
Load balancing for Key Value Data Stores

Ainhoa Azqueta-Alzúaz
Marta Patiño-Martínez
Universidad Politécnica de

Madrid
Madrid, Spain

{aazqueta,mpatino}
@fi.upm.es

Ivan Brondino
Ricardo Jimenez-Peris

LeanXcale
Madrid, Spain

{ivan.brondino,rjimenez}
@leanxcale.com

ABSTRACT
In the last decade new scalable data stores have emerged in
order to process and store the increasing amount of data that
is produced every day. These data stores are inherently dis-
tributed to adapt to the increasing load and generated data.
HBase is one of such data stores built after Google BigTable
that stores large tables (hundreds of millions of rows) where
data is stored sorted by key. A region is the unit of distri-
bution in HBase and is a continuous range of keys in the
key space. HBase lacks a mechanism to distribute the load
across region servers in an automated manner. In this pa-
per, we present a load balancer that is able to split tables
into an appropriate number of regions of appropriate sizes
and distribute them across servers in order to attain a bal-
anced load across all servers. The experimental evaluation
shows that the performance is improved with the proposed
load balancer.

Keywords
Big Data, Key Value, HBase, Load Balancing, Performance

1. INTRODUCTION
During the last years new scalable data stores have emerged

in order to process and store the increasing amount of data
that is produced every day. These data stores also known as
NoSQL data stores remove most of the relational databases
properties in order to achieve high scalability. These data
stores are inherently distributed to adapt to the increasing
load and generated data. HBase [2] is one of such data
stores built after Google BigTable that stores large tables
(hundreds of millions of rows) where data is stored sorted
by key. Each table defines a set of column families and a col-
umn can be defined at any time (two rows may have different
columns). Data in HBase is organized into regions, which
are the unit of distribution. A region is a continuous range of
keys in the key space. HBase provides mechanisms for load

c©2017, Copyright is with the authors. Published in Proc. 20th Inter-
national Conference on Extending Database Technology (EDBT), March
21-24, 2017 - Venice, Italy: ISBN 978-3-89318-073-8, on OpenProceed-
ings.org. Distribution of this paper is permitted under the terms of the Cre-
ative Commons license CC-by-nc-nd 4.0

balancing across servers by moving regions among servers.
However, regions remain unchanged. That is, if a region be-
comes a hotspot, the HBase load balancing mechanisms will
not distribute the region among the servers. That region
will be managed by a single server. Another example where
this may happen is the case when a region hosts much more
keys than other regions (it manages more keys) and most of
the load targets that region. Paper [4] proposes a load bal-
ancing algorithm for HBase. The algorithm moves regions
across the servers to balance the load however, if a region
becomes a hot spot and most of the load (for instance, 90%
of the load) targets that region, moving the region would not
balance the load among the servers. The only way to bal-
ance the load is to partition that region into smaller regions
which then, will be moved to consecutive servers.

In this paper we target the partition of regions into regions
hosting a similar number of rows. This policy is effective
for those situations where a region becomes overloaded and
by applying the predefined load balancing mechanisms the
situation cannot improve. Our preliminary results loading
the database defined by TPC-C benchmark for 3000 ware-
houses in a cluster of ten servers for storing data show that
the throughput is increased one order of magnitude and the
latency decreases two orders of magnitude.

The rest of the paper is organized as follows. Section 2
presents an introduction to HBase. Section 3 describes the
proposed data partitioning algorithm. Section 4 describes
the performance evaluation and the cost of the proposed
approach. Finally, conclusions are presented in Section 5.

2. HBASE
HBase [2] is a sparse distributed scalable key-value data

store modelled after Google BigTable [1].
HBase organizes data in very large tables with billions of

rows and millions columns. Rows are uniquely identified by
a key. Columns are organized into column families, which
are defined at the time a table is created. Columns can be
defined at any time and can vary across rows. A cell is a
combination of {key, column family, column} and contains
a value and a timestamp which represents the value ver-
sion. Timestamps are automatically defined or can be user
defined. For instance, the cell {customerid, address:home}
references the last provided home address of the customerid,
which is stored in the column family address and column
home. Keys are bytes and rows are sorted alphabetically
based on their key.

Tables are distributed in a cluster through regions. Re-

Poster Paper

 

 

Series ISSN: 2367-2005 506 10.5441/002/edbt.2017.56

http://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2017.56


Figure 1: Rows group in regions and served by dif-
ferent servers [2]

gions are defined by key ranges. Regions can be automati-
cally split by HBase or manually by defining the start key of
a region. A Region Server manages the regions of a server.
Regions are automatically split into two regions when they
reach a given size or using a custom policy. Manual splitting
of regions can be done at table creation time (pre-splitting)
or later. This is advisable for instance when a hotspot is
created on a region. By partitioning the region, the data
can be handled by two or more servers.

Figure 1 shows an HBase deployment with three servers
(pink boxes), each one hosting one region server. The keys in
the table rows range from A to Z (on the left). Each region
server handles two regions. Region server 1 handles keys in
ranges T to Z and A to C. By default, tables have a unique
region when they are created. A region is split into two
regions automatically when it reaches a given limit. There
are several predefined split policies, which basically split a
region when the associated file reaches a given size or based
on the number of regions a region server hosts. A table can
be pre-split into regions either when it is created or later
providing the key ranges.

Internally, the HBase Master stores metadata for instance,
the location of the different regions of a table. The actual
data of a region (keys and associated information) is stored
in HFiles. There are as many HFiles as column families a
table has. HFiles are stored in HDFS [3] to achieve high
availability.

2.1 HBase Load Balancing Algorithms
HBase provides an automatic load balancer that runs on

the master and distributes regions on the cluster every five
minutes by default. HBase load balancer implements three
algorithms [2]:

• Simple Load Balancer. This algorithm takes into ac-
count the number of regions each region server is man-
aging and the load at each server. The goal is that all

region servers will handle a similar number of regions
by moving regions from the more loaded servers to the
least loaded regions servers.

• Favored Node Load Balancer. This load balancing al-
gorithm assigns favoured server for each region. The
primary region server hosts the region. There are also
secondary and tertiary region servers. HDFS uses the
favoured servers information for creating HDFS files
and placing the blocks of the file. When the primary
region server crashes, the secondary takes over provid-
ing low latencies.

• Stochastic Load Balancer. This algorithm searches a
region distribution that minimizes a cost function. This
function is computed taking into account the region
load, table load, data locality, MemStore sizes and
HFile sizes. This algorithm has several parameters,
for instance, to control the maximum number of re-
gions to be moved, minimize the number of times the
balancer will try to mutate all servers.

None of these HBase load balancers changes the region
configuration. They move regions among servers to dis-
tribute the load. However, if there are several regions that
become hotspots, these regions will not be split and dis-
tributed among region servers to distribute their load.

This is the goal of the Static Load Balancer we present in
the next section. The load balancer distributes the keys of a
table among regions in order to ensure that each region con-
tains the same amount of keys and distributes the regions
among all region servers.

3. STATIC LOAD BALANCER
The static load balancer goal is to create regions with a

similar number of rows and distribute them across all regions
servers in a cluster. For this purpose, the load balancer
needs the table size and the key distribution. The algorithm
generates a set of keys that define the new regions with
the same number of keys. Then, it splits current regions
according to the new regions provided by the load balancer
and assigns them uniformly among region servers.

3.1 Table Histogram
In order to divide a table into regions managing a simi-

lar number of keys, the total number of rows of the table
and the stored keys are needed. The table histogram scans
regions reading every x number of rows (for instance, every
1000 rows). For every x rows, it stores the key of that row.
For instance, if a region hosts 2500 rows and x = 1000, it
will store three keys, 1000, 2000 and 2500. The values as-
sociated to those keys will be the keys that are stored in
positions 1000, 2000 and 2500, respectively in that region.
The histogram runs as an HBase coprocessor [2] so, no data
is moved outside the server hosting the region.

The histogram information is used to calculate the number
of rows in the table, #RowsTable, the number of rows each
region is currently handling, #RowsRegion, the expected
number of rows per region, #ExpectedRowsRegion, the to-
tal number of rows that are wrongly placed, #WrongP lacedRows
and the standard deviation of rows wrongly placed,
%STDofWrongP lacedRows. This value is used to decide

507



Figure 2: Load Balancer Example

whether the static load balancer should be executed. Cur-
rently, the system administrator defines a threshold,
%STDThreshold. If the standard deviation is greater than
the threshold, the load balancer is executed.

3.2 Load Balancer
The load balancer (Algorithm 1) uses the information gen-

erated by the histogram for defining the new regions. Given
the expected number of rows per region, #ExpectedRowsRegion,
the load balancer obtains the split points of the region by
traversing the histogram. The key stored every
#ExpectedRowsRegion positions will define the new re-
gions.

For instance, Figure 2 shows a table with 30000 keys. Ini-
tially there are three regions, Region 1, Region 2 and Region
3, which handle 5000, 17500 and 75000 rows, respectively.
Region 1 handles keys from 0 up to 5000, Region 2 manages
the keys in the range 5001 and 22500 and so on. The final
distribution the load balancer will define consists of three re-
gions each one managing 10000 keys (each region will store a
similar number of keys). If the histogram stores the keys ev-
ery 10000 rows (histogramPrecision), the splitPoints will
be the keys stored at position 10001 and 20001.

Then, the algorithm splits the regions using HBase HBaseAd-
min.split() method proving the split points. At this point
the previous regions and the new ones coexists. For instance,
there are 5 regions in the example in Figure 2-After splitting
table. That is, the old regions and the new ones coexists Re-
gion 2 is split into three regions, Region 2-1, Region 2-2 and
Region 2-3, with 5000, 10000 and 2500 rows each one. Only
Region 2-2 will be a final region after the load balancing fin-
ishes. The other two regions will be merged with Region 1
and Region 3, respectively in order to achieve the three final
regions with the same number of rows (Region 1’, Region 2’
and Region 3’) (Figure 2-After merging).

As a final step in Algorithm 1 the location of the regions
is stored in the Zookeeper instance running on HBase (Re-
gionsLocation). This step avoids that if HBase stops and
starts, by default, the regions are assigned randomly to re-

gion servers and then, the data files need to be moved to the
new server where the region is handled.

Algorithm 1 Load Balancing

Require: table, stdThreshold
1. histogramPrecision = 10000
2. generateHistogram(table)
3. #RS ← get#RegionServers()
4. #Regions← get#Regions(table)
5. #RowsTable← get#RowsTable(table)
6. #ExpectedRowsRegion ←

get#ExpectedRowsRegion(table)
7. %STDofWrongP lacedRows ←

getSTDofWrongP lacedRows(table)
8. if %STDofWrongP lacedRows > %STDThreshold

then
9. splitPoints← getNewSplitPoints(histogramPrecision,

#RowsTable,#RS,#ExpectedRowsRegion)
10. split(splitPoints)
11. merge(splitPoints)
12. majorCompact(table)
13. RegionsLocation(table)
14. end if

4. PERFORMANCE EVALUATION
In this section we present the performance evaluation of

the proposed load balancer. The evaluation has been con-
ducted in a cluster of 11 nodes; each node is 64 core AMD
Opteron 6376 @ 2.3GHz, equipped with 128GB of RAM,
1Gbit Ethernet and a direct attached SSD hard disk of
480GB running Ubuntu 12.04.5 LTS. One of the nodes is
used for hosting metadata servers, HDFS NameNode, HBase
Master and ZooKeeper. The rest of nodes are used as worker
nodes, each one running one HDFS Data Node and four
HBase-Region Servers. That is, there are 10 DataNodes
and 40 RegionServers. We use the Cloudera distribution of
Apache HBase with version CDH5.3.5.

The load balancer is evaluated loading the data defined
by TPC-C benchmark since there are different tables with
different number of columns and different number of rows.
The benchmark defines 9 tables. The number of warehouses
defines the sizes of the tables. In this initial evaluation, the
number of warehouses is 3000. The smallest table holds 3000
rows and the largest 765 million of rows. In order to evalu-
ate the benefits of the proposed load balancing algorithm we
evaluate the performance of HBase using TPC-C with the
tables split into regions with a random size. Then, we eval-
uate the performance of the benchmark when the regions
handle a similar number of rows.

The unbalanced configuration is presented in Table 1,
which shows for each table the total number of rows (#Rows),
the number of rows of the smallest and largest regions (#Rows
Small Region and #Rows Large Region) and the standard
deviation of the rows that are wrongly placed for each table
(#STD). For instance, warehouse and order line tables are
the smallest and largest tables, respectively.

Order line table stores 765 million of rows. The smallest
region for that table stores 11181 keys while the largest hosts
1214955735 rows (1212 millions of rows).

508



Table 1: Data Distribution Before Load Balancing
Table #Rows #Rows small #Rows large #Rows

region region STD

warehouse 3000 6 234 63

district 30000 48 3267 795

item 100000 2 9388 22159

new order 27M 17749 2837997 619998

orders 90M 33865 9721682 2306951

ix orders 90M 22865 9721682 2306951

history 90M 2105753 2463901 172493

customer 90M 24592 7754305 2206718

ix customer 90M 24592 7754305 2206821

stock 300M 18376 31182657 7463525

ix stock 300M 113700 258520000 2509062

order line 765M 11181 121495735 87312734

ix order line 765M 557433 84431120 97324041

Table 2: Data Distribution After Load Balancing
Table #Rows #Rows small #Rows large #Rows

Region Region STD

warehouse 3000 75 75 0

district 30000 750 750 0

item 100000 2500 2500 0

new order 27M 500000 684408 28020

orders 90M 1980000 2260000 743379

ix orders 90M 1980000 2260000 43379

history 90M 2106778 2462829 172144

customer 90M 1975165 2260000 44120

ix customer 90M 1975165 2260000 18502

stock 300M 7202284 7510000 47762

ix stock 300M 7152000 7512000 55815

order line 765M 18940000 19134682 29743

ix order line 765M 18820457 19140014 48984

4.1 Load Balancer Evaluation
In this section we present how the load balancer distributes

the keys into regions given the previous distribution of data.
Then, we evaluate the performance of TPC-C with both
configurations and finally, we present the time for executing
the load balancing algorithm.

Table 2 shows the size of the smallest region (the one
hosting less keys) and the largest one for each table after
running the static load balancer. The results show that the
difference in number of keys hosted by these regions is less
than 1%. The smallest region of table Order line now stores
18940000 rows and the largest one stores 19134682 rows that
is, 18.9 million rows and 19.1 rows respectively. We can com-
pare those results with the ones in Table 1, which produced
for the same Order line a region with 11181 keys, while the
largest region hosts 1214 millions of rows.

Table 3 shows results in terms of throughput, in trans-
actions per minute, and latency of transactions, in millisec-
onds, of running TPC-C benchmark with the unbalanced
and balanced regions distribution. The throughput of TPC-
C with the unbalanced regions reaches 3296 transactions
with an average response time of 1550.805 ms. When the
regions have a similar size (i.e., after running the static load
balancer), the throughput is multiplied by 10, processing
36761 transactions per minute with an average response time
of 16.858 ms. That is, the response time is two orders of
magnitude lower.

Finally, the execution time of the load balancer for each
table of TPC-C is shown in Table 4. Table History is not
balanced by the Static Load Balancer because it is already
balanced (i.e., the

Table 3: TPC-C Execution
Before Load After Load
Balancer Balancer

Throughput (tpmCs) 3296 36761
Avg. Latency (ms) 1550.805 16.858

Table 4: Load Balancer Execution Times
Table #Rows Histogram Split Merge Regions

Table Regions Location

warehouse 3000 00:00:02.009 00:00:06.453 00:00:11.356 00:00:10.366

district 30000 00:00:02.754 00:00:08.484 00:00:09.687 00:00:10.366

item 100000 00:00:01.946 00:00:08.070 00:00:10.022 00:00:10.400

new order 27M 00:00:21.037 00:00:46.137 00:00:17.196 00:00:10.344

orders 90M
00:02:56.017

00:07:50.062 00:01:12.132 00:00:10.372
ix orders 90M 00:07:29.129 00:00:44.998 00:00:10.245

history 90M 00:00:31.911 00:00:10.380

customer 90M
00:03:11.329

00:12:35.812 00:04:23.994 00:00:10.402
ix customer 90M 00:12:41.747 00:03:11.593 00:00:10.251

stock 300M
00:10:19.886

00:39:10.252 00:07:12.418 00:00:10.312
ix stock 300M 00:09:10.791 00:04:41.104 00:00:10.328

order line 765M
00:37:53.463

01:59:57.023 00:11:23.552 00:00:10.421
ix order line 765M 00:29:52.061 00:26:18.463 00:00:10.316

%STDofWrongP lacedRows is below than 1%).
Most of the time is spent in the split process, which di-

vides regions into several regions. Each time a region is
split, a major compact process is executed in order to split
the stored files (HFiles) into two. This process is very ex-
pensive for large tables (more than 100 million rows).

5. CONCLUSIONS
In this paper we have presented a Load Balancer algo-

rithm that partitions regions into regions that manage a
similar number of keys. The performance evaluation shows
that this greatly improves performance. However, the exe-
cution of the load balancer is time consuming. This process
should be run seldom during off-peak periods. Fault toler-
ance for the algorithm remains as future work.

6. ACKNOWLEDGMENTS
This research has been partially funded by the European

Commission under projects CoherentPaaS, LeanBigData and
CloudDBApplience (grants FP7-611068, FP7-619606 and H2020-
732051), the Madrid Regional Council, FSE and FEDER,
project Cloud4BigData (grant S2013TIC2894), the Ministry
of Economy and Competitiveness (MINECO)under projects
BigDataPaaS and CloudDB (grant TIN2013-46883 and TIN2016-
80350).

7. REFERENCES
[1] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A.

Wallach, M. Burrows, T. Chandra, A. Fikes, and R. E.
Gruber. Bigtable: A distributed storage system for
structured data. ACM Transactions on Computer
Systems, 26(2):4:1–4:26, June 2008.

[2] L. George. HBase: The Definitive Guide. O’Reilly
Media, 2011.

[3] K. Shvachko, H. Kuang, S. Radia, and R. Chansler.
The hadoop distributed file system. In 26th Symposium
on Mass Storage Systems and Technologies (MSST),
pages 1–10, Washington, DC, USA, 2010. IEEE
Computer Society.

[4] L. Xia, H. Chen, and H. Sun. An optimized load
balance based on data popularity on hbase. In 2nd
International Conference on Information Technology
and Electronic Commerce (ICITEC), pages 234–238,
Dec 2014.

509


	Load balancing for Key Value Data StoresAinhoa Azqueta-Alzúaz, Ivan Brondino, Marta Patino-Martinez, Ricardo Jimenez-Peris

