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ABSTRACT
We introduce optimal obstructed sequenced route (OOSR) queries,
a novel query type in spatial databases. For a given source and des-
tination locations and the sequence of required types of points of in-
terests (POIs) (e.g., first an ATM booth then a restaurant), an OOSR
query returns the locations of POIs, one from every required type,
that together minimize the obstructed trip distance (OTD) from the
source to the destination via the POIs. A pedestrian’s walking path
is obstructed by the presence of obstacles like a river, a fence or
a private property, and an obstructed distance is measured as the
length of the shortest path between two locations by avoiding the
obstacles. We develop the first solution to address OOSR queries.
We exploit elliptical properties and develop a novel OTD compu-
tation technique that does not retrieve the same obstacles multi-
ple times, reuses the already computed obstructed distances, and
minimizes the retrieval of the extra obstacles. We propose efficient
algorithms to evaluate OOSR queries with reduced IO and query
processing overhead. We perform experiments using a real dataset
and show a comparative analysis between OOSR algorithms.

1. INTRODUCTION
The widespread usage of location aware mobile devices has ex-

pedited the proliferation of location-based services in recent years.
Researchers have proposed variant of location-based queries [1, 4,
5, 6] to assist users in planning trips in an optimized manner. In this
paper, we introduce a new variant of trip planning query, an opti-
mal obstructed sequenced route (OOSR) query that allows pedes-
trians to plan trips with the minimum travel distance in presence
of obstacles like a river, a fence or a private property in the space.
For example, a tourist walking from an attraction to the hotel may
want to withdraw money from an ATM booth and then have din-
ner at a restaurant, or a pedestrian in the city may want to buy a
medicine from a pharmacy and then visit a shopping mall before
going to the bus station. An OOSR query returns the location of a
point of interest (POIs) for every required type (e.g., an ATM booth
or a restaurant) that together minimize the obstructed trip distance
(OTD) from a user’s source to the destination via the POIs. We
propose the first solution for OOSR queries.
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Figure 1: An example of an OOSR query
Optimal sequenced route (OSR) queries have been addressed in

the unobstructed space that do not consider the presence of obsta-
cles and cannot facilitate trip planning for pedestrians. Figure 1
shows that POIs p1, p2

′, and p3 minimize the trip distance if obsta-
cles are not considered. On the other hand, the answer changes for
an OOSR query as in reality pedestrians cannot cross the interior
of obstacles and POIs p1

′, p2, and p3 minimize the OTD.
The efficiency of an OOSR algorithm depends on the OTD com-

putation technique and the number of POIs explored for finding the
optimal answer. The smaller the number of POIs retrieved from the
database while searching for the optimal query answer, the more
efficient the algorithm is. More importantly, the smaller number of
POIs reduces the number of OTD computations. In summary, the
contributions of our paper are summarized as follows:
• We introduce and formulate OOSR queries. To the best of

our knowledge, we first address the OOSR query.
• We develop a novel OTD computation technique that (i) does

not retrieve the same obstacles multiple times, (ii) reuses the
already computed obstructed distances, and (iii) minimizes
the retrieval of the extra obstacles.
• We combine the Euclidean lower bound and elliptical prop-

erties to prune POIs that cannot be part of the optimal an-
swer, and develop efficient algorithms for processing OOSR
queries with reduced IO and processing overheads.
• We compare the efficiency of our algorithms through exten-

sive experiments using real datasets.

2. PROBLEM FORMULATION
An OOSR query is formally defined as follows:
Definition: Optimal Obstructed Sequenced Route (OOSR)

Queries. Given a set of POIs P and a set of obstacles O in a 2-
dimensional space, a source location s, a destination location d,
and a set of m sequenced POI types T = {t1, t2, . . . , tm}, an OOSR
query returns A = {pt1 , pt2 , . . . , ptm}, a POI from every required
type, where A minimizes the obstructed trip distance (OTD).

An obstacle oi is a polygon in a 2-dimensional space and an
obstructed space does not allow a pedestrian to cross the obsta-
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cle like a river, a fence or a private property. An obstructed dis-
tance disto(., .) between two locations is measured as the length
of the shortest path between two locations by avoiding the ob-
stacles. An OTD T disto(s,d,A) is measured as disto(s, pt1) +
∑i=1

m−1disto(pti , pti+1)+disto(ptm ,d).
The set of POIs P and the set of obstacles O are indexed using

two separate R-trees, POI RTree and Obstacle RTree, respectively,
in the database of a location-based service provider (LSP). When
a user requests an OOSR query to the LSP, the LSP evaluates the
OOSR query and returns the answer to the user.

3. RELATED WORK
Trip planning queries [4] and variants [5, 6] have been exten-

sively studied in the literature. A trip planning algorithm was in-
troduced in [4], where a user can visit POIs in any sequence that
minimizes the trip distance. In [6], the authors first addressed an
optimal sequenced route (OSR) query that allows users to specify
the sequence of visiting POI types. In [7], the authors focus on pro-
tecting location privacy of users while evaluating an optimal trips.
However, none of the above approaches consider the presence of
obstacles while evaluating the queries.

Researchers have recently focused on developing algorithms for
processing variant queries in the obstructed space. In [3, 10], the au-
thors proposed algorithms for processing nearest neighbor queries
in the obstructed space. The approaches in [8, 9] evaluate group
nearest neighbor queries in the presence of obstacles, whereas the
focus of [2] is on obstructed reverse nearest neighbor queries.

Algorithm 1 CompOTD(s,d, pTrip)
Input: s, d, and a set of POIs pTrip = {pt1 , pt2 , . . . , ptm}
Output: The obstructed trip distance T distO(s,d, pTrip)
1: if distE(s, pt1)> distE(d, ptm) then
2: dmax← distE(s, pt1)
3: else
4: dmax← distE(d, ptm)
5: end if
6: for i← 1 to m−1 do
7: j← i+1
8: di j←ComputeMin(s,d, pti , pt j )
9: if di j +distE(pti , pt j )> dmax then

10: dmax← di j +distE(pti , pt j )
11: end if
12: end for
13: repeat
14: dprev← dmax

15: a← 2× dmax
(1−e)

16: O← IOR(s,d,a)
17: V G←ConstructV G(s,d, pt1 , pt2 . . . , ptm ,O)
18: disto(s, pt1)←CompObsDist(V G,s, pt1)
19: distsum← 0
20: for i← 1 to m−1 do
21: j← i+1
22: disto(pti , pt j )←CompObsDist(V G, pti , pt j )
23: distsum← distsum +disto(pti , pt j )
24: end for
25: disto(d, ptm)←CompObsDist(V G,d, ptm)
26: T distO(s,d, t)← disto(s, pt1)+distsum +disto(d, ptm)
27: dmax← T distO(s,d, pTrip)
28: until dmax == dprev
29: return T distO(s,d, pTrip)

4. AN OTD COMPUTATION TECHNIQUE
A major challenge of a query processing algorithm in the ob-

structed space is the complexity of computing the obstructed dis-
tance. The obstructed distance is computed as the length of the
shortest path between two locations by avoiding the obstacles.
There exist algorithms [10] to compute the obstructed distance
between two locations. However, computing obstructed distances
for pairs of locations independently by applying an existing al-
gorithm requires performing the same computations and the re-
trieval of same obstacles from the database multiple times. To over-
come the limitations, different optimization techniques [2, 9] have
been developed in the context of obstructed group nearest neighbor
(OGNN) and obstructed reverse nearest neighbor (ORNN) queries,
which are not applicable for OOSR queries.

Evaluating an OOSR query requires the computation of a large
number of OTDs, and an OTD is the summation of a number of
obstructed distances. We develop a novel OTD computation tech-
nique that incrementally expands the obstacle retrieval area as an
elliptical shape. We develop a technique to compute the length of
the major axis of the ellipse to guarantee that obstacles required
for every obstructed distance computation are simultaneously re-
trieved. Furthermore, we reuse the already retrieved obstacles and
computed obstructed distances for computing a new OTD. The in-
tuition behind using an elliptical region instead of any other shape
is to increase the probability of reusing the already retrieved obsta-
cles, and minimizing the retrieval of obstacles that are not required
for obstructed distance computations. We will show in the next sec-
tion that the refined POI search space in our proposed OOSR algo-
rithms expands as an elliptical region, and therefore there is a high
probability that the retrieved POI falls inside the area of the already
retrieved obstacles and the obstructed distances involving the POI
can be computed using already retrieved obstacles.

We use the existing technique [10] to compute the obstructed dis-
tance between two points using a visibility graph. The vertices of a
visibility graph are the corner points of polygons representing the
obstacles and the locations between which the obstructed distance
needs to be computed. There is an edge between two vertices if
no obstacle crosses the direct path between those vertices. The ob-
structed distance between two locations is the length of the shortest
path between two vertices representing the locations. It is not fea-
sible to pre-compute a visibility graph for a large set of obstacles.
We only retrieve those obstacles from the database that are relevant
to the OOSR query and construct the visibility graph.

Algorithm 1 shows the pseudocode for computing an OTD.
Without loss of generality, we explain the steps of computing
T disto(s,d, p1, p2) for an example shown in Figure 2. The algo-
rithm computes disto(s, p1), disto(p1, p2), and disto(p2,d) simul-
taneously. Using the function ComputeMin in Line 8, the algo-
rithm finds the Euclidean distance distE(p2,s) as the minimum
among distE(p1,s), distE(p2,s), distE(p1,d), and distE(p2,d).
Thus, distE(p2,s) is assigned to d12 and p2 becomes the center of
the circle used for computing disto(p1, p2) as shown in Figure 2(a).

In the next step, to compute disto(s, p1), disto(p1, p2), and
disto(p2,d), the algorithm retrieves obstacles inside the circles cen-
tered at s, p2 and d with radius distE(s, p1), distE(p1, p2), and
distE(p2,d), respectively. Figure 2(a) shows that there are overlaps
among the circles. Thus, to avoid the retrieval of same POIs mul-
tiple times, our algorithm computes an ellipse with foci at s and
d that includes three circles, and retrieves obstacles in the ellipse
as shown in Figure 2(b). To ensure the inclusion of the circles, the
periapsis, i.e., the smallest radial distance of the ellipse needs to
be greater than or equal to dmax, where dmax is the maximum of
disto(s, p1), d12 + disto(p1, p2), and disto(p2,d). Thus, the length
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(a) (b) (c) (d)
Figure 2: Steps of computing T disto(s,d, p1, p2)

of the major axis is computed as 2× dmax
(1−e) , where eccentricity e is

determined in experiments. The function IOR in Line 16 incremen-
tally retrieves nearest obstacles with respect to s and d, where the
distance is measured as the summation of the minimum Euclidean
distances of the obstacle from s and d, respectively.

The algorithm constructs the visibility graph and computes
disto(s, p1), disto(p1, p2), and disto(p2,d) based on the retrieved
obstacles. In Figure 2(c), we see that the radius of the circles cen-
tered at p2 and d increases to disto(p1, p2) and disto(p2,d) from
distE(p1, p2) and distE(p2,d), respectively. Since disto(s, p1) and
distE(s, p1) are equal, the circle centered at s does not change and
disto(s, p1) is finalized. The algorithm again retrieves obstacles so
that the new ellipse includes the circles as shown in Figure 2(d). We
observe that in Figure 2(d), though new obstacles are retrieves but
those obstacles do not increase any of the obstructed distance. Thus,
disto(p1, p2), and disto(p2,d) are finalized and T disto(s,d, p1, p2)
is computed in Line 26.

Algorithm 2 RRB_OOSR(s,d,T )
Input: A source s, a destination d, required POI types T
Output: The answer set A
1: Ainitial ← RetrieveInitialPOIs(s,d,T )
2: POITrips←CompTrips(Ainitial)
3: POITripsprev← POITrips
4: MinT Disto ← ∞

5: for each pTrip ∈ POITrip do
6: T Disto←CompOT D(s,d, pt)
7: if T Disto < MinT Disto then
8: MinT Disto← T Disto
9: A← pTrip

10: end if
11: end for
12: Maxd← FindMaxDist(Ainitial)
13: if Maxd < MinT Disto then
14: Arange← RetrievePOIs(s,d,T,MinT Disto)
15: POITrips←CompNewTrips(Ainitial ,Arange,POITripsprev)
16: for each pTrip ∈ POITrips do
17: T Disto←CompOT D(s,d, pTrip)
18: if T Disto < MinT Disto then
19: MinT Disto← T Disto
20: A← pTrip
21: end if
22: end for
23: end if
24: return A

5. OOSR ALGORITHMS
In this section, we present efficient algorithms for processing

OOSR queries. We develop a pruning technique to refine the POI
search space by exploiting the Euclidean lower bound and ellipti-
cal properties. A POI outside the refined POI search space cannot
provide the minimum OTD. The number of possible trips and OTD

computations decrease with the smaller number of retrieved POIs
from the database, i.e., the smaller POI search space.

According to the Euclidean lower bound property, the Euclidean
trip distance is smaller or equal to the OTD. On the other hand, ac-
cording to the elliptical property, the Euclidean distance between
two foci of an ellipse via a POI outside the ellipse is greater than or
equal to the length of the major axis of the ellipse. In our OOSR al-
gorithms, we represent the POI search space using an ellipse, where
the foci of the ellipse are at the source and destination locations of
a user, and the length of the major axis of the ellipse is equal to
the upper bound of the OTD. Thus, POIs outside the ellipse cannot
further minimize the OTD.

We propose two OOSR algorithms: RRB_OOSR (range re-
trieval based OOSR) and IRB_OOSR (incremental retrieval based
OOSR). The key difference between our algorithms, RRB_OOSR
and IRB_OOSR, is that RRB_OOSR computes the upper bound of
the OTD, refines the POI search space once, and then retrieves all
POIs inside the POI search region using a range query. On the other
hand, IRB_OOSR incrementally retrieves POIs and gradually re-
fines the search space. The advantage of IRB_OOSR is that it re-
trieves less number of POIs than RRB_OOSR.

Both RRB_OOSR and IRB_OOSR use a heuristic [7] to compute
the upper bound of the OTD. The heuristic retrieves an initial set
of POIs Ainitial that includes the nearest POI of every required type
from s and d. The Euclidean aggregate distance (EAD) of a POI
from s and d is computed as the summation of Euclidean distances
of the POI from s and d, respectively. In addition to the nearest
POI of every required POI type, Ainitial also includes other POIs of
required types that have EAD smaller than or equal to the maximum
of EADs of the nearest POIs from every required type.

Algorithm 2 shows the pseudocode for RRB_OOSR. The algo-
rithm retrieves initial POIs as Ainitial using the heuristic (Line 1),
computes the sets of possible combinations of POIs as POITrips
(Line 2), determines the OTD with respect to s and d for every set
using Algorithm 1 (Line 6), and finds the upper bound of the OTD
as MinT Disto in Line 8.

Next the algorithm computes Maxd in Line 12. The POIs that
falls inside the ellipse with foci s and d, and the major axis equal
to Maxd have been already retrieved. If Maxd ≥ MinT Disto, the
trip with the minimum OTD has been already found because a POI
that has EAD greater or equal to Maxd cannot further minimize
MinT Disto. Otherwise, the algorithm retrieves all POIs in the re-
fined POI search space (i.e., the POIs whose EADs from s and d are
smaller than MinT Disto), computes the set of new combination of
POIs by excluding the combinations that have already considered
(POITripsprev), and finds the set of POIs that provide the minimum
OTD with respect to s and d.

Algorithm 3 shows the pseudocode for IRB_OOSR. Instead of
retrieving all POIs in the refined POI search space, the algorithm
incrementally retrieves the next nearest POI with the smallest EAD
Maxd from s and d (Line 14). After retrieving a new POI, the algo-
rithm further minimizes the upper bound of the OTD as MinT Disto
in Line 20, if possible. The incremental retrieval of POIs continues
until the condition Maxd < MinT Disto is satisfied.
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Algorithm 3 IRB_OOSR(s,d,T )
Input: A source s, a destination d, required POI types T
Output: The answer set A
1: Ainit ← RetrieveInitialPOIs(s,d,T )
2: POITrips←CompTrips(Ainitial)
3: POITripsprev← POITrips
4: MinT Disto ← ∞

5: for each pTrip ∈ POITrips do
6: T Disto←CompOT D(s,d, pTrip)
7: if T Disto < MinT Disto then
8: MinT Disto← T Disto
9: A← pTrip

10: end if
11: end for
12: Maxd← FindMaxDist(Ainitial)
13: while Maxd < MinT Disto do
14: p← RetrieveNextPOI(s,d,T )
15: Maxd← dist(s, p)+dist(p,d)
16: POITrips←CompNewTrips(Ainitial , p,POITripsprev)
17: for each pTrip ∈ POITrips do
18: T Disto←CompOT D(s,d, pTrip)
19: if T Disto < MinT Disto then
20: MinT Disto← T Disto
21: A← pTrip
22: end if
23: end for
24: end while
25: return A

Table 1: Experimental Setup
Parameter Range Default Value
Distance between s and d 0.05% to 0.3% 0.15%

Total POI types 10, 15, 20, 25, 30 20

Required POI types 1, 2, 3, 4, 5 3

6. EXPERIMENTS
Since we first address OOSR queries, we compare our proposed

algorithms through experiments. We vary the distance between s
and d, the number of total POI types in the POI data set and the
number of required POI types in the query. Table 2 shows the
range and default value of each parameter that we used in our ex-
periments. When we vary a parameter in an experiment, we set
other parameters to their default values. We used the real dataset
of Germany, which consists of 34334 minimum bounded rectan-
gles (MBRs) of railway lines (rrlines) that represent obstacles and
307992 MBRs of hypsography data (hypsogr) that represent POIs
in our experiments. We normalized the total space into 10,000 ×
10,000 square units. We conducted each experiment for 50 samples
of OOSR queries and obtained the average experimental results. We
measured the processing time and IO cost using an Intel(R) Core
i5-5200U CPU (2.20 GHz) with 4 GB RAM.

Initially, we varied the values of eccentricity of the ellipse e as
0, 0.25, 0.5, 0.75 and 1, and run experiments for the default values
of other parameters. We found that the algorithms perform better in
terms of time and IOs for the value of e = 0.75. Therefore we set
this value as the default eccentricity (e) in our experiments.

Figure 3 shows that the processing time and IOs increases for
both of our algorithms with the increase of the distance between
s and d. This is because when the distance between s and d in-
creases, the areas for retrieving POIs and obstacles also increase.
We also observed that IRB_OOSR performs better in terms of both

time and IO cost than RRB_OOSR. This is expected as RRB_OOSR
retrieves more POIs than IRB_OOSR. Figures 4 and 5 show the
similar trends for varying the number of total POI types and the
number of required POI types, respectively.
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Figure 3: Effect of the distance between s and d in %
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Figure 4: Effect of the number of total POI types
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Figure 5: Effect of the number of required POI types

7. CONCLUSION
We developed a novel OTD computation technique, and OOSR

algorithms: RRB_OOSR and IRB_OOSR. Experiments show that
our approach can evaluate OOSR queries in real time, and on av-
erage IRB_OOSR requirers 2.1 times less processing time and 1.7
times less IOs than RRB_OOSR to process OOSR queries.
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