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ABSTRACT

The RDF data model has emerged as the most prominent way to
interlink and exchange data on the Web due to its simplicity in
the form of subject predicate object statements, but this simplicity
comes with the cost of having to execute a large number of joins
in order to get the desirable query results. Numerous approaches
exist that aim to treat this problem, mainly focusing on disk based
storage. In this work we consider a main memory setting and
present a physical design and query method aiming to exploit
spatial locality for efficient in-memory processing. Our design is
also amenable to straightforward parallelization, something cru-
cial for main memory database systems. Specifically, we present
a join implementation that allows to achieve any desired degree
of parallelism on arbitrary join queries and RDF graphs stored in
memory using compact vertical partitioning. We use an adaptive
join processing approach, such that we take advantage of complete
or even partial ordering of RDF data, which is compactly stored
in order to increase spatial locality and keep memory consump-
tion low, coupled with an ID-to-Position vector index used when
ordering does not allow for efficient scanning of the input relation.
We have implemented an in-memory prototype that experimen-
tally shows the efficiency and scalability of our proposal, taking
advantage of continuously growing sizes of main memory and
multi-core environments of modern hardware. Specifically, we
show that for a machine with 128 GB of main memory and 16
cores, which is a reasonable amount for an average modern server,
our prototype can store and query RDF graphs with up to two
billion triples, and it outperforms centralized and distributed state
of the art approaches.

1 INTRODUCTION

The Resource Description Framework (RDF) is a data model rec-
ommended by the W3C for semantic data integration, sharing
and linking across different organizations and applications on
the Web. RDF provides flexible modeling of data coming from
heterogeneous domains in the form of triples forming subject-
predicate-object statements, facilitating the construction of Knowl-
edge Graphs. Every component of such a triple is a resource
uniquely identified by an IRI or a data value in the form of a
literal. The latter can only be present in the object position. A
set of such statements can be considered an RDF graph, where
subjects and objects are nodes and there exists an arc labeled with
the property name, connecting corresponding subject and object
for each statement. Several organizations publish data in the RDF
model, leading to interlinking information from different sources
and automatic processing using software agents. As a result, as
of 2018 the Linked Open Data (LOD) cloud [34] contains more
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than 1000 datasets and 60 billion triple statements, with DBpedia
[8], a dataset that contains semantic information extracted from
Wikipedia, taking up a central position with 3 billion triples and
around 50 million links to other datasets.

The SPARQL query language is the W3C recommendation
for querying RDF graphs. The basic building block of SPARQL
queries are triple patterns. A triple pattern is similar to an RDF
statement, with the exception that each component (subject, pred-
icate or object) can be either a resource or a variable. The eval-
uation of a single triple pattern over an RDF graph consists of
finding matches of the pattern on the graph such that variables
are substituted by RDF resources. A Basic Graph Pattern (BGP)
is a set of triple patterns. During evaluation of a BGP all triple
patterns are matched to an RDF statement and common variables
between triple patterns are substituted by the same resource. If we
consider RDF storage on a single relational triples table, a BGP
with n triple patterns corresponds to n — 1 self joins of the triples
table.

Since the adoption of the RDF data model numerous systems
and research prototypes have been developed aiming at efficient
SPARQL query evaluation, focusing mainly on the evaluation
of BGPs which proved to be extremely demanding. Centralized
systems explored different physical storage options and query ex-
ecution techniques. Main storage schemas include a single triples
table, denormalized property tables, vertical partitioning, graph-
based storage and storage based on bit arrays. Details and ref-
erences to such systems are presented in the next section. As
scalability became an issue with the continuously increasing size
of several datasets, distributed approaches came into play, assisted
by cloud technologies such as the MapReduce framework, its
implementation Apache Hadoop and several Big Data processing
systems built on top of it. Most of these systems use optimizations
in order to minimize the execution cycles, which correspond to
Hadoop jobs and involve data transfer between the workers. This
is due to the synchronous nature of the MapReduce paradigm. As
a result, depending on data partitioning and replication one can
achieve evaluation completely in parallel for some queries, but for
queries that require communication the overhead is important due
to the synchronization step.

A number of in-memory distributed systems were later pro-
posed such that their communication is based on custom asynchro-
nous methods, mostly on the Message Passing Interface (MPI)
standard. Trinity.RDF [42] is based on graph exploration and it
was the first system to follow this design. TriAD [14] and the
extension of the centralized main memory RDF store RDFox with
a dynamic data exchange operator [26] also use an asynchronous
execution model (In what follows we will refer to the system
described in [26] as the dynamic exchange operator approach),
but unlike Trinity.RDF they use relational-style joins, increasing
the level of parallelism for large intermediate results over the
graph-based approach. In order to do so, both of these systems use
expensive graph partitioning before data loading. AdPart [3] tries

10.5441/002/edbt.2019.31


https://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2019.31

to overcome this problem by using simple subject-based hash par-
titioning and then adaptively, based on the query load, replicates
specific data fragments to the workers. As a result of the initial
subject-based partitioning, expensive broadcast of intermediate
result occurs in case of joins on objects.

Our query processing approach is inspired by the asynchro-
nous execution model of main-memory distributed RDF stores,
mainly of TriAD and the dynamic exchange operator approach.
Both these approaches use expensive preprocessing in the form of
graph partitioning in order to minimize communication between
servers during query execution. Also, extra effort is needed in
order to track the server that contains each resource. Most impor-
tantly, even in a centralized parallel environment these systems
would require some form of inter-process or inter-thread com-
munication and as a result some form of synchronization. For
example, in case of rehashing, each worker of TriAD has to wait
in order to receive and rehash all intermediate results from all
other workers. Same kind of overheads occur in the dynamic ex-
change operator where each worker must hold a queue for each
query atom, where incoming messages are put. This may lead to
blocking execution until some other worker process results for a
subsequent query atom. Also, in the dynamic exchange operator
approach detecting termination is not trivial and requires a round
of message exchanging. Our method ensures parallel execution
without any form of communication or synchronization between
the workers (in our case threads) while at the same time avoiding
expensive preprocessing like graph partitioning. Furthermore, we
adaptively decide to scan the corresponding partitions when it is
preferable, instead of always using index-based nested loops as
done by the dynamic exchange operator approach.

Regarding the physical data storage, our approach is inspired
by column-store systems such as MonetDB [16] and C-Store [37],
as we first use vertical partitioning [1] to create a separate table for
each property, and then keep subjects and objects for each prop-
erty in separate arrays so that each tuple can be reconstructed by
relating entities at the same positions in these arrays, reminiscent
of the virtual IDs of column stores. This way we achieve increased
spatial locality during processing. Also, we allocate a single array
position for each distinct subject or object as a simple form of
column specific compression (reminiscent of the POS and PSO
indexes used by Hexastore [39]) and we keep two replicas of each
two-column table in different sort orders. The main contributions
presented in this work are:

o A join processing approach with low memory consumption,
able to efficiently parallelize evaluation of arbitrary multi-
join BGPs without any communication.

o Physical design method which compactly stores RDF data
in memory, in order to increase spatial locality during join
processing. For example, for scale 10240 of the LUBM
dataset with about 1.4 billion triples, excluding dictionary,
the storage requirements are only 22 GB (50GB if we
include the dictionary).

o A cache-friendly method which adaptively, during execu-
tion, decides to switch from binary search to scan in order
to take advantage of existing (even partial) sorting of RDF
triples, that further improves our join implementation. An
auxiliary bit vector index can be used to avoid binary search
and improve efficiency.

o Animplementation and experimental evaluation for datasets
up to 2 billion triples which shows that our proposal out-
performs existing state of the art centralized systems. Also,
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based on published results for other systems, it is shown
that for tested datasets, like LUBM 10240, our implementa-
tion running on a single 16-core server outperforms (mostly
for complex queries) or performs close to the fastest state
of the art asynchronous distributed in-memory systems
deployed on a cluster of machines.

We proceed by first presenting related work. Then in Section 3
we present details of the physical data storage and in Section 4 we
present details of the adaptive join method that allows for incor-
porating parallelism into processing. We present implementation
details and experimental evaluation in Section 5 and we finally
conclude and discuss future work.

2 RELATED WORK

RDF storage using relational technology has been a subject of
research since the proposal of the RDF data model. BGP evalua-
tion using a single triples table that contains the whole RDF graph
involves expensive self joins over this large table. As a solution,
some systems like Jena [40] proposed the usage of “flattened”
property tables, which contain a larger number of columns, in an
effort to simulate a relational schema and avoid joins as much
as possible. Nevertheless, this design has some drawbacks, like
for example a lot of NULL values for wide tables, the need for
UNION during a single BGP processing and difficulty to handle
multi-values attributes. [5] aims at efficient evaluation using an
object-relational DBMS including a two-column representation
for properties. Vertical partitioning[1] uses this representation in
order to treat the drawbacks of the property tables. In this approach
a separate two-column table is created for every property of the
RDF graph. In this case, the number of joins is not reduced in
comparison to the single triples table, but each join is between
smaller tables and also tables not relevant to the query do not need
to be accessed at all. Column stores are ideal candidates for RDF
processing using vertical partitioning, as they provide compact
storage and compression over each column.

Hexastore enhances the vertical partitioning by replicating the
data through six different indexes, corresponding to all possible
permutations of subject, predicate and object [39]. RDF-3X [23]
also uses extensive indexing such that an index is created not only
for all possible permutations but also for aggregated values, result-
ing in 15 indexes stored as clustered B+ trees. This schema along
with several optimizations, such as skipping large parts of irrele-
vant data during merge joins using a form of sideways information
passing, made RDF-3X one of the most efficient disk-based RDF
stores, despite conceptually using the single triples-table approach.
Our design follows the vertical partitioning approach, but as in
Hexastore, we keep two different replicas for each property in
different sort orders (corresponding to POS and PSO indexes) and
we also compactly store only distinct subjects and objects. Also,
our adaptive join optimization (Section 4.1) can be considered a
way of skipping irrelevant data as in RDF-3X.

Regarding SPARQL query processing using cloud technologies,
an initial approach using the MapReduce framework is presented
in [30, 31]. In this work, the authors describe the query evaluation
of Basic Graph Patterns of SPARQL using an iterative algorithm,
such that every join in the query requires a separate MapReduce
job. The RDF data is stored in plain files in the distributed file
system. A similar iterative approach is also used in [20], but here
the authors note that more than one triple patterns that share a
variable can be joined together in the same MapReduce job. They
use a greedy selection algorithm that chooses in every step the



variable that appears in more triple patterns and they employ
reduce-side joins to get the results. In [11] predicate-based hash
partitioning is employed. The query is decomposed to subqueries
using the same partitioning and in every node a local Sesame
RDF store is used to evaluate each subquery. Instead of hash
partitioning, in [15] the authors use a graph partitioning algorithm
to assign triples to nodes and also they employ data replication
for triples that are on the boundaries of each partition, in order to
maximize the number of subqueries that can be executed without
communication between the nodes. They stress the usefulness of a
heuristic that finds the minimal number of subqueries because this
corresponds to a minimal number of Hadoop jobs, and they split
each query to a number of such subqueries using a brute-force
method, which is suitable only for queries with few triple patterns.

A number of approaches store the RDF data into an existing
system that has its own declarative language and then they trans-
form the SPARQL queries into that language. For example, [32]
uses Pig Latin[24] and performs some well known optimizations
to the SPARQL query, like the early execution of filters and some
selectivity estimations based on variable counting. During the
translation to Pig Latin, [32] just uses multi joins when consecu-
tive joins on the same variable are found, as this is an option that
Pig Latin offers. RAPID+, a system which is also based on Pig
Latin, is presented in [29]. Here the authors propose an intermedi-
ate algebra which is called Nested TripleGroup Algebra, in order
to facilitate the grouping of join operators during the translation of
the query to the execution plan in Pig Latin. The result is that each
star join involving two or more triple patterns can be executed in
one Map-Reduce job, using vertical partitioning.

HyRDF+ [25] uses HBase! to store the RDF data. It takes ad-
vantage of the HBase key ordering for each table and it uses six
tables, each one corresponding to an RDF triple permutation. In
this way there is replication of the data, so that the system can
perform fast merge joins when all triples are part of the initial RDF
data. When some data is result of an intermediate step, the system
first performs a sorting on this intermediate data. Another key fea-
ture of the system is that during the query planning it examines the
option that the query will be executed in a centralized system. The
rationale behind this is that if the query is simple, its evaluation
in a centralized system can be preferable, because one can avoid
the overhead of the MapReduce jobs and network communication.
The system uses a greedy planner to decide about the order of the
joins, based on a cost model and some index statistics that it has.
In a similar manner, the system named Rya[27] uses Accumulo?,
to store indexes for permutations of subject, predicate and object
in the row ID field of each corresponding table, but it only uses
three indexes instead of all the possible ones. Rya supports range
queries and regular expressions, multi-threaded join execution and
also provides some limited inferencing capabilities. S2RDF [33]
uses the in-memory system Spark to store the RDF data using
vertical partitioning combined with semi-join materialization and
then translates the SPARQL query to Spark SQL [7].

Regarding in memory join processing, a lot of research has been
concentrated on cache friendly methods, such as the radix hash
join [18], and also into taking advantage of hardware features
such as the SIMD vectorized instructions for efficient parallel
sort-merge joins [4, 17]. These works consider the setting of
relational data with arbitrary number of columns, where a single
join has to be performed on previously non indexed columns and
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sorting or hashing is a serious overhead that has to be performed
in parallel. Instead, our work is tailored for RDF graphs, as it
exploits initial ordering of both subject and object RDF columns
and partial ordering of subsequent joins for pipelining multiway
joins, such that it completely avoids hashing or sorting during
query execution. Exploiting partial ordering of values in a column
has been used by main memory systems in the form of zone-maps
[28, 35] where additional statistics about each such zone have to
be maintained in order to skip scanning certain areas. Adaptivity
during run-time regarding the decision of scanning a base relation
or use a secondary index has been studied in [9, 10] for disk-based
systems.

Regarding centralized parallel in memory RDF processing, to
the best of our knowledge there is no work concentrating on query
processing. RDFox [21] and Inferray [38] are both systems that
aim at parallel in memory computation and materialization of
RDF inferences. This can be thought of as a preprocessing step
prior to querying. Although RDFox offers query evaluation, it
seems that is not the focal point of the system and for such queries
there is no support for intra-query parallelism, that is each query
is evaluated in a single thread. In [12] several variations of the
disk based RDF-3X are presented, such that they allow parallel
join evaluation. From the experimental results it is shown that
depending on the query, there is no clear variation that has bet-
ter performance, whereas for some queries the original version
is better, as parallel evaluation prohibits the usage of the side-
ways information passing optimization in RDF-3X. Also, their
approach works by parallelizing each join separately and demands
communication and synchronization costs.

3 PHYSICAL DATA STORAGE

In this section we present our physical data storage and give an
overview of the join method that allows incorporation of paral-
lelism. First, following the common practice used by many sys-
tems, we use dictionary encoding, by assigning an integer value
to each value encountered in the RDF data. We use common num-
bering for values appearing in the subject and object positions
and a different numbering for values appearing in the property
position, but for ease of presentation here we assume common
numbering for all values. Thus, after parsing of an RDF dataset
that contains N distinct values, our dictionary will contain integer
IDs from 1 to N. Then, we apply vertical partitioning [1] to create
a separate two-column table for each property defined in the data.
We keep two replicas of each two-column table, the first sorted on
subject and then on object, and the second sorted first on object
and then on subject. Given that a property P is assigned to integer
i from our dictionary encoding, we will refer to the first replica
of two-column table for P as prop; and to the second replica as
prop;- and we will call the tables first sorted on subject S-O tables
and tables first sorted in object O-S tables.

Consider for example the following RDF data (IRIs are omit-
ted):

ProfessorA teaches Mathematics
ProfessorB teaches Chemistry
ProfessorC teaches Literature
ProfessorA teaches Physics
ProfessorA worksFor Universityl
ProfessorB worksFor University2
ProfessorC worksFor University2
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Figure 1: Example of Physical Data Storage for a Property
Partition

The dictionary encoding of the data is given in Table 1. Us-
ing this encoding, the two-column tables props and propg that
correspond to properties teaches and worksFor will be created.

Table 1: Example of Dictionary Encoding

Value
ProfessorA
teaches
Mathematics
ProfessorB
Chemistry
ProfessorC
Literature
Physics
worksFor
University 1
University2

Integer

_ =0 00 1 O\ LN &~ W =

—_ o

For each table, we store a sorted integer array with the distinct
subjects (for S-O tables) or distinct objects (for O-S tables). We
also store a second array of same length with the first. Each posi-
tion of this second array contains a pointer to a sorted integer array
and an integer denoting the length of this array. This is a pointer
to the objects (for S-O tables) or subjects (for O-S tables) that
correspond to the subject (respectively object) located at the same
position of the first array. The reason that we keep two separate
arrays has simply to do with compactly storing the integers of
the first array and improving spatial locality during the join pro-
cessing. We also keep track of the length of the first array, using
an array of length 2 % (number of properties) that contains this
information for all properties. Getting this information involves
a simple lookup at a specific position, for example, to get the
number of subjects for prop;, we should look at position 2 * 7,
whereas to get the number of objects for prop;- we should look at
position (2 % 7) + 1.

Figure 1 contains an example of physical storage for a property
table. Given that the specific table is for property props, then it
contains the following triples: 5 props 8, 7 props 8, 7 props 34,
13 props 40, 18 props 3, 24 props 9, 24 props 16, 24 props 41,
29 props 40, 33 props 22, 45 props 4. Note that in order to avoid
memory fragmentation, the different object arrays of this example
can be allocated to a continuous memory area. In this case, instead
of having different pointers for each position of the second array,
we can keep a single pointer to the start of this memory area and
only keep offsets in each position of the second array.
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Our join method resembles an index-based nested loops join
(or merge join when possible - this will be discussed later) that
starts concurrently from different shards of the first table, and runs
in parallel, by probing the next table to be joined for each tuple.
In this way our method operates on left-deep query join trees as
shown in Example 3.1.

Example 3.1. Consider a SPARQL query:
SELECT ?x ?y ?z

WHERE {
?x teaches ?z
?x worksFor ?y . }

Also suppose that the join order chosen by the optimizer (see
Section 4.3) is the same with the order of the triples in the text of
the query. This will be translated to a join propz »<gypjecr=subject
prope. If there are two available threads, our algorithm will start
concurrently scanning two different shards of prop,. For each
tuple encountered during this process, it will probe, using bi-
nary search, table propg. This process can be decomposed into
completely independent tasks that start from different shards and
operate on read-only common data, and thus it straightforward to
be implemented using threads or separate processes with shared
memory. It is even straightforward to be implemented on different
machines using complete data replication and parallelize the query
across machines without any communication.

Note that for the given query, the degree of parallelism depends
on the number of different shards of the first table. For more
selective queries a different strategy may be needed as shown in
Example 3.2.

Example 3.2. Consider the following query, that contains an
extra filter:

SELECT ?x ?z

WHERE {
?x teaches ?z.
?x worksFor Universityl . }

In this case, suppose that the optimizer chooses the inverse join
order, as it is reasonable that the filter will limit the results of the
second triple pattern. In this case, table propg should be scanned
first. One first observation is that instead of scanning the whole
table, we can search for tuples where object is equal to 10. To do
so it is better to use the replica that is first ordered by object. After
we search propo- for object = 10, we obtain the vector of subjects
that correspond to object = 10 (in our case it is only value 1).
Then we start scanning this vector and probing table prop, using
these values. In this way we do not obtain any level of parallelism
for this query, as we start from a specific value of the first table.
It is easy though to recover the parallelism, if we start scanning
concurrently different shards of the vector that corresponds to
object = 10. If the query contains a triple pattern with variable
in the predicate position, then a union over all properties will be
needed, but this is rarely encountered in real world queries[1]. In
any case, if the number of distinct predicates encountered in the
dataset is very large, an ID-Predicate index similar to the one use
in [41] can be useful. Also note that the exact number of threads
that will be used is independent of our physical data storage and
can be decided on a per query basis after data loading in memory.
In our current implementation (Section 5) we choose to execute
each query with the same number of threads (optimally this should
be equal to the number of available processing cores or greater in
case hyper-threading is supported as shown in Section 5.2.3), but



an extension such that very simple and selective queries could be
executed with fewer resources is possible.

4 QUERY PROCESSING

The approach followed by RDF stores like RDF-3X and TriAD,
is to take advantage of initial sorting of RDF triples, and perform
merge joins when possible. Hash join is preferred when inputs
are not sorted on the join key. On the other hand, the dynamic
exchange operator approach always uses index-based nested loops
aiming at low memory consumption and avoiding blocking opera-
tors. Our system uses a combination of these two approaches, by
taking into consideration the following points:

o When both inputs are already sorted on the join key, merge
join is preferable over hash join.

e For main memory systems, index-based nested loops (in
our case in the form of binary searches over the inner
table stored as an array) does not exploit data locality and
also it is not amenable to efficient data prefetching due
to conditional branching. Nevertheless, for very selective
joins, it may still be faster than merge join.

e For RDF data processing, where the initial triples are sorted
in all three subject, predicate and object columns, even if
the whole input is not sorted on the join key of a subsequent
join, large portions of the input can still be sorted as it is
demonstrated in the following example.

Example 4.1. Consider the following SPARQL query:

SELECT ?x ?y
WHERE {

?x propl 2y

?X prop2 ?z

?z prop3 ?w . }
If the selected join order is as shown in text of the query, S-O tables
will be used for all properties. As shards of propl are scanned, for
each thread of execution, prop2 will be probed for values sorted
on ?x, but for the second join, probing prop3 will not in general
be sorted on ?z. Nevertheless, for each distinct ?x, prop3 probing
will still be sorted on ?z and if each subject of prop3 is connected
to many objects, it may be more efficient to avoid binary search
on prop3 and switch to scanning for each distinct ?x.

A single join operator has been implemented in our system,
that adaptively during run-time, for each search key, decides if
it will switch to binary search (a behavior similar to index-based
nested loops) or keep scanning the input in the form of sequential
search, continuing from the position that the cursor has been left
from a previous search (a behavior similar to merge join).

4.1 Adaptive Join Processing

Given a left-deep join tree produced from the optimizer, each
worker starts scanning a shard of the first relation, or a specific
shard of an object/subject vector of the first S-O/O-S relation
in case a filter exists, and searching the subsequent relations for
each produced tuple. The search procedure is presented in Algo-
rithm 1. The algorithm takes as input a pointer to current cursor
position (cursor_position), which corresponds to the position of
the last accessed element for the array, and decides if it will
use binary or sequential search. The cursor_position is updated
each time for both successful and unsuccessful searches inside
Sequential_Search and Binary_Search functions.

Obtaining an exact cost-model in order to take the correct deci-
sion is an involved process that needs to take into consideration
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factors such as the exact cache hierarchy, the size and bandwidth
estimation for each cache level for both sequential access (scan-
ning) and random access, cache line size, the replacement of cache
entries from operations other than the join under consideration (for
example subsequent joins of the same query) and the existence in
cache of relevant entries from previous operations (for example
scanning of the same relation in a previous query). Obtaining such
cost models for hierarchical memory systems has been studied in
[19], where cost functions are defined for basic access patterns
and then combinations of these functions can be used to derive
the cost of complex compound access patterns. As a prerequisite,
specific hardware measurements should be known, which can be
obtained through a separate calibration program that estimates
cache and CPU characteristics.

In our case, decision has to be made during runtime for each
produced tuple and each join of the query. Instead of using an
analytical cost model, we opt for a fast and lightweight method
using two assumptions: a uniform distribution of integers in the
first array of each table and that existing cache contents have an
impact proportional to the cost of either binary search or scanning.
The second assumption simply denotes that existing cache con-
tents can improve both methods, but they will not change which
the methods is more efficient in each case. For example, if bi-
nary search is preferable with completely empty cache, it will
remain so independently of the cache contents and vice versa. As
a result we base our decision on the difference between the last
accessed element and the element that we are currently searching
for. Specifically, we pass as argument to the algorithm a thresh-
old which is computed during data loading for each table. This
threshold takes into consideration an estimation about the max-
imum distance of the position of the last accessed element and
the position of the element to be found in the array, in order for
sequential search to be preferable. To switch from distance in
the array to the actual arithmetic distance of the two numbers,
we use the uniform distribution assumption, which leads to an
estimation that the difference between an element and its sub-
sequent one is (array[size — 1] — array[0])/size. Note that in
Algorithm 1, if Distance > Threshold then we could perform bi-
nary search using CursorPosition instead of 0 as starting position,
and if Distance < —Threshold we could use CursorPosition as
the end position instead of size. In theory this reduces the steps
needed from binary search, but in practice it is not efficient, as
always performing binary search on the whole array leads to the
array positions visited during the first steps to frequently occur in
cache.

Regarding the determination of the threshold, a calibration
process shown in Algorithm 2 is used. This process takes place
after data loading, prior to query execution, and tries to determine
a distance (called WindowSize) such that when searching for a
value ToFind in the Array and the position of ToFind is at dis-
tance WindowSize from the position of the last accessed element
(CursorPosition), then BinarySearch and SequentialSearch per-
form roughly the same. Specifically, the ratio of the larger to the
smaller execution times of these two methods should be smaller
than a value close to 1.0 which is specified in the input of the
algorithm (Threshold). For each calibration step each process is
called NoO fSearches times, each time searching for a value es-
timated to be at distance equal to CurrentWindowSize from the
previous one. If the ratio is larger than the Threshold, calibration
continues such that the window size is multiplied by this ratio (in
case time spent on binary search is larger) or divided (otherwise).
This calibration process is different from a calibration needed



when using an analytical cost model, in the sense that we directly
make an estimation for a value related to processing, instead of
estimating values about several hardware characteristics. Once the
calibration process terminates, we precompute the estimated value
distance (corresponding to the position distance that we obtained)
for each property, such that during query execution we only need
to perform one integer subtraction, one absolute value computa-
tion and one comparison for each tuple (lines 2-3 of Algorithm
1.

Algorithm 1: Adaptively switching between binary and se-
quential search

1 Search (Array,Value,CursorPosition, Threshold,Size);
Input :Array: an array of integers (subjects of an S-O table
or objects of an O-S table), Value: integer value to
find, CursorPosition:pointer to current cursor
position, Threshold: integer, Size: size of array
Output : nonnegative integer corresponding to the position of
Value in Array or a negative integer if Value is not
present in the Array
:Binary_Search(Array, Value, CursorPosition,
Size), Sequential_Search(Array, Value,
CursorPosition, Size)
Distance := Array[CursorPosition] — Value;
3 if |Distance| <= Threshold then
4 ‘ return Sequential_Search(Array, Value,
CursorPosition, Size);

Uses

5

else

o

return Binary_Search(Array, Value, CursorPosition,
Size);

7 end

4.2 1ID-to-Position Index

Our join method takes advantage of initial sorting and performs
cache-friendly joins even when only a partial order of input triples
is possible, but when ordering does not help we must resort to
binary search. In this section we describe the structure of an ID-
to-Position index that is used to avoid binary search and directly
locate the position of a given integer on the property array. A
separate such ID-to-Position index must be built for each S-O or
O-S table, but its usage is auxiliary, in the sense that our system
can operate without all or some of these indexes. Given an RDF
dataset with N distinct values and a corresponding dictionary with
IDs from 1 to N, in order to directly locate the position of a given
value in a table, we need to store an integer array of length N,
such that the value at index p denotes the exact position at the
table where it is located the resource whose ID value according
to the dictionary is p, or a special value to denote absence of the
specific resource from the table.

For example, given the property shown in Figure 1 and sup-
posing that the maximum ID contained in the dictionary is 45,
we would need an array of integers with length 45, such that
at position 5 of the array we would have the value 0, at posi-
tion 7 the value 1, at position 13 the value 2 and so on for po-
sitions 18,24,29,33 and 45, and all other position of the array
would have a value denoting absence. If we use M-byte integers,
then for each table the memory requirement would be M =« N
bytes. In order to save space, we use a different layout on out
ID-to-Position index, such that we only use an integer to de-
note the position of the property table at specific intervals, and
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Algorithm 2: Calibration Process

1 Calibrate (Array, NoO fSearches,

StartingWindowSize, Threshold);

Input :Array: an array of integers (subjects of an S-O table
or objects of an O-S table), NoO f Searches: number
of times to run sequential and binary search in each
calibration step, StartingWindowSize: initial
window size used in first step of calibration,
Threshold: A threshold ratio to stop calibration

QOutput :integer corresponding to the window size such that
if two values in array are longer apart then binary
search is preferable

NextWindowSize = StartingWindowSize;

AvgGap = (Array(Size — 1] — Array[0])/Size;

do

WindowSize = NextWindowSize;

TotalGap = AvgGap * WindowSize;

PreviousSearchPosition = 0;

StartTime = getTimeNow();

ToFind = Array[0];

for K < 0 to NoO fSearches do
Binary_Search(Array, ToFind, 0,

LT 7 I NS I )

10
11
&PreviousSearchPosition);
ToFind+ = TotalGap;
end
TimeBinary = getTimeNow() — StartTime;
toFind = Array[0];
PreviousSearchPosition = 0;

12
13
14
15
16
17 StartTime = getTimeNow();
for k < 0 to noO f Searches do
Sequential_Search(array, toFind,

18

19
&PreviousSearchPosition);
ToFind+ = TotalGap;

end

20
21
2 TimeScan = getTimeNow() — StartTime;
TimeDif f = |TimeBinary — TimeScanl|;
24 if TimeBinary > TimeScan then

25 Fraction = TimeBinary/TimeScan;

23

26 NextWindowSize = WindowSize = Fraction;

27 else
28 Fraction = TimeScan/TimeBinary;

29 NextWindowSize = WindowSize/Fraction;

30 end
1 while Fraction > Threshold,
2 return WindowSize;

W W

for all other positions we use a bit value to simply denote pres-
ence or absence of value from the property table. Finding the
exact position for a value requires reading the previous integer
and then counting bits set to 1 up to the position of the ID-to-
Position Index corresponding to the value. For example, if we
choose the interval to be equal to 8, then our index will store
the integer —1 at start, followed by bit values 0,0,0,0,1,0,1,0,
then integer value 1 and bit values 0,0,0,0,1,0,0,0, then inte-
ger value 2 and bit values 0,1,0,0,0,0,0, 1, then integer value 4
and bit values 0,0,0,0,1,0,0,0, then integer value 5 and bit values
1,0,0,0,0,0,0,0 and finally integer value 6 and bit values 0,0,0,0, 1.
If we want to find the position of value 29 at the property we can



directly check bit at position ((29 +8) + 1) = M * 8 + 29. If bit is not
set, then value is not present in property table. If bit is set we read
integer value that starts at bit position (29 + 8) * M %8+ (29 + 8) * 8
at the array and we add to this the number of bits that are set after
this number for 29 mod 8 positions. With this layout, given an
interval A we only need N/8 + ((N/A) = M) bytes. Also, given
that the integer and the number of bits followed up to the next
integer fit into a single cache line (with proper alignment of the
index in the memory), we only need one memory access and some
computation that can be done efficiently as a popcount operation
in order to determine the position.

As an example, using the dataset LUBM 10240 described in
Section 5, which contains about 1.4 billion triples, 17 distinct
properties and about 336 million distinct resources, using 4-byte
integers and choosing the interval to be 480 we only need 44.8
MB for each property, leading to a total memory usage of about
1.5 GB if we choose to create all possible indexes for S — O and
O — S tables, in contrast to a memory requirement of 45.7 GB if
we had used the simple layout.

Regarding modification of the join processing in case the ID-to-
Position index is used, the only change that needs to be addressed
is a different threshold resulted from calibration process. Specif-
ically, since we anticipate that using the index will have better
behavior in comparison with binary search, we need to estimate
two different thresholds with regards as to when sequential search
is preferable, with the threshold when ID-to-Position index is used
being smaller than the threshold when binary search is used.

4.3 Join Ordering and Cost Estimation

As in RDF-3X and TriAD, we employ a bottom-up dynamic pro-
gramming optimizer. As the level of parallelism during execution
is determined by the number of threads, we assume that the benefit
of each possible join order from parallelism will be a fixed propor-
tion of its centralized cost, that is the execution cost if we consider
that each property is consisting of a single shard. As a result of this
assumption, we disregard parallelism during optimization. During
cost estimation, we assume that a specific choice will be followed
for all tuples of a join, either binary search or scanning. The latter
will only take place when the join inputs are already fully sorted
and it is estimated to be cheaper than binary search. Adaptivity
during execution is expected to give a cost equal or lower to this
estimation. For each property of a specific join order we choose
to use the replica that leads to more selective results.

As selectivity estimation is not the focal point of this work, cur-
rently, in order to estimate the sizes of intermediate results we use
equi-depth histograms. As it is known that often estimates based
on such histograms may not be accurate especially in the case of
RDF data [23], we precompute some cardinalities between pairs
of properties during data loading and use these as a corrective step.
We plan to implement more elaborate techniques for cardinality
estimation in the future, like for example estimations based on
characteristic sets [22] or RDF data summaries [36].

S EXPERIMENTS

In-memory data storage and query processing for our prototype
have been implemented in C as an extension of a SQLite, which
is used as disk-based storage. Disk-based tables are created and
saved during data import from RDF files. On application start-up
the in-memory data structures are created reading from the tables.
The dictionary can either be loaded in memory or kept in disk
where for IRI-to-ID transformation (during query optimization) a
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clustered B+ tree on IRI is used and for ID-to-IRI transformation
(during IRI construction of answer tuples) a clustered B+ tree on
id. Our system is called through a wrapper written in Java, where
also query parsing and optimization is implemented. We use the
name PARJ for our implementation, which stands for Parallel
Adaptive RDF Joins.

All experiments were conducted on a 16-core server with In-
tel E5-4603 processors at 2.20 GHz and 128 GB RAM running
Debian 8. We used the popular Lehigh University Benchmark
(LUBM) [13] and Waterloo SPARQL Diversity Test Suite (Wat-
Div) [6] benchmarks. All material required to reproduce the ex-
periments is available online 3.

5.1 Setup

We use two sets of experiments: in the first one we test the effi-
ciency of our approach in the single-thread setting. In this setup
we use as competitors the in-memory RDF store RDFox (SVN
version: 2776) and also RDF-3X [23] (version 0.3.8) for com-
parison with a state of the art disk-based system. The second
setup is about multi-threaded execution. In the second setup we
use as competitor the TriAD system which in [14] it is shown to
outperform all competitors in the centralized parallel setting. We
have used the optimized build for TriAD, as it is suggested in the
installation manual.

Due to a hard-coded limit in the TriAD source code, we could
not execute queries using more than 20 workers*. Note that in
PARIJ, each worker corresponds exactly to one thread, so given that
hyper-threading is enabled, we found that the optimal performance
was achieved when we used two threads for each processing core,
resulting in 32 workers/threads in our testing machine. More
details regarding the behavior of PARJ for different number of
threads are given in Section 5.2.3. For TriAD it was not clear
which number of workers should be the optimal, as this could
be query depended. This is also the reason that we do not use
TriAD in the single-thread setting. To have a better image and
find the optimal setup, we executed TriAD with different number
of workers, and we also modified the hard-coded limit and tried
with up to 32 workers. For most queries, TriAD performance is
degrading for more than 20 workers. From our testing we found
that the overall best performance was achieved for 16 workers
and this is the setup we used for TriAD in our experiments. Also,
we present results for both TriAD settings: with summary mode
enabled and disabled. For summary mode, we used the same
number of partitions used in [14]: 200K for LUBM 10240 and
70K for WatDiv 1000.

Regarding result handling, as our intention is to concentrate in
join processing, all systems were tested in the so called “silent*
mode, that is we do not include the time for dictionary lookups
and result tuple construction. In multi threaded execution this
also means that we do not measure the time to aggregate the
results together. Each query was executed 10 times and the average
execution time is shown. We have deployed RDF-3X using an
in-memory filesystem and as a result there is no need to report
cold and warm cache times.

5.2 Results

We present results for scale 10240 of the LUBM benchmark in
Table 2 (about 1.4 billion triples) and scale 1000 of the WatDiv
benchmark (about 110 million triples). For WatDiv we used both

3https://github.comldbilid/experiments
4This was verified with the TriAD implementors



basic test workload (Table 3) and incremental linear and mixed
linear extensions of basic workload (Table 4). For WatDiv we
generated all the queries proposed in the workloads. For LUBM
we used the seven queries commonly used to test systems that do
not perform reasoning tasks, which can be found in [42], and are
labeled LUBM1-LUBM?7, and we also used three extra queries
from [26] (LUBMS8-LUBM10). A timeout of 30 minutes was used
for all queries.

Regarding single thread execution, we first observe that RDFox
is comparable to PARJ for some queries, but for other queries,
especially for queries from the WatDiv incremental and mixed
linear extensions, is highly inefficient. This confirms that this
system is not optimized for query answering, but instead, it aims at
efficient parallel materialization of RDF implications. Regarding
RDF-3X, we can see that it performs more than one order of
magnitude slower from PARJ for most queries. The reason is that
despite the fact that it is deployed in an in-memory filesystem, its
processing is oriented towards optimizing disk access, as it is not
aware that it operates in memory. For example, it uses B+ trees
to minimize the number of disk pages needed, it skips records
with its sideways-information passing optimization only when
it reads a new disk-page into memory, it uses compression on
a per page basis and also its cost estimation is based on disk
access. Nevertheless, there are some queries, for example queries
in the ML-2 set or LUBMS8, where RDF-3X outperforms the
single-threaded PARJ execution. These are queries with large
intermediate results, but only few final answers, where the record
skipping using sideways information passing in RDF-3X results
in substantial gains.

Regarding multi-thread execution we can see that for most
queries the summary mode of TriAD is inferior to the simple mode,
sometimes by a large margin. For example, for query LUBM 3
in Table 2 the execution time increases from 2 seconds to more
than 15 seconds. For the specific query we saw that execution over
the summary graph takes up most of the execution time. In any
case, the results show that for parallel execution on a centralized
environment the pruning from the graph summaries does not
contribute to an important improvement which can justify the
overhead of graph partitioning.

A comparison of PARJ with the best TriAD mode shows that
we outperform TriAD by more than an order of magnitude for
the average execution time of the LUBM 10240 queries: from
838 milliseconds for PARJ to 13263 for TriAD (Table 2). For
basic WatDiv testing (Table 3), though TriAD performs slightly
better for simple queries, PARJ performs better overall with a
total average execution time of 11.27 ms (geomean: 7.76) whereas
TriAD has a total average execution time of 13.95 (geomean: 6.8).
For the more complex queries of WatDiv extended workloads
(Table 4) PARJ clearly outperforms TriAD. For some queries the
difference is more than two orders of magnitude. As an example,
for query ML1-7 the time increases from 7 ms to 2154. The
specific query contains a series of subject-object joins, which
leads TriAD to perform blocking data transfers between workers
and rehashing over large intermediate results, though the final
result is relatively small.

Regarding the difference between the silent mode and the full
result handling, we have executed all queries with full result han-
dling (except from printing) in PARJ. That is we include answer
tuple construction, dictionary lookups and sending all results to
the coordinating thread. We do not include these results, as we
saw that for most queries, usually with results up to a few thou-
sand tuples, the difference is not important, but for queries with
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Table 5: Impact of Adaptive Processing for LUBM 10240 and
WatDiv 1000 (times in ms)-1 thread

Query Binary AdBinary Index  AdIndex
LUBMI1 22186 15454 16557 15369
LUBM2 2877 2443 2535 2437
LUBM3 6562 5491 6415 5338
LUBM4 5 7 7 5
LUBMS5 1 1 1 1
LUBMG6 2 2 2 3
LUBM7 12246 11866 9197 9213
LUBMS8 15725 9782 10420 9899
LUBM9 77468 63586 58171 58082
LUBMI10 22359 14892 16217 14606
Avg 15943 12352 11952 11495
Geomean 1034 892 898 864
Watdiv1000 Avg 8439 8003 5013 4869
WatDiv 1000 Geomean 33 28 25 23

many million results the difference can be significant. This can
be seen especially for query 2 from the LUBM benchmark (about
10M results) where execution time in multi threaded execution in-
creases from 151 milliseconds in silent mode to 610 milliseconds
in full result handling. The same holds for queries C3 (about 4.3M
results) and IL-3-5 to IL-3-10 from WatDiv which have more than
50M results. Query IL-3-8 has by far the largest number of results
(about 1.6 billion tuples with 9 columns). This is the reason that
TriAD runs out of memory for the specific query, since even in
silent mode, each worker keeps in memory all the results instead
of using an iterator to send the results to the master (or discard
the results in silent mode) as they are produced, as it is the ap-
proach used by PARJ. Execution times for the full result handling
mode of PARJ are included in the online material to reproduce
experiments.

5.2.1 Effect of Runtime Join Optimization. In order to
examine the effect of our adaptive join method, we have executed
the queries of both datasets using four different strategies as shown
in Table 5. For WatDiv benchmark we only report the average
and geometric mean of all execution times. In the first (Binary)
column we report the execution times when we always use binary
search. In the second column (AdBinary) we use our adaptive join
method in order to switch from binary to sequential search. In third
column (Index) we always use the ID-to-Position index, whereas
in the last column (AdIndex) we use the adaptive join method in
order to switch from ID-to-position index to sequential search.
One can observe that the impact of the adaptive join method is
more important when binary search is employed (comparison
of first and second column), whereas when the ID-to-Position
index is used (comparison between third and fourth column) its
contribution to better performance is smaller. This is in line with
the result of our calibration method, where when binary search is
used, the result threshold is about 200 positions, whereas when ID-
to-Position index is used the threshold is about 20 positions. Also,
it seems that the impact is more important for LUBM queries,
where in case of binary search it leads to a decrease of 23% in
average execution time. The reason for that is that the average
execution time for WatDiv queries is heavily affected by the IL-3
queries, where the impact of the adaptive method is not important,
as sequential search can rarely be used in these queries. This is
also the reason for the great reduction in average execution time
of WatDiv queries when the ID-to-Position index is used, as the
aforementioned queries are greatly profit from the index.



Table 2: Results for LUBM 10240 (times in ms)

Single Thread Multi-Thread
PARJ | RDFox | RDF-3X | PARJ-32 | TriAD | TriAD-SG 200K

LUBM1 15369 | 96677 1329510 | 800 4188 4467
LUBM2 | 2437 | 40368 | 21870 151 965 1101
LUBM3 5338 136554 | 23179 605 2004 15243
LUBM4 | 5 1 8 10 12 5
LUBM5 1 1 6 4 2 2
LUBM6 | 3 3 190 5 95 5
LUBM7 | 9213 | 31180 | 68769 473 13400 | 14125
LUBMS | 9899 | 44144 | 6485 1336 2838 3906
LUBMY9 | 58082 | 187192 | 208839 4014 42932 | 32982
LUBMI0 | 14606 | 26690 | 51235 982 65925 | 41510
Avg 11495 | 56281 171009 838 13263 | 11334
Geomean | 864 2536 5581 180 1071 881

Table 3: Results for WatDiv Basic Workload scale 1000 (times in ms)

Single Thread Multi-Thread
PARJ | RDFox | RDF-3X | PARJ-32 | TriAD | TriAD-SG 200K

L1 5 5 40 10 3 5
L2 8 43 30 5 5 6
L3 2 244 13 4 2 3
L4 3 7 19 4 2 8
L5 9 57 40 6 3 46
Avg 5 71 28 6 3 14
Geomean | 5 29 26 5 3 8
S1 49 1209 18 47 34 116
S2 3 284 27 3 4 17
S3 4 17 7 3 2 18
S4 4 153 10 5 5 29
S5 4 1 14 4 4 20
S6 1 5 8 5 2 3
S7 1 695 7 5 2 3
Avg 9 338" 13 10 8 29
Geomean | 4 61" 12 6 4 15
FI 5 24 15 6 5 19
F2 12 153 27 10 37 13
F3 3 59 73 9 29 74
F4 56 249 83 19 9 66
F5 3 10 108 7 40 58
Avg 16 99 61 10 24 46
Geomean | 8 56 48 9 18 37
Cl 21 50 140 12 39 598
c2 76 178 441 16 40 1574
C3 266 | 4810 127 45 43" 527"
Avg 121 1679 236 24 417 900"
Geomean | 75 350 199 21 41" 792

* RDFox returns an empty result-set for query S5, whereas the correct answer is not

empty.

** TriAD returns only distinct answers for query C3, even though modifier DISTINCT
is not present in the SPARQL query. The number of results returned is only 8162

instead of 4335801.

5.2.2 Effect of ID-to-Position Index. We now proceed to
describe the evaluation of our ID-to-Position Index compared
to standard binary search using the LUBM 10240 dataset in the
single-thread setting. Table 6 shows the number of binary searches
and the number of sequential searches which were performed
using the decision of our adaptive join method, using a thresh-
old of about 200 computed with our calibration algorithm. The
fact that sequential searches heavily outnumber binary searches
provides a strong indication that ordering is present in the RDF
dataset. In order to compare our index with binary search, we
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kept the threshold the same as computed in the case of binary
search, and executed the queries by performing our index based
lookup instead of binary search, measuring the exact number of
total execution cycles used in the index lookup or binary search
procedure each time, as well as the cache misses for each cache
level. If we exclude queries no 1 and 3-6, as they nearly perform
only sequential searches, we can see that our ID-to-Position index
results in more than 30% decrease in total execution cycles and
similar or larger decrease in the number of cache misses for all
levels of cache hierarchy.



Table 4: Results for WatDiv Incremental and Mixed Linear Workloads scale 1000 (times in ms)

Single Thread

Multi-Thread

PARJ | RDFox RDF-3X | PARJ-32 | TriAD TriAD-SG 200K
IL-15 3 27617 1339 5 584 5082
IL-16 4 204898 1832 4 1482 11814
IL-17 8 669099 1272 7 1862 14950
IL-18 3 700199 1633 5 1615 21238
IL-19 26 728518 1396 11 630 23844
IL-110 29 734363 1923 9 618 25752
Avg 12 510782 1566 7 1132 17113
Geomean | 8 335194 1546 6 1002 15068
IL-25 2 6574 1525 6 476 5340
IL-26 5 62149 2046 4 952 11156
1L-27 2 78211 1794 3 344 58749
IL-28 4 80453 1865 16 1148 62448
IL-29 9 86995 1998 6 1062 67045
IL-2 10 4 87872 1867 5 1093 70658
Avg 4 67042 1849 7 846 45899
Geomean | 4 51948 1841 6 770 31807
IL-35 13259 | 187101 542948 1494 11195 17093
IL-36 58379 | 397964 | 357310 7070 13603 25492
IL-37 23208 | 342533 | Timeout | 1192 1809 23492
IL-38 71918 | 1214564 | Timeout | 4903 Out Of Memory | Out Of Memory
IL-39 26437 | 966919 | Timeout | 2082 7182 39462
IL-3 10 41867 | 951513 175247 1882 8118 46593
Avg 39178 | 676766 3104
Geomean | 33565 | 552681 2496
ML-15 2 11481 163 2 56 374
ML-16 2 2 83 2 33 1152
ML-17 1 1 728 7 2154 4646
ML-18 2 1 824 4 103 2018
ML-19 5 98058 994 4 198 11766
ML-110 | 4 14111 1482 3 930 9841
Avg 3 20609 712 4 579 4966
Geomean | 2 178 478 3 206 2786
ML-25 3175 1136335 | 936 201 413 1849
ML-2 6 2 12182 166 5 92 1041
ML-27 121 27151 678 15 296 895
ML-28 69 818424 | 2863 19 1996 24500
ML-29 4335 | 919541 282 259 330 1587
ML-210 | 52 849283 1952 9 728 32449
Avg 1292 | 627153 1146 85 643 10387
Geomean | 151 249327 | 741 30 419 3599

Table 6: Number of binary searches and sequential searches for LUBM10240 chosen by out adaptive join method

Query #Binary | #Sequential Binary Search ID-to-Position Index

Cycles | L1 Misses | L2 Misses | L3 Misses | Cycles | L1 Misses | L2 Misses | L3 Misses
LUBMI 1 107525748 | 2236 130 49 9 3135 102 43 8
LUBM2 | 204795 10854018 502M | 26.7M 10.8M 3.5M 355M 18.3M 4.4M 543K
LUBM3 1 33169741 2401 140 50 8 4175 139 42 3
LUBM4 | 4 68 38745 | 666 368 235 16862 469 182 34
LUBMS 1 10 2423 94 29 0 2395 162 83 5
LUBM6 1 570 2033 106 26 0 2003 130 48 0
LUBM7 | 2257238 | 28768005 2.95B | 254M 80.1M 2.30M 2.12B 211M 58.9M 1.08M
LUBMS 8645 84755793 17.4M | 1.20M 682K 84.1K 11.2M | 841K 351K 21.7K
LUBMY | 409590 | 351307982 | 1.06B | 53.6M 19.7M 2.92M 655.7M | 39.1IM 11.18M 639.7K
LUBMIO | 558279 116015419 | 1.22B | 66.7M 24.2M 2.98M 798.2M | 50.76M 12.7M 634.3K

5.2.3 Scalability. In this section we experimentally show the
scalability of PARJ with regard to a varying number of threads
and varying dataset size. As far as the first issue is concerned, we
can already observe from Section 5.2 and specifically from Tables
2, 3 and 4, that running PARJ in multi threaded mode with 32
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threads performs on average about 15 times better than the single
thread version, but for the simple queries, when execution time is
less than few tens milliseconds, multi-threaded execution does not
seem to provide important gains. There are two reasons for that.
The first one is the overhead of spawning multiple threads and



LUBM 10240

100000

10000

1000

Execution Time (ms) logscale

100

16

Number of Threads

Figure 2: LUBM 10240 execution times in ms for different
number of threads

the second is that query parsing and optimization take up a large
fragment of the total execution time, which cannot be avoided in
multi-threaded execution. The best example of this is query S1
from WatDiv benchmark which is a star join query with 9 triple
patterns and more than 40 milliseconds of the reported time of 49
milliseconds is spent on producing the join order in the optimizer.

In order to better examine the behavior of PARJ for a varying
number of threads we have executed the queries from LUBM
benchmark for scale 10240 with 1, 2, 4, 8 and 16 threads as shown
in Figure 2. We exclude from this presentation simple and very
selective queries L4, L5 and L6 that do not appear to improve from
parallelism, since already in the single-threaded execution their
execution time is only a few milliseconds, much of which is due
to query parsing and optimization. On the other hand, complex
queries L1, L3, and L7-L.10, and also the simple but not selective
query L2 show large and nearly linear improvement. The reason
that we do not show results beyond 16 threads in Figure 2 has to
do with the capabilities of our testing machine, which has exactly
16 processing cores. As stated before, best results were obtained
with 32 threads as hyper-threading was enabled, but improvement
from 16 to 32 threads cannot be evaluated and interpreted reliably
for the specific scalability experiment, as here we aim to examine
the behavior of PARJ for a varying number of threads given that
the underlying hardware can provide full processing resources to
each thread.

We have also examined the scalability of our system for a
varying dataset size. Findings in Figure 3 show a similar situation
for a varying number of universities in the execution with 32
threads, confirming the excellent scalability of PARJ.

5.2.4 Comparison With Distributed RDF Stores. A com-
parison of a parallel centralized system with distributed systems
is not straightforward, as many factors come into play in order
to have a result that will be as fair and complete as possible. In
this section we attempt some first comparison of PARJ with exist-
ing RDF stores based on a recently published survey [2] and we
plan to further investigate this issue experimentally in the future.
The aforementioned survey presents an experimental comparison
of 12 distributed systems designed for shared-nothing clusters,
chosen as the most competitive and innovative from a variety of
approaches and characteristics. The experiments were performed
on a cluster with 12 servers, each with 148GB of memory and
24 cores, using, among others, the LUBM 10240 (only queries
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Figure 3: LUBM 32 threads execution times in ms for differ-
ent dataset sizes

LUBM1-LUBM?7) and WatDiv 1000 (only basic workload) bench-
marks. For both these benchmarks the single server results of
PARJ (in the full result handling mode) are comparable with the
faster of the reported systems which is the non-adaptive version
of AdPart (the adaptive version is not included in the results of
[2]). Specifically, the average and geometric mean of execution
times for first seven queries of LUBM 10240 are 918 and 75 mil-
liseconds respectively (compared with 419 and 103 for PARJ in
full result handling mode) whereas the geometric means for the
4 query categories of the basic workload of WatDiv 1000 are 9,
7,160 and 111 milliseconds (compared with 9, 10, 12 and 48 for
PARJ in full result handling mode).

6 CONCLUSIONS AND FUTURE WORK

We have presented a centralized in-memory system for paral-
lelizing join processing on RDF graphs. We have shown that our
design has excellent scaling capabilities and performance. For fu-
ture work, we first plan to perform a more thorough experimental
comparison with distributed RDF stores. As we mentioned, it is
straightforward to extend PARJ to a “cluster” version through full
replication, such that during query execution each worker start
processing from different initial shard. We plan to implement and
compare this version with the current state of the art distributed
systems. We also want to further evaluate PARJ on a high-end
server with larger available memory, in order to load and process
larger RDF graphs. Based on the scaling capabilities presented
during the experiments, we anticipate that our approach will be
able to efficiently handle such datasets.

Furthermore, we plan to investigate the efficient incorporation
of query answering with respect to class and property hierarchies
into our join approach. RDF Schema (RDFS) as well as more
expressive ontological languages like OWL-2 QL define ontologi-
cal constraints on top of RDF graphs, such that SPARQL query
answering must be extended by taking into consideration the corre-
sponding semantics in order to provide the user with the complete
answers. Deep and wide class and property hierarchies pose a
serious performance issue for all systems that perform query an-
swering with respect to such entailment regimes. Materializing
all implied assertions, as it is the case in RDFS reasoning with
forward chaining, with respect to these hierarchies may lead to
data size many times larger than the original, something that may
not be viable especially for an in-memory system. On the other
hand, using RDFS reasoning with backward chaining may lead to



complicated queries. We plan to extend our join method to han-
dle such queries, by “unioning” tables during the pipelined join
execution in order to provide complete answering with respect to
hierarchies, without the need to materialize the implications.
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