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ABSTRACT
The top-k skyline groups query (k-SGQ) returns k skyline
groups that dominate the maximum number of points in
a given data set. It combines the advantages of skyline
groups and top-k queries. The k-SGQ is an important tool
for queries that need to analyze not only individual points
but also groups of points, and can be widely used in areas
such as decision support applications, market analysis and
recommendation system. In this paper, we formally define
this new problem and design an efficient algorithm to solve
this problem. Extensive experimental results show that our
algorithm is effective and efficiency.

1. INTRODUCTION
The skyline query [1] is widely used in multi-criteria opti-

mal decision making applications, which aims at retrieving
points that are not dominated by other points in a data
set. In this paper, we assume that larger values are pre-
ferred. Qi denotes the ith point and Qi

k denotes the value
on the kth dimension of Qi, then Qi dominates Qj , denoted
as Qi ≺ Qj , iff for each k, Qi

k ≥ Qj
k and for at least one

k, Qi
k > Qj

k (1 ≤ k ≤ d). Fig. 1 shows a skyline example.
The data set in Fig. 1 (left) consists of 5 points. Each point
has two dimensions. We can see that Q4(4, 4) ≺ Q3(4, 2) as
an example of dominance relationship between points. As
shown in Fig. 1 (right), the skyline contains Q1, Q2 and Q4.
Though skyline computation is particularly useful in multi-

criteria decision making applications, it is inadequate to an-
swer queries that need to analyze not only individual points
but also their combinations [3, 4, 2, 6, 9]. Specifically, in
many real-world applications, we need to find groups of
points that are not dominated by other groups of equal size.
It is shown in [3, 4, 2, 6, 9] that a skyline group may consist

of both skyline points and non-skyline points, all points in
the data set have a chance to form a skyline group. There-
fore, there are total Ck

n combinations, which are far more
than the n candidates in traditional skyline computation.
Moreover, the output size of skyline groups is far more than
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Figure 1: A skyline example

the size of skyline. The experimental results proposed in [6,
9] show that the output size is million scale even when the
input is a few thousand points. The large output size is less
informative and it may be hard for users to make a good,
quick selection.

Motivation. The large output size promotes us to de-
sign an algorithm to select the best k skyline groups. Such
k skyline groups should be most representative. Inspired by
the top-k skyline queries, we quantify the concept of ”repre-
sentative” by counting the number of points dominated by
the group. Here, we define that a point Q is dominated by a
group G iff there exists at least one point Q′ in G satisfying
Q′ ≺ Q. We briefly summarize our contributions as follows:

• We propose a novel problem, top-k skyline groups query,
so that the k skyline groups with maximal number of
dominated points can be produced to facilitate user
queries.

• We propose an efficient algorithm for processing k-
SGQ, using several pruning techniques.

• We conduct extensive experiments to validate the ef-
fectiveness and efficiency of our proposals.

2. PRELIMINARY
In this section, we introduce the problem definition and

related works.

2.1 Problem Definition
First, we introduce the definitions of dominance relation-

ship between groups defined in [3, 4, 2, 6, 9]. We use ≺g

to denote the dominance relationship between groups. Let
G ≺g G′ denote G dominates G′. The dominance relation-
ship between groups defined in existing works can be divided
into two kinds.

Definition 1. (≺g) [6] Assuming thatG = {Q1, Q2, ..., Ql}
and G′ = {Q′1, Q′2, ..., Q′l} are two different groups with l
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points. We say that G ≺g G′, iff there exist two permuta-
tions of the l points for G and G′, G = {Qu1, Qu2, ..., Qul}
and G′ = {Q′u1, Q′u2, ..., Q′ul} satisfying that for each i,
Qui ≼ Q′ui and for at least one i, Qui ≺ Q′ui (1 ≤ i ≤ l).

For instance in the Fig.1, since Q2 ≺ Q5 and Q4 ≺ Q3,
thus {Q2, Q4} ≺g {Q3, Q5}.

Definition 2. (≺g) [3, 4, 2, 9] For an aggregate function f
and a group G = {Q1, Q2, ..., Ql}, then G is represented by
a point Q, where Qj = f(Q1

j , Q
2
j , ..., Q

l
j). For two distinct

groups G and G′, Q and Q′ represents G and G′ respectively.
We define G ≺g G′ iff Q ≺ Q′.

In this paper, we study two kinds of aggregate function.
The first one is strictly monotone, which means f(Q1

j , Q
2
j , ...,

Ql
j) > f(Q1′

j , Q2′
j , ..., Ql′

j ) if Q
i
j ≥ Qi′

j for every i ∈ [1, l] and

∃k such that Qk
j > Qk′

j , where 1 ≤ k ≤ l. For the strictly
monotone function, we study SUM in this paper. We also
investigate aggregate functions that are not strictly mono-
tone such as MAX and MIN . Fig. 2 shows the dominance
relations under different aggregate functions.

Figure 2: Dominance relations under different ag-
gregate functions

Based on the Definition 1 or Definition 2, skyline group is
defined as follows:

Definition 3. (GSkyline) The l-point GSkyline consists
of groups with l points that are not dominated by any other
groups of the same size.

We define the problem of top-k skyline groups query in the
following. To facilitate the presentation, we define a function
score(G) that counts the number of the points dominated
by group G. Then we have:

score(G) = |{Q ∈ D −G|∃Q′ ∈ G ∧Q′ ≺ Q}|

For instance, if G = {Q2, Q4}, score(G) = 2.

Definition 4. (k-SGQ) Top-k skyline groups query re-
trieves the set SK ⊆ GSkyline of k skyline groups with
highest score values. Then we have:

∀G ∈ SK , ∀G′ ∈ (GSkyline− SK) → score(G) ≥ score(G′)

Obviously, k-SGQ can be applied to find top-k skyline
groups based on both Definition 1 and Definition 2.

2.2 Related Work
The most related works with regard to the concept of sky-

line groups queries are [3, 4, 2, 6, 8, 9]. [3, 4, 2, 8, 9] in-
vestigate the skyline groups query based on Definition 2 and
Liu et al. [6] investigate the problem based on Definition 1.
However, the output sizes of both definitions are large, which
is a potential limitation of skyline group operator. To solve
this, we propose an efficient algorithm to select top-k skyline
groups.

The most related works to our k-SGQ are [5] and [8].
[5] proposes a top-k representative skyline points query. It
aims to compute a set of k skyline points such that the total
number of points dominated by one of the k skyline points
is maximized. Obviously, it is inherently different from our
problem. Moreover, since a skyline group may consist of
both skyline points and non-skyline points. Therefore, the
techniques proposed in [5] are not applicable to our problem.
[8] proposes an algorithm to find top-k combinatorial sky-
line. In their work, a combinatorial skyline is a skyline group
based on Definition 2. They rank skyline groups based on a
predefined preferred attribute order. It only reports groups
whose aggregate values for a certain attribute are the high-
est. Obviously, the problem proposed in [8] is also inherently
different from our problem. Moreover, the ranking method
proposed in [8] is not applicable to Definition 1, because a
group cannot be represented by a point based on this defi-
nition. Therefore, [8] is orthogonal to our problem.

To the best of our knowledge, we are the first to address
the problem of finding top-k skyline groups that dominate
the maximum number of points.

3. COMPUTING TOP-K GSKYLINE
The brute-force method to compute k-SGQ is to enumer-

ate all skyline groups and count the number of points dom-
inated by each group, then select the best k skyline groups.
For each skyline group we need O(l×n) time complexity to
count the points dominated by the group. Let |SG| denote
the size of skyline groups, then time complexity of select-
ing best k groups is O(|SG| × log k). Therefore, the overall
time complexity is O(l × n × |SG| × log k). Obviously, the
brute-force method incurs high computation overhead.

3.1 The k-SGQ Algorithm
Let Skyline denote the set of points in the skyline. Skyline

is an accompanying result when computing GSkyline [6, 9].
We summarize frequently used notions in Table 1.

Lemma 1. For Definition 1 and strictly monotone aggre-
gate functions under Definition 2, if G ∈ GSkyline and G =
{Q1, Q2, ..., Ql}, then for each Qi ∈ G, we have Qi ∈ Skyline
or ∃Qj ∈ G and Qj ∈ Skyline → Qj ≺ Qi.

Proof. We prove by contradiction. Assume that Qj ≺
Qi and Qj ∈ Skyline, if Qj /∈ G, we can use Qj to replace
Qi in G, the new group is denoted as G′.

Case 1. For the Definition 1, since Qj ≺ Qi and all the
other points are the same, then G′ ≺g G which contradicts
G ∈ GSkyline.

Case 2. For a strictly monotone aggregate function f un-
der Definition 2, since Qj ≺ Qi, we assume that Qj

t > Qi
t.

Then we have f(Q1
t , ..., Q

i
t, ..., Q

l
t) < f(Q1

t , ..., Q
j
t , ..., Q

l
t).

On other dimensions, we have f(Q1
t′ , ..., Q

i
t′ , ..., Q

l
t′) ≤ f(Q1

t′ ,
..., Qj

t′ , ..., Q
l
t′). Therefore, G′ ≺g G, which contradicts G ∈

GSkyline.

Therefore, for Definition 1 and strictly monotone aggregate
functions under Definition 2, if G ∈ GSkyline, then for each
Qi ∈ G, we can get that Qi ∈ Skyline or ∃Qj ∈ G and Qj ∈
Skyline → Qj ≺ Qi.

Lemma 2. For MAX and MIN under Definition 2, if
∃Qi ∈ G (G ∈ GSkyline) and Qi is dominated by at least
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Table 1: The Summary of Notations
Notation Description

D A d-demonical data set
d Number of dimensions
n Number of points in D

Qi The ith point in D

Qi
j The value on the jth dimension of Qi

≺ Preference/dominance relation
Skyline The skyline of data set D

l Size of a group
score(G) Number of points dominated by G

k points, then either (1) ∃Qj ∈ G and Qj ≺ Qi or (2) it is
safe to prune G from GSkyline.

Proof. Obviously, it is possible to have a point Qj ∈
G and Qj ≺ Qi. In this situation we have score(G) =
score(G \ {Qi}).
In the second situation, all points dominate Qi are not in

G. If Qj ≺ Qi, we use Qj to replace Qi in G, the new group
is denoted as G′. Since Qj ≺ Qi and all the other points
are the same, then MAX(G′) ≼ MAX(G) and MIN(G′) ≼
MIN(G). As G is a skyline group under MAX and MIN ,
we have MAX(G′) = MAX(G) and MIN(G′) = MIN(G)
which means that G′ is also a skyline group under MAX
and MIN .
Moreover, we have socre(G′) ≥ score(G). Since Qi is

dominated by at least k points, we have at least k skyline
groups whose socres are equal or greater than score(G).
Therefore, it is safe to prune G from GSkyline.

Let dom(Q) denote the set of points dominated by point
Q, then score(G) = |

∪
Q∈G dom(Q)|. In order to compute

score(G) efficiently, we maintain a bit vector for each point
in the group, then we can employ fast bit-wise operations
for much more efficient score computation.

Definition 5. ([Q]) [Q] denotes the bit vector of Q. [Q]
has the length of |D| bits, with one bit corresponding to a
point in D. If a point Qj is dominated by Q then the jth

bit is set to 1. Otherwise, the bit is set to 0.

Based on Definition 5, score(G) equals the number of ”1”
in [Q1]|[Q2]|...|[Ql] (G = {Q1, Q2, ..., Ql}). For instance
in Fig. 1, [Q2] = 00001, [Q4] = 00100. If G = {Q2, Q4},
score(G) equals the number of ”1” in [Q2]|[Q4] = 00101.
Therefore, score(G) = 2.
Based on Lemma1 and Lemma2, we do not need to com-

pute [Q] for every point in the data set. We use (k − 1)-
skyband [7] to denote the set of points that are dominated
by at most k − 1 points in a data set.

Lemma 3. For Definition 1 and strictly monotone aggre-
gate functions under Definition 2, based on Lemma1, we
know that if Q ∈ G and Q /∈ Skyline, then Q has zero
contribution to score(G). Thus [Q] is modified as follows:

[Q] =

{
[Q], Q ∈ Skyline

0...0, Others

For MAX and MIN , we modify [Q] in the following. Be-
cause if Q /∈ (k − 1)-skyband then either Q has zero contri-
bution to score(G) or it is safe to prune a candidate group

Algorithm 1: The k-SGQ algorithm

Input : GSkyline, k;
Output: the result set SK of k-SGQ on GSkyline

1 begin
2 PQ← ∅; /* PQ is a priority queue sorting groups in the

ascending order of their scores */
3 τ ← −1; /* τ is a threshold used for pruning */
4 if the aggregate function is strictly monotone or under

Definition 1 then
5 Compute the bit vectors for points in the Skyline;

6 if the aggregate function is MAX or MIN then
7 Compute the bit vectors for points in the

(k − 1)-skyband;

8 for each group G in GSkyline do
9 if MaxScore(G) > τ then

10 if score(G) > τ then
11 PQ.push(G);

12 if |PQ| > k then
13 PQ.pop();
14 τ ← PQ.top().score;

15 return PQ;

containing Q, thus all points outside of the (k − 1)-skyband
will not affect the result of top-k skyline groups query.

[Q] =

{
[Q], Q ∈ (k − 1)-skyband

0...0, Others

Definition 6. (MaxScore) MaxScore denotes the upper
bound of score. MaxScore(G) =

∑
Q∈G |dom(Q)|.

|dom(Q)| =

{
0, [Q] = 0...0

number of ”1” in [Q], [Q] ̸= 0...0

Obviously, MaxScore(G) ≥ score(G).

Lemma 4. Let SC be a candidate set containing k skyline
groups and τ be the smallest score for all groups in SC . For
a specified group G′ ∈ GSkyline with MaxScore(G′) ≤ τ , it
can be safely pruned away as it cannot be an actual answer
group for k-SGQ.

Based on the above discussion, we propose Algorithm1
to compute k-SGQ. In Algorithm1 we maintain a priority
queue of k skyline groups. Line 3 sets a threshold used for
pruning. Then we compute the bit vectors for points in the
Skyline or (k − 1)-skyband based on the skyline group def-
inition and aggregate functions. Line 9 utilizes Lemma4 to
prune candidate groups, Line 10 utilizes bit-wise operations
to compute score(G) for candidate groups.

3.2 Time Complexity Analysis
The time complexity of computing bit vectors for points

in the Skyline and (k − 1)-skyband is O(|Skyline| × n)
and O(|(k − 1)-skyband| × n) respectively. For each group
G in GSkyline, we need l − 1 bit-wise operations to get
score(G). The time complexity of updating the priority
queue is O(log k). Therefore, the time complexity of Algo-
rithm1 under Definition 1 and strictly monotone functions
under Definition 2 is O(|Skyline|×n+(l−1)×|SG|× log k).
The time complexity of Algorithm1 for MAX and MIN is
O(|(k−1)-skyband|×n+(l−1)×|SG|× log k). Obviously,
the time complexity of Algorithm1 is far less than the time
complexity of the brute-force method.

4. EXPERIMENTAL EVALUATION
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Figure 3: Output size of skyline groups based on
Definition 1 and Definition 2 of varying n and l

In this section, we conduct extensive experiments to evalu-
ate the run-time performance of Algorithm1 under different
settings. All our experiments are carried out on the same
machine with 64GB memory and dual eight-core Intel Xeon
E7-4820 processors clocked at 2.0Ghz. All algorithms are
implemented in C++.
We continue to use the real data set adopted in [6]. The

data set contains 1191 NBA players who are league leaders of
playoffs. The data was extracted from http://stats.nba.com/
leaders/alltime/?ls=iref:nba:gnav on 11/01/2016. Each play-
er has five attributes that measure the player’s performance.
Those attributes are Points (PTS), Rebounds (REB), As-
sists (AST), Steals (STL) and Blocks (BLK).
We experiment with different settings, including number

of best skyline groups k, number of points n and number of
points in a group l. The settings of all these parameters are
summarized in Table 2, where the default values are shown
in bold. In every set of experiments, we only change one
parameter, with the rest set to their defaults.
We compute skyline groups based on both Definition 1 and

Definition 2. For Definition 2, we experiment with SUM ,
MAX and MIN . The output sizes of skyline groups are
shown in Fig. 3. We can see that the output sizes based on
both definitions are too large to make quick selections. Thus
it is not trivial to design a top-k algorithm.
In Fig. 4 we present the performance of k-SGQ algorithm

under different settings. We evaluate the performance of ap-
plying k-SGQ algorithm to find top-k skyline groups based
on Definition 1 and Definition 2. From the three subfigures
in Fig. 4 we can see that k-SGQ algorithm is efficient for
both definitions under different settings. Therefore, our
algorithm can be applied to all existing skyline group op-
erators. Moreover, compared to the brute-force method,
k-SGQ algorithm is much faster. For instance, there are
1720610 skyline groups generated from the NBA data set
based on Definition 1, k-SGQ only needs 5 seconds to com-
pute top-32 skyline groups while brute-force method needs
693 seconds. The experimental results show that for Defini-
tion 1 and SUM , k-SGQ algorithm is about average 134×
and 121× speedup over the brute-force method respective-
ly. For MAX and MIN , k-SGQ algorithm is about average
33× and 45× faster than the brute-force method respective-
ly. Therefore, k-SGQ algorithm is efficient under different
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Figure 4: Performance of k-SGQ algorithm and
brute-force method under different settings

Table 2: Parameter Ranges and Default Values
Parameter Range

k 4,8,16, 32
n 300,600,900, 1191
l 2,3,4, 5

settings and can be applied to compute top-k skyline groups
for all existing skyline group operators.

5. CONCLUSIONS
In this paper, we introduce a new and useful type of query,

top-k skyline groups queries. The existing techniques cannot
be applied to solve k-SGQ. We propose an efficient algorithm
with several powerful pruning strategies. Moreover, we con-
duct extensive experiments to validate the efficiency our
algorithm. Experimental results show that our algorithm
reaches high performance under different settings.
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