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ABSTRACT

Interval joins find applications in several domains, including tem-
poral and spatial databases, uncertain data management, stream-
ing data processing. In this paper, we study the evaluation of
an interval count semi-join (ICSJ) operation that can be used
for selecting or ranking intervals based on the number of join
pairs they appear in. We extend the state-of-the-art algorithm
for interval joins to evaluate ICS] at the cost of only scanning
the sorted interval endpoints.

1 INTRODUCTION

The interval join (I]) is an important and well-studied operation
that finds several applications. In its most widely used definition,
the interval join takes as input two collections of intervals R and
S, and outputs the pairs (r,s) € R X S, such that intervals r and s
overlap!. In temporal databases [8], tuples are associated with
validity intervals and interval joins can be used to find pairs of
tuples with overlapping validity (e.g., find pairs of employees
who worked in two enterprises during overlapping time periods).
In spatial databases, multidimensional overlap joins reduce to
interval joins if the spatial extent of the objects is represented
by a set of intervals with the help of space-filling curves [11]. In
probabilistic databases, values in continuous domains are often
represented by intervals of values which have non-zero prob-
ability [4]. Finally, in applications that process streaming data,
values read from different streams can be joined by (often param-
eterized) temporal windows [7]. Such sliding window joins can
be modeled as overlap joins, if the values are extended by the
window lengths and modeled as intervals. A number of single-
processor [2, 5, 6, 13, 14] and parallel [1, 3, 9] algorithms for
interval joins have been proposed. Among them, methods that
are based on plane-sweep prevail due to their optimal worst-case
complexity and their efficient implementations [1, 13].

In this paper, we study the efficient evaluation of an Interval
Count Semi-Join (ICS]) operation, where the objective is to find
how many pairs in the interval join IJ(R, S) result include each
r € R. For example, consider interval collections R = {r1, 2, 73}
and S {s1,52, 53,54} depicted in Figure 1. ICSJ(R,S)
{(r1,2), (r2,1), (r3,3)} because ry, r2 and r3 overlap with 2, 1, and
3 intervals from S, respectively. ICSJ(R, S) can be seen as a case
of temporal aggregation on S, using R as the set of fixed intervals
[12]. The result of ICSJ can be used to select or rank objects
that are associated with the intervals in R based on the number
of intervals in S they intersect. For example, if R includes the
employment periods of employees in company A and S includes
the periods of employees in company B, we may wish to find the
k employees in A whose employment time overlaps with that of

ITwo intervals overlap (or intersect) if they share at least one common value.
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Figure 1: Collections R = {r,r2,r3} and S = {s1, 52, 53, 54}.

the most employees in B (e.g., employee r3 in Figure 1, if k = 1).
This problem can be solved by ranking the ICSJ output, or by
using a priority queue to keep track of the top-k ICS] results
while they are computed.

To our knowledge, ICS] has not been adequately studied to-
date. Top-k count semi-joins have been studied in relational [15]
and spatial databases [16], but the techniques in these studies
are unsuited for ICSJ, as they apply on different data domains
and they make use of indices. We present an efficient smart
counting algorithm for evaluating ICSJ, which applies on two
sorted input collections R and S and extends the state-of-the-
art sweeping based I algorithm. The algorithm bears only the
minimal cost of scanning the sorted inputs. Experiments on four
real datasets show that it is orders of magnitude faster than
simpler alternatives.

2 BACKGROUND

Related work on I] includes techniques based on indexing or
partitioning [2, 5, 6] and methods that sort inputs R, S to perform
merge-join [14] or plane-sweep based join [1, 13]. Recent studies
[1, 13] focused on in-memory processing and showed that plane-
sweep based techniques are superior to other methods.

Algorithm 1 describes a plane-sweep based algorithm for in-
terval joins. Initially, the domain points (or simply points) of all
intervals in R, S are extracted and sorted into list L (Lines 2-3).
Intuitively, L defines the stops of an imaginary line that sweeps
the domain; so, the sweep line stops both at the start and the
end point of an interval. An active set AR and AS is initialized for
each of the two input collections. Sets AR and A keep track of
the intervals that are currently “open” (i.e., their start point has
been encountered but not their end point). Each point in list L is
accessed in order; if it is a start point of an interval, e.g.,r € R, r
is guaranteed to overlap all intervals in AS. Therefore, all pairs in
{r} x AS are reported. For example, consider Figure 1 and assume
that the start point of r3 is currently accessed (i.e., the sweep
line is the leftmost vertical line). The active set of S is AS = {sp),
hence the algorithm outputs pair (r3, sz) as part of the join result.
If an end point is encountered by the sweep line (Lines 11-12 and
18-19 of Algorithm 1), the corresponding interval is no longer
open, so it is removed from its respective active set.

Assuming an efficient data structure, which performs inser-
tions and deletions to the active sets in constant time (e.g., a hash
table), Algorithm 1 computes the join in O(|R| + |S| + K) time,
where K is the number of result pairs, excluding the sorting cost
of list L. Note that when a start point is encountered, an active set
should be scanned to generate join results. Scanning a hash table
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ALGORITHM 1: Plane-Sweep based Interval Join

ALGORITHM 2: Simple Counting

Input :collections of intervals R and S
Output  :set of all intersecting interval pairs (r, s) € R X S
Variables :interval points list L, active sets AR AS

AR «— 0, AS «— ;> sets of active intervals from R and S

-

N

L « start and end points of all intervals in RU S;

3 sort L;

4 while L is not depleted do

5 p < next pointin L;

6 if p originates from collection R then

7 r « interval in R where p belongs;

8 if p is a start point then

9 add r to AK; > r is open

10 output {(r,s): Vs € ASY}; > r overlaps all
intervals in AS

1 | else remove r from AR; > r no longer open

12 else

13 s « interval in S where p belongs;
if p is a start point then
add s to A%;
output {(r,s) : Vr € ARy, >

intervals in AR

14
15 > s is open

16 s overlaps all

17

else remove s from A°; > s no longer open

is expensive as it incurs random accesses in memory; to this end,
Piatov et al. [13] designed the gapless hash map which efficiently
supports all three insert, remove and getNext operations.? Fi-
nally, in [1], an implementation of the plane-sweep based interval
join that replaces active sets (e.g., AR) by forward scans to the
other collection (i.e., S), was investigated and optimized.

3 EVALUATING ICS]

We now investigate how the plane-sweep based Algorithm 1
can be extended to efficiently evaluate interval count semi-joins.
Recall that the goal is to count for every interval r € R, the
number of overlapping intervals from S.

A naive approach for computing ICSJ(R,S) is to evaluate
IJ(R,S) first. Then in an aggregation step, we need to sort or
hash the (r,s) join pairs by their first element, and count and
report the number of pairs for each r € R. Naturally, this method
is at least as expensive as the interval join problem. In fact, since
the number of overlapping intervals can be much greater than the
sizes |R| and |S| of the two inputs, the cost of sorting or hashing
the IJ(R, S) results may dominate the overall evaluation cost.3

To address these shortcomings, we next present two methods,
which extend Algorithm 1 to directly compute ICSJ(R, S).

3.1 The Simple Counting Approach

We first discuss an intuitive extension to Algorithm 1 based on
the following observation. When the start point of an interval
(e.g., r € R) is encountered, the algorithm scans the active set of
the other collection (i.e., AS) to produce join pairs {r} x AS. As
our objective is only to count the intervals from S that overlap
interval r, we do not have to scan active set AS; instead, we only
need to add its size |AS| to a dedicated counter for r. Note that

In [13], Algorithm 1 is presented as the Endpoint-Based Interval (EBI) Join
algorithm.

3Note also that this naive method is not suitable for in-memory evaluation of count
semi-joins due to buffering all I J(R, S) result pairs.
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Input :collections of intervals R and S
Output :foreachr € R, |s : s € S, and r intersects s|
Variables :interval points list L, active sets AR AS hash table C

1 AR < 0, AS « ;> sets of active intervals from R and S

™)

L « start and end points of all intervals in R U S;

3 sort L;

4 while L is not depleted do

5 p < next pointin L;

6 if p originates from collection R then

7 r « interval in R where p belongs;

8 if p is a start point then

9 add r to AR, > r is open
10 L C[r] « |AS); > initialize counter for r
11 else

12 remove r from AK; > r no longer open
13 output (r, C[r]);

14 delete C[r];

15 else

s « interval in S where p belongs;
if p is a start point then

add s to AS;

foreach r € AR do

L Clr] « C[r] +1;

intervals in AR
else remove s from AS;

> s is open

> s overlaps all

21 > s no longer open

this is not the final value of this counter, because r may also
overlap with intervals from S that start later. Nevertheless, we
can eliminate the overhead of scanning the active set of collection
S, which in practice also means that a typical hash table can be
used for AS instead of an optimized special structure (e.g., the
gapless hash map of [13]) as we only need to support efficient
insertions and deletions. In contrast, we still have to support
efficient scans for active set AR, because for each encountered
start point from S, we have to scan AR in order to increase the
counters of all open intervals from r.

Algorithm 2 is a pseudocode of this Simple Counting approach.
Compared to Algorithm 1, we define a hash table C to maintain
the dedicated counter for each open interval from collection R.
Further, as already discussed, Simple Counting initializes counter
C[r] in Line 10, when the start point of an interval r € R is seen.
The counter for each r € AR is then increased by 1, when the start
of an interval from S is seen in Lines 19-20. Finally, as soon as
the end point of r is accessed, counter C[r] is finalized and hence
removed from hash table C and reported as result (Lines 13-14).
Consider for example r3 in Figure 1; when accessing the start
point of the interval, counter C[r3] is initialized to 1 as AS = {sy}).
After the next two stops of the sweep line marked in the figure,
i.e., when the start points of intervals s and s3 are encountered,
C[r3] is increased to 3. Algorithm 2 is similar to the general
approach for temporal aggregation, proposed in [12].

Simple Counting is expected to always outperform the naive
solution; recall that the latter needs to completely evaluate I] as
its first step. On the other hand, Algorithm’s 2 cost is in same
order to Algorithm 1 as half of the I] results are still computed,
i.e., the pairs generated in Lines 19-20 when encountering start
points from S. Note that Simple Counting is also charged with
the book-keeping cost for the counters of hash table C. In view



ALGORITHM 3: Smart Counting

Table 1: Characteristics of experimental datasets

Input :collections of intervals R and S
Output :foreachr € R, |s : s € S, and r intersects s|
Variables :interval points list L, hash table C
1 |AS] «0;
2 g« 0

> active set counter for intervals from S
> global counter

3 L « start and end points of all intervals in RU S;

4 sort L;

5 while L is not depleted do

6 p < next point in L;

7 if p originates from collection R then

8 r « interval in R where p belongs;

9 if p is a start point then
| Clr]l < 14%]-g;

else

Clrl < Clrl+g;

output (r, C[r]);

delete C[r];

10 > initialize counter for r

11
12
13

14

15 else

16 s « interval in S where p belongs;
17 if p is a start point then

18 L |AS| « |AS|+1;> increase active set counter
19

else
L |AS| « |AS|-1;> decrease active set counter

ge—g+1; > increase global counter

20
21

of these shortcomings, we next present a significantly faster
extension to Algorithm 1.

3.2 The Smart Counting Approach

The main idea behind the Smart Counting extension to Algo-
rithm 1 is to maintain cheap statistics about the intervals from S
instead of keeping track of A at every position of the sweep line.
Algorithm 3 is the pseudocode of the Smart Counting approach.
We now discuss its key features.

First, we observe that only the size of active set A is in fact
needed for the ICSJ computation. Although the Simple Count-
ing algorithm presented in Section 3.1 keeps track of the open
intervals from S, the contents of AS are never scanned and only
|AS| is used on Line 10 of Algorithm 2. Hence, we can replace the
hash table of active set AS by a simple size counter |AS|; when
the start point of an interval s € S is encountered, this counter
is increased by 1 (Line 18) while after an end point from S is
accessed the same counter is reduced by 1 (Line 21). Next, we
define a global counter g to keep track of the number of intervals
from S that have opened (regardless whether their end point is
already accessed or not). Similar to |AS|, counter g is increased
by 1 in Line 19 when a start point from collection S is seen but
never decreased which means that g > |A%| always holds.

By combining counters |A%| and g, we are able to compute
the number of intervals from S that opened or were open in-
between the start and the end point of an interval r € R. In
specific, we initialize the dedicated counter C[r] = |AS| when
the start point of r is encountered but then subtract the value of
global counter g (Line 8). Compared to Algorithm 2, notice that
we no longer maintain open intervals from R to active set AR;
instead we employ hash table C to store the current value of r’s
dedicated counter. After the end point of interval r is seen, we
just need to add back the current value of g to C[r] and report
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[ [ FLIGHTS | BOOKS | GREEND | WEBKIT
Cardinality 445,827 2,312,602 110,115,441 2,347,346
Domain duration (secs) 2,750,280 31,507,200 283,356,410 461,829,284
Shortest interval (secs) 1,261 1 1 1
Longest interval (secs) 42,301 31,406,400 59,468,008 461,815,512
Avg. interval duration (secs) 8,791 2,201,320 16 33,206,300
Distinct domain points 41,975 5,330 182,028,123 174,471

result (r, C[r]) (Lines 12-13). This procedure guarantees that we
will end up with the correct value of C[r], because the difference
from global counter g corresponds to the number of intervals
from S that opened after r’s start point. Note that these intervals
overlap with r but were not considered when C[r] was initialized.

We expect the Smart Counting approach to significantly out-
perform Simple Counting as the cost of maintaining and scanning
active sets AR, AS is completely eliminated. Further, we manage
to avoid the random accesses that incur during the for-loop on
Lines 19-20 of Algorithm 2 when the counters for multiple inter-
vals are concurrently updated. Overall, the cost of Smart Count-
ing (excluding sorting) is O(|R| + |S|) due to the constant-time
cost of processing at each position of the sweep line.

4 EXPERIMENTAL ANALYSIS
4.1 Setup

For our experiments, we implemented all methods in C++ and
compiled them using gcc (v5.2.1). Note that all data (input collec-
tions, active sets, interval points list etc.) resided in main memory.

Methods. Besides gapless hash map, the authors in [13] also
discussed a lazy optimization for plane-sweep based Algorithm 1,
which buffers consecutive start points in list L from the same
input (e.g., R). When producing I results, a single scan over the
active set of the other input (i.e., AS ) is performed for the entire
buffer. By restricting buffers to fit inside L1 cache or even the
cache registers, this technique reduces cache misses. To enhance
ICS] computation, we applied this lazy optimization on Naive
and Simple Counting. For the latter, we buffer consecutive start
points from S allowing us to increase C[r] for each r € AR by the
buffer size instead of 1 as in Lines 19-20 of Algorithm 2. On the
other hand, lazy optimization has no effect on Smart Counting.

Datasets. Table 1 details our 4 real-world experimental datasets.
FLIGHTS records domestic flights in USA during January 2016
(https://www.bts.gov); valid times indicate the duration of a flight.
BOOKS records the transactions at Aarhus public libraries in 2013
(https://www.odaa.dk); valid times indicate the periods when a
book is lent out. GREEND [10, 13] records power usage informa-
tion in households across Austria and Italy from January 2010 to
October 2014; valid times indicate the period of a measurement.
WEBKIT records the file history in the git repository of the We-
bkit project from 2001 to 2016 (https://webkit.org); valid times
indicate the periods when a file did not change.

Tests. We ran interval count semi-joins using a uniformly sam-
pled subset of each dataset as outer input R and the entire dataset
as inner S; for this purpose, we varied ratio |R|/|S| inside {0.25, 0.5,
0.75, 1}. To assess the performance of the methods, we measured
their total execution time which breaks down to the time spent
(i) to generate and sort the list of interval points L, denoted by
Sorting, and (ii) to compute the ICS] result, denoted by Joining.

4.2 Experiments

Figures 2 and 3 report the results of our experimental analysis. In
specific, Figure 2 reports the total execution time of each method



Naive CC1  Simple I  Smart I
1000 100 1000 1000
g ™ i g 10
Y 10 o o 100 Y
£ E E E w0
= ! ! = =
.S 2 S S 1
5 0l E £ 10 e
3 g 01 ] 3 01
g o0l & & a v
0.001 0.01 1 0.01
025 05 075 1 025 05 0.75 1 025 05 075 1 025 05 0.75 1
[RI/1S] IRI/1S1 [RI/1S] [RI/1S]
(a) FLIGHTS (b) BOOKS (c) GREEND (d) WEBKIT
Figure 2: Total execution time while varying the |R|/|S| ratio.
1000 — 1000 s 1000 — 1000 —
Joining 1 Joining T Joining 1 Joining 1
Sorting  E— Sorting  H— Sorting  E— Sorting  E—
_ 100 _ 100 100 1 _ 100
< 10 < 10 <> 10 < 10
£ £ £ E
= = = =
1 1 1 1
0.1 0.1 0.1 0.1
Naive Simple  Smart Simple Smart Naive Simple  Smart Simple Smart
(a) FLIGHTS (b) BOOKS (c) GREEND (d) WEBKIT

Figure 3: Execution time breakdown for |R| = |S

while varying the |R|/|S| ratio and Figure 3 reports a breakdown
of the execution time for the |[R| = |S| case. As expected, we
were able to run the Naive method only when ICS] was very
selective, i.e., for datasets FLIGHTS and GREEND. Recall from
Section 3 that Naive first evaluates the IJ of the input collections;
on BOOKS and WEBKIT, it was impossible to accommodate the
enormous number of IJ result pairs in main memory.*

Figure 2 demonstrates the efficiency of the Smart Counting ap-
proach, which outperforms Simple Counting in all cases. In fact,
Simple is competitive to Smart only for very selective join setups
(see Figure 2(c)) while in all other cases, Smart is at least one
order of magnitude faster. To explain the performance cost differ-
ences between Smart and Simple, we breakdown their execution
times. In Figure 3(c), the execution cost of Simple is dominated
by the generation and sorting of the points list L, because the
number of overlapping interval pairs is small, rendering the inner
loop at lines 19-20 of Algorithm 2 cheap. On other hand, when
there is a large number of overlapping intervals, Figure 3 unveils
that maintaining active sets and performing random accesses to
update C counters severely impacts the joining time of Simple.
In contrast, observe that the cost by Smart to compute the ICSJ
result is always much lower than that of generating/sorting L.
This is expected because Smart is insensitive to the I] result, as
discussed in Section 3.2.

5 CONCLUSIONS

In this paper, we studied the evaluation of the interval count
semi-join operation; we presented an efficient algorithm based
on plane sweep. Our algorithm has lower complexity compared
to state-of-the-art interval join algorithms if the number of join
results is large. We experimentally showed that its overhead on
top of sorting the data is minimal in all setups, which means that
it is especially tailored in cases where the join inputs are already
sorted (e.g., in streaming data applications). In the future, we
plan to further study the semantics and the evaluation of top-k

“We also experimented with a version of Naive that flushes the IJ result pairs on
disk which was even slower.
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interval joins. We also intend to investigate the applications of
interval joins and other temporal operations in streaming data.
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