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ABSTRACT
Due to the increasing success of machine learning tech-
niques, nowadays, thay have been widely utilized in almost
every domain such as financial applications, marketing,
recommender systems and user behavior analytics, just
to name a few. In practice, the machine learning model
creation process is a highly iterative exploratory process. In
particular, an effective machine learning modeling process
requires solid knowledge and understanding of the differ-
ent types of machine learning algorithms. In addition, all
machine learning algorithms require user-defined inputs to
achieve a balance between accuracy and generalizability.
This task is referred to as Hyperparameter Tuning. Thus, in
practice, data scientists work hard to find the best model
or algorithm that meets the specifications of their prob-
lem. Such iterative and explorative nature of the modeling
process is commonly tedious and time-consuming.

We demonstrate SmartML, a meta learning-based frame-
work for automated selection and hyperparameter tuning
for machine learning algorithms. Being meta learning-based,
the framework is able to simulate the role of the machine
learning expert. In particular, the framework is equipped
with a continuously updated knowledge base that stores in-
formation about the meta-features of all processed datasets
along with the associated performance of the different
classifiers and their tuned parameters. Thus, for any new
dataset, SmartML automatically extracts its meta features
and searches its knowledge base for the best performing
algorithm to start its optimization process. In addition,
SmartML makes use of the new runs to continuously en-
rich its knowledge base to improve its performance and
robustness for future runs. We will show how our approach
outperforms the-state-of-the-art techniques in the domain
of automated machine learning frameworks.

1 INTRODUCTION
Machine learning is the field of computer science that fo-
cuses on building algorithms that can automatically learn
from data and automatically improve its performance with-
out end-user instructions, influence or interference. In gen-
eral, the effectiveness of machine learning techniques mainly
rests on the availability of massive datasets, of that there
can be no doubt. The more data that is available, the
richer and the more robust the insights and the results
that machine learning techniques can produce. Nowadays,
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we are witnessing a continuous growth in the size and
availability of data in almost every aspects of our daily
life. Thus, recently, we have been witnessing many leaps
achieved by machine learning in wide range of fields [1, 9].
Consequently, there are growing demand to have increasing
number of data scientists with strong knowledge and good
experience with the various machine learning algorithms in
order to be able to build models that can achieve the tar-
get performance and to keep up with exponential growing
amounts of data which is produced daily.

In practice, the machine learning modeling process is a
highly iterative exploratory process. In particular, there is
no one-model-fits-all solution, i.e, there is no single model
or algorithm which is well-known to achieve the highest
accuracy for all data set varieties in a certain application
domain. Hence, trying many machine learning algorithms
with different parameter configurations is commonly con-
sidered an inefficient, tedious, and time consuming process.
Therefore, there has been growing interest to automate
the machine learning modeling process as it has been ac-
knowledged that data scientists do not scale1. Therefore,
recently, several frameworks have been designed to sup-
port automating the machine learning modeling process.
For example Auto-Weka [8] is an automation framework
for algorithm selection and hyper-parameter optimization
which is based on Bayesian optimization using sequential
model-based algorithm configuration (SMAC) and tree-
structured parzen estimator (TPE). Auto-Sklearn [3] is a
framework that has been implemented on top of the popu-
lar python scikit-learn machine learning package that
automatically considers the past performance on similar
datasets for its automation decision. Other tools include
Google Vizier which is based on grid or random search [5]
and TPOT which is based on genetic programming [10].

In this demonstration, we present SmartML, a meta learning-
based framework for automated selection and hyperpa-
rameter tuning for machine learning algorithms (using 15
classifiers). In our framework, the meta-learning feature
is emulating the role of the domain expert in the field
of machine learning [4, 11]. In particular, we exploit the
knowledge and experience from previous runs by storing
a set of data meta-features along with their performance.
In addition, our knowledge base is continuously updated
after running each task over SmartML which contributes
to improving framework performance over the time. Our
meta-learning mechanism is mainly used for the algorithm
selection process in order to reduce the parameter-tuning
search space which is conducted using SMAC Bayesian op-
timization [7]. This is different from other tools [3, 8] which

1https://hbr.org/2015/05/data-scientists-dont-scale
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SmartML Auto-Weka AutoSklearn TPOT
Language R Java Python Python
API Yes No No Yes
Optimization Procedure Bayesian Optimization Bayesian Optimization Bayesian Optimization Genetic Programming,

(SMAC) (SMAC and TPE) (SMAC) and Pareto Optimization
Number of Algorithms 15 classifiers 27 classifiers 15 classifiers 15 classifiers

on top of R on top of WEKA on top of scikit learn on top of scikit learn
Support Ensembling Yes Yes Yes No
Use Meta-Learning Yes No Yes No

(incrementally updated KB) (Static)
Feature preprocessing Yes Yes Yes No
Model Interpretability Yes No No No

Table 1: Comparison between State-of-the-art Automated Machine Learning Frameworks

deal with algorithm selection as one of the parameters to
be tuned.

SmartML can be used as a package in R language, one
of the most popular languages in the data science domain,
or as a Web application2. It is also designed to be pro-
gramming language agnostic so that it can be embedded
in any programming language using its available REST
APIs. Table 1 shows a feature comparison between our
framework and other state-of-the-art frameworks. In our
demonstration, we will show that SmartML can outperform
other tools especially at small running time budgets by
reaching better parameter configurations faster. In addi-
tion, SmartML has the advantage that its performance can
be continuously improved over time by running more tasks
which makes SmartML smarter by getting more experience
based on the growing knowledge base.

2 SMARTML ARCHITECTURE
Figure 1 illustrates the framework architecture of SmartML.
In the input definition phase, the user uploads the dataset,
choose the required options for features selection and pre-
processing, specify which features of the dataset should be
included in the modeling process, specify the target column
which represents the classes of labels of the instances in
the dataset and specify the time budget constraint for the
framework for conducting the hyper-parameter tuning pro-
cess. SmartML accepts csv and arff (attribute relation file
format developed with the Weka machine learning software)
file formats.

In the preprocessing phase, SmartML starts by perform-
ing the feature preprocessing operations specified by the
selected features. Table 2 lists the feature preprocessing
operations supported by the SmartML framework. In this
phase, the dataset is randomly split into training and val-
idation partitions where the former is used in algorithm
selection and hyper-parameter tuning while the later is
used for evaluating the selected configurations during pa-
rameter tuning. In addition, a list of 25 meta-features are
extracted from the training split describing the dataset
characteristics. Examples of these features include number
of instances, number of classes, skewness and kurtosis of
numerical features, and symbols of categorical features.

Currently, SmartML supports 15 different classifiers (Ta-
ble 3). In the algorithm selection phase, the meta features
of the input dataset at hand, which is extracted during

2https://bigdata.cs.ut.ee/smartml/index.html

the preprocessing phase, are compared with the meta fea-
tures of the datasets that are stored in the knowledge base
in order to identify the similar datasets, using a nearest
neighbor approach. The dataset similarity detection pro-
cess follows a weighted mechanism between two different
factors. The first factors is the Euclidean distance between
the meta-features of the dataset at hand and meta-features
of all datasets stored in the knowledge base. The second
factor is the magnitude of the best performing algorithms
on the similar dataset. For example, it may be better to
select the top 𝑛 top performing algorithms on a single very
similar dataset than selecting the first outperforming algo-
rithm for 𝑛 similar datasets. We use the retrieved results
of the best performing algorithms on similar dataset(s) to
nominate the candidate algorithms for the dataset at hand.

In the hyper-parameter tuning phase, SmartML attempts
to tune the selected classifiers hyper-parameters for achiev-
ing the best performance. In particular, the knowledge base
contains information about the best parameter configura-
tions for each algorithm on each dataset. The configurations
of the nominated best performing algorithms are used to
initialize the hyper-parameter tuning process for the se-
lected algorithms. The time budget constraint specified by
the end user represents the time used in hyper parameter
tuning of the selected classifiers. In particular, this budget
is divided among all the selected algorithms according to
the number of hyper-parameters to tune in each algorithm
(Table 3). SmartML applies the SMAC technique for hyper-
parameter optimization [7]. In particular, SMAC attempts
to draw the relation between the algorithm performance
and a given set of hyper-parameters by estimating the pre-
dictive mean and variance of their performance along the
trees of the random forest model. The main advantage of us-
ing SMAC is its robustness by having the ability to discard
low performance parameter configurations quickly after the
evaluation on low number of folds of the dataset [7].

Finally, the results obtained from the hyper-parameter
tuning process of the different nominated algorithms are
compared with each other to recommend the best per-
forming algorithm to the end user. In addition, a weighted
ensembling [2] output of the top performing algorithms can
be recommended to the end user based on their choice. In
addition, we have integrated the Interpretable Machine
Learning (iml) package3 in order to explain for the user
the most important features that have been used by the

3https://cran.r-project.org/web/packages/iml/index.html
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Figure 1: SmartML : Framework Architecture

center subtract mean from values
scale divide values by standard deviation
range values normalization
zv remove attributes with zero variance
boxcox apply box-cox transform to non-zero positive values
yeojohnson apply Yeo-Johnson transform to all values
pca transform data to the principal components
ica transform data to their independent components
Table 2: Integrated Feature Preprocessing Algorithms

Classification Categorical Numerical Package
Algorithm parameters parameters

SVM 1 4 e1071
NaiveBayes 0 2 klaR
KNN 0 1 FNN
Bagging 0 5 ipred
part 1 2 RWeka
J48 1 2 RWeka
RandomForest 0 3 randomForest
c50 3 2 C50
rpart 0 4 rpart
LDA 1 1 MASS
PLSDA 1 1 caret
LMT 0 1 RWeka
RDA 0 2 klaR
NeuralNet 0 1 nnet
DeepBoost 1 4 deepboost

Table 3: Integrated Classifier Algorithms

selected model for directing its prediction process [6]. The
interactive interface of our system has been designed using
the Shiny R Package4.

4https://shiny.rstudio.com/

Dataset # Att. # Classes # Instances Auto-Weka SmartML
Accuracy Accuracy

abalone 9 2 8192 25.14 27.13
amazon 10000 49 1500 57.56 58.89
cifar10small 3072 10 20000 30.25 37.02
gisette 5000 2 2800 93.71 96.48
madelon 500 2 2600 55.64 73.84
mnist Basic 784 10 62000 89.72 94.91
semeion 256 10 1593 89.32 94.13
yeast 8 10 1484 51.80 66.23
Occupancy 5 2 20560 93.99 95.55
kin8nm 8 2 8192 93.99 96.42

Table 4: Performance Comparison: SmartML VS Auto-Weka

3 DEMO SCENARIO
SmartML is available both as a Web application as well as
RESTful APIs5. In this demonstration6, we will present to
the audience the workflow of the SmartML framework (Fig-
ure 1). In particular, we will show that how our approach
can help non-expert machine learning users to effectively
identify the machine learning algorithms and their associ-
ated hyperparameter settings that can achieve optimal or
near-optimal accuracy for their datasets with little effort.

We start by introducing to the audience the challenges
we tackle, the main goal and the functionalities of our
framework. Then, we take the audience through the au-
tomated algorithm selection and hyper-parameter tuning
process for sample datasets. We start by showing different
features which is provided for the end-user (Figure 2). For
example, the user can upload either a dataset file or a direct
URL for the dataset. In addition, the user can choose either
to perform both algorithm selection and hyper-parameter
5The source code of the SmartML framework is available on https:
//github.com/DataSystemsGroupUT/Auto-Machine-Learning
6A demonstration screencast is available on https://www.youtube.
com/watch?v=m5sbV1P8oqU&feature=youtu.be
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Figure 2: Screenshot: Configuring an experiment for a dataset

Figure 3: Screenshot: Sample experiment output from
SmartML

tuning or only algorithm selection. In the later case, it
is possible to upload only the dataset meta-features file
instead of the whole dataset. The user will be also able
to configure different options such as whether any kind
of feature preprocessing is needed or not, whether model
interpretability is needed or not and specify the time bud-
get for hyper-parameter tuning. Then, we will take the
audience through the different phases of the framework
until returning the final results (Figure 1).

Table 4 shows the performance comparison between
SmartML and Auto-Weka7 using 10 datasets where a time
budget of 10 minutes has been allocated for each dataset in
each framework. In our experiments, we have bootstrapped
the knowledge base of SmartML using 50 datasets from
various sources including OpenMl8, UCI repository9 and
Kaggle10. The results show that, using this relatively very
small knowledge base, the accuracy results of SmartML

7https://www.cs.ubc.ca/labs/beta/Projects/autoweka/
8https://www.openml.org/
9http://archive.ics.uci.edu/ml/index.php
10Kaggle:https://www.kaggle.com/

outperform the results of Auto-Weka for all the datasets.
As a part of our demonstration, we will provide the au-
dience with the live chance to compare the performance
of SmartML with Auto-Weka and other related frameworks
using various datasets.
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