algorithm.

However, this vertex-centric algorithm is not BPPA becaysg
The number of messages that each vertexays can be asymptot-
ically larger thanO(d(v)) at later supersteps. (2) Given that each
vertexv must store a history of the messages received, each verte:
storesO(n) vertex IDs, which is larger tha®(d(v)). (3) There
are totalO(¢d) supersteps, which could be larger th@flog n).

6@@@@6@6

€Y (b) (©

Figure 2:Forest structure of S-V algorithm [14]

----- & 8
.

(@) Tree- (b) Star-hooking (C) Shortcut-
hooking ting
Figure 3:Tree hooking, star hooking, and shortcutting [14]

3.2 Connected Component
We study two vertex-centric algorithms: Hash-min and S-4][1

3.2.1 Hash-Min Algorithm

We assume that each vertex in a grépls assigned a unique ID.
The color of a connected componentiis defined as the smallest
vertex among all vertices in the component. In Superste@dh e
vertexv initializesmin(v) as the smallest vertex in the ¢t} U
neighbors(v)), sendsmin(v) to all v's neighbors, and votes to
halt. In each subsequent superstep, a vertektains the smallest
vertex from the incoming messages, denotedubyif v < v, v
setsmin(v) = w and sendsnin(v) to all its neighbors. Finally,
v votes to halt. When all vertices vote to halt and there is @ ne
message in the network, the algorithm terminates.

It takes at mostD(¢) supersteps for the ID of the smallest ver-
tex to reach all the vertices in a connected component, agddh
superstep, each vertextakes at mostO(d(v)) time to compute
min(v) and sends/receive®(d(v)) messages each usirg(1)
space. Therefore, it is a balanced Pregel algorithm (iatisfees
properties 1-3), but not BPPA since the number of superstaps
be larger thar©(log n), e.g., for a straight-line graph.

Each superstep consists@{m) messages an@(m) computa-
tions. Assuming; = O(1), the time-processor product@®(m?).
This is more than the complexity of the best-known sequkatia
gorithm, which is due to BFS with complexit9 (m + n).

3.2.2 Shiloach-Vishkin (S-V) Algorithm

In the S-V algorithm, each vertex maintains a pointeD[u].
Initially, D[u] = w, forming a self-loop as depicted in Figure 2(a).
During the algorithm, vertices are arranged by a forest shah
all vertices in each tree in the forest belong to the sameexiad
component. The tree definition is relaxed a bit to allow tkee oot
w to have a self-loop (see Figures 2(b) and 2(c)), i¥w] = w;
while D[v] of any other verteX” in the tree points te’s parent.

The S-V algorithm proceeds in iterations, and in each ii@nat
the pointers are updated in three steps (Figure 3)tré&)hooking
for each edgéu, v), if u's parentw = D[u] is a tree root, hookw
as a child ofv’s parentD(v] (i.e., merge the tree rooted atinto
v's tree); (2)star hooking for each edgéu, v), if w is in a star (see
Figure 2(c) for an example of star), hook the stav’totree as Step
(1) does; (3shortcutting for each vertexy, move vertexy and its
descendants closer to the tree root, by hookirtg the parent of
v's parent, i.e., settind[v] = D[D[v]]. The algorithm terminates
when every vertex is in a star. We perform tree hooking in $i¢p
and star hooking in Step (2) only P[v] < D[u], which ensures
that the pointer values monotonically decrease.

It was proved that the above S-V algorithm computes condecte

440

(&) Euler tour (b) conjoined-
tree: vertex 5 is
super-vertex

Figure 4:Euler Tour and MCST construction

components irO(log n) supersteps [14]. However, the algorit
is not a BPPA because a vertexmay become the parent of m
thand(v) vertices and hence receives/sends more tl{an mes
sages in a superstep. On the other hand, the overall numbeas
sages and computations in each superstep are bound2gyanc
O(m), respectively. Wity = O(1), we have the time-proces:
product =O((m + n)logn). As earlier, this is higher than t
complexity of the best-known sequential algorithm.

3.3 Euler Tour Tree Traversal

A Euler tour is a representation of a tree, where each tree
(u,v) is considered as two directed eddgesv) and (v,u). As
shown in Figure 4(a), a Euler tour of the tree is simply a Hah
circuit of the directed graph, that is, a trail that visitegvedgs
exactly once, and ends at the same vertex where it starts.

We assume that the neighbors of each vertex v are sortt
cording to their IDs, which is usually common for an adjag
list representation of a graph. For a vertexlet first(v) anc
last(v) be the first and last neighbor ofin that sorted order; ai
for each neighbom of v, if u # last(v), let next,(u) be the
neighbor ofv next tow in the sorted adjacency list. We also
fine next,(last(v)) = first(v). As an example, in Figure 4(
first(0) = 1, last(0) = 6, nexto(1) = 5, andnexto(6) = 1.

Yan et. al. [14] designed a 2-superstep vertex-centricrihgn
to construct the Euler tour as given below. In Superstep dh
vertexv sends message:, next,(u)) to each neighbou; in Su-
pertep 2, each vertex receives the messade, next,(u)) sen
from each neighbow, and storesext, (u) with v in u’s adjacenc
list. Thus, for every vertex. and each of its neighbar, the nex
edge of(u, v) is obtained a$v, next,(u)), which is the Euler tou

The algorithm requires a constant number of superstepsehy
superstep, each vertexsends/receive®(d(v)) messages, ea
usingO(1) space. By implementingext,(.) as a hash table as:
ciated withv, we can obtaimezt, (u) in O(1) expected time give
u. Therefore, the algorithm is BPPA. In addition, wigh= O(1),
the time-processor product @(n). This matches with the tin
complexity of the best-known sequential algorithm.

3.4 Minimum Cost Spanning Tree

Salihoglu et. al. implemented the parallel (vertex-cetver-
sion of Boruvka’s minimum cost spanning tree (MCST) aldori
[10] for a weighted, undirected gragh. The algorithm iterate
through the following phases, each time adding a set of eth
the MCSTS it constructs, and removing some vertices fréhun-
til there is just one vertex, in which case the algorithmdalt

1. Min-Edge-Picking: In parallel, the edge list of each v
tex is searched to find the minimum weight edge from that xe
Ties are broken by selecting the edge with minimum destin
ID. Each picked edgév, u) is added toS. As proved in Boru
vka'’s algorithm, the vertices and their picked edges forgjodtit
subgraphsly, T, . .., Tk, each of which is a@onjoined-tregi.e.
two trees, the roots of which are joined by a cycle (Figure}
We refer to the vertex with the smaller ID in the cycle Bf a<
the super-vertex df;. All other vertices inT; are called its sul
vertices. The following steps merge all of the sub-vertimesvery
T; into the super-vertex df;.

2. Super-vertex Finding: First, we find all the super-vertices.
Each vertex sets its pointer to the neighboipicked in Min-Edge-
Picking. Then, it sends a messageuvtpointer. Ifv finds that it
received a message from the same vertex to which it sent aageess
earlier, it is part of the cycle. The vertex with the smallrih the
cycle is identified as the super-vertex. After this, eactiexefinds
the super-vertex of the conjoined-tree it belongs to udie@tmple
Pointer Jumpingalgorithm. The input? to the algorithm is the set
of super-vertices, and the inp#itis the set of sub-vertices.
Simple-Pointer-Jumping-Algorithif?, S)

repeat until every vertex inS points to a vertex iR

for each vertexwv that does not point to a vertex i do
perform a pointer jumpu.pointer— v.pointer.pointer

3. Edge-Cleaning-and-RelabelingWe shrink each conjoined

tree into the super-vertex of the tree. This is performedHews.
In the set of edges off, each vertex is renamed with the ID of
the super-vertex of the conjoined tree to which it belonghe T
modified graph may have self-loops and multiple edges. Al se
loops are removed. Multiple edges are removed such thattbaly
lightest edge remains between a pair of vertices.

The above operations can be implementedi@@) supersteps,
which is due to the maximum number of iterations required for
the simple pointer jumping algorithm. Each superstep hasage
and computation complexit¢)(m). The three above phases are
repeated, that is, the graph remaining afterittie iteration is the
input to thei + 1-th iteration, unless it has just one vertex, in which
case the algorithm halts. Furthermore, the number of \etaf
the graph at the + 1-th iteration is at most half of the number
of vertices at the-th iteration. Hence, the number of iterations
is at mostO(logn). With g = O(1), the time-processor product
is O(mdlogn). This is higher than the complexity of the best-
known sequential algorithm for MCST, which@(ma(m,n)) by
Chazelle’s algorithm. Herey() is the functional inverse of Ack-
ermann’s function, and it grows extremely slowly, so that &6
practical purposes it may be considered a constant no githate
4. Even if we consider widely-used Prim’s algorithm (seqiaht
it has time complexityO(m + nlogn) using fibonacci heap and
adjacency list. In summary, the vertex-centric algorittomMICST
performs more work than the problem’s sequential solutions

The algorithm is not in BPPA, since (1) the Edge-Cleanind-an
Relabeling step increases the number of neighbors of thersup
vertices, and (2) the number of superstep®({8 log n).

3.5 Difficult Problems for
Vertex-Centric Model

An important question is whethel kinds of graph analytics
tasks and algorithms can be express#idientlyat vertex level. (1)
Vertex-centric model usually operates on the entire grayiich is
often not necessary for online ad-hoc queries [15], inclgdihort-
est path, reachability, and subgraph isomorphism. (2) fiodel is
not well-suited for graph analytics that require a subgregpfiric
view around vertices, e.g., local clustering coefficiengrgle and
motifs counting. This is due to the communication overheesd;
work traffic, and the large amount of memory required to aorest
multi-hop neighborhood in each vertex’s local state [7).N8t all
distributed algorithms for the same graph problem can bdemp
mented in a vertex-centric framework. As an example, itfisodilt
to implement the distributed union-find algorithm for thenected
component problem using a vertex-centric model [5]. Howeve
this algorithm is useful for graph streams. (4) State-efdint re-
search on vertex-centric graph processing mainly focusealion-

ited number of graph workloads such as PageRank and codnecte [15)

components, and itis largely unknown whether some otheelyd

441

used graph computations, e.g., modularity optimizatiancfam-
munity detection, betweenness centrality (weighted ggaphflu-
ence maximization, link prediction, partitioning, and exdting
can be implemented efficiently over vertex-centric systems

4. DISCUSSION AND CONCLUSION

Our analysis shows that vertex-centric algorithms ofteifiest
from imbalanced workload/ large number of iterations, agidgrm
more work than their best-known sequential algorithms.

Due to such difficulties, alternate proposals exist wheeeetitire
graph is loaded on a single machine having larger memoryn er
multi-core machine with shared-memory. Neverthelessribiged
graph processing systems would still be critical due to wWeefbl-
lowing reasons. First, graph analysis is usually an inteliate step
of some larger data analytics pipeline, whose previous athalf-
ing steps might require distribution over several machitesuch
scenarios, distributed graph processing would help todeexmpen-
sive data transfers. Second, distributed-memory systemearglly
scale well, compared to their shared-memory counterparts.

However, one distributed model might not be suitable for
kinds of graph computations. Many recent distributed syste
e.g., Trinity, NScale, and Apache Flink support multipleguigms,
including vertex-centric, subgraph-centric, dataflowg ahared ac:
cess. But, perhaps more importantly, we need to identifyaghe
propriate metrics to evaluate these systems. In additidinte-
processor product and BPPA that we studied in this work,
can also investigate the speedup and cost/computation.offven
critical metrics areexpressibilityandusability, which were mostly
ignored due to their qualitative nature. The former idesgifine
workloads that can be efficiently implemented in a distiéolframe
work, while the later deals with ease in programming, e gmain-
specific languages, declarative programming, high-lebstrac-
tion to hide data partitioning, communication, system aeciure,
and fault tolerance, as well as availability of debuggind prove-
nance tools. With all these exciting open problems, thisaesh
area is likely to get more attention in the near future.

5. REFERENCES

[1] A. Fard, M. U. Nisar, L. Ramaswamy, J. A. Miller, and M. &alA Distributed
Vertex-Centric Approach for Pattern Matching in Massiva@rs. INEEE
International Conference on Big Data013.

M. R. Henzinger, T. A. Henzinger, and P. W. Kopke. CompgtSimulations on
Finite and Infinite Graphs. IROCS 1995.

J. Hopcroft and R. Tarjan. Algorithm 447: Efficient Algdmms for Graph
Manipulation.Commun. ACM16(6):372-378, 1973.

G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. HoiN. Leiser, and
G. Czajkowski. Pregel: A System for Large-scale Graph Fssiog. In
SIGMOD 2010.

F. McSherry, M. Isard, and D. G. Murray. Scalability! Bait\What Cost? In
HOTOS 2015.

C. Pennycuff and T. Weninger. Fast, Exact Graph Diam@temputation with
Vertex Programming. IHPGM, 2015.

A. Quamar, A. Deshpande, and J. Lin. NScale: Neighbodhoentric Analytics
on Large Graphs. INLDB, 2014.

M. Redekopp, Y. Simmhan, and V. K. Prasanna. Optimizetiand Analysis of
BSP Graph Processing Models on Public CloudsPIDPS 2013.

L. Roditty and V. V. Williams. Fast Approximation Algatims for the Diametel
and Radius of Sparse Graphs 3fOGC 2013.

(2

13

4

(3]
6]
(7]

8

[9

[10] S. Salihoglu and J. Widom. Optimizing Graph Algorithors Pregel-like
Systems. IVLDB, 2014.

[11] R. Tarjan. Depth-First Search and Linear Graph Aldonis. SIAM Journal on
Computing 1(2):146-160, 1972.

[12] L. G. Valiant. A Bridging Model for Parallel ComputatiocCommun. ACM
33(8):103-111, 1990.

[13] D.Yan,Y.Bu, Y. Tian, A. Deshpande, and J. Cheng. Bigfbranalytics
Systems. IrSIGMOD, 2016.

[14] D.Yan, J. Cheng, K. Xing, Y. Lu, W. Ng, and Y. Bu. Pregelgatithms for

Graph Connectivity Problems with Performance Guarante@éLDB, 2014.
Q. Zhang, D. Yan, and J. Cheng. Quegel: A General-Pergystem for
Querying Big Graphs. I58IGMOD, 2016.

	Poster Papers
	Vertex-Centric Graph Processing: Good, Bad, and the UglyArijit Khan

