
Fast Truss Decomposition in Large-scale Probabilistic Graphs
Fatemeh Esfahani, Jian Wu, Venkatesh Srinivasan, Alex Thomo, and Kui Wu

{esfahani,wujian,srinivas,thomo,wkui}@uvic.ca

ABSTRACT
Truss decomposition is popular for finding dense substructures

in graphs. Discovering trusses in deterministic graphs has been

widely discussed in the literature. However, with the intrinsic

uncertainty in many networks such as social, biological, and

communication networks, it is of great importance to study truss

decomposition in a probabilistic context, but this has received

much less attention till now. Furthermore, due to computation

challenges of truss decomposition in probabilistic graphs, the

state-of-the-art approaches are not scalable to large graphs.

Given a user-defined threshold, we are interested in finding

all the maximal subgraphs which are a k-truss with high proba-

bility. The most important challenge, which distinguishes truss

decomposition in probabilistic graphs from deterministic graphs,

is computing tail probabilities of edge supports. We employ a spe-

cial version of the Central Limit Theorem (CLT) to obtain the tail

probabilities efficiently. Based on our CLT approach we propose

a peeling algorithm for truss decomposition of a probabilistic

graph that scales to very large graphs and offers significant im-

provement over state-of-the-art. Our extensive experimental

results confirm the scalability and efficiency of our approach.

1 INTRODUCTION
Probabilistic graphs are graphs in which each edge has an exis-

tence probability [2]. Many real-world networks, such as social,

trust, communication, and biological networks, feature uncer-

tainty and thus can be modeled as probabilistic graphs.

Dense subgraph mining is an important way to analyze the

structure of networks [7]. A popular notion of cohesive graph is

thek-truss, which is defined as amaximal subgraph inwhich each

edge participates in at least (k −2) triangles within that subgraph.

The k-truss features a variety of applications [5]. For instance,

k-truss is a useful tool for visualization of complex networks [12].

Also, k-trusses are the basis of several community models [8]. It

is thus important to discover k-trusses in probabilistic graphs.

Truss decomposition in deterministic graphs is a straightfor-

ward task and has been broadly studied in the literature [4, 9, 11].

However, in probabilistic graphs, truss computation is challeng-

ing and has received much less attention. We use the notation

of local probabilistic (k,η)-truss introduced in [5], and will be

explained in more detail in the next section.

Challenges and contributions. Probabilistic truss decompo-

sition is associated with significant challenges due to intrinsic

uncertainty in probabilistic graphs. Thus, the general idea of

iterative edge removal in deterministic graphs does not work by

itself in probabilistic graphs. For instance, counting the number

of triangles which contain an edge is straightforward in determin-

istic graphs. But, in probabilistic graphs, the triangles in which

an edge might participate have combinatorial nature [5]. As a

result, the most difficult task is computing edge support prob-

abilities efficiently. This becomes particularly important when

© 2019 Copyright held by the owner/author(s). Published in Proceedings of the

22nd International Conference on Extending Database Technology (EDBT), March

26-29, 2019, ISBN 978-3-89318-081-3 on OpenProceedings.org.

Distribution of this paper is permitted under the terms of the Creative Commons

license CC-by-nc-nd 4.0.

the input graph is huge. In [5], support probability of an edge

e = (u,v) is computed using dynamic programming (DP), which

has a complexity of O((min {d(u),d(v)})2), where d(u) and d(v)
is deterministic degree of u and v , respectively. Unfortunately,
the values of d(u) and d(v) can be in the millions in many real-

world social and web networks, and quadratic time complexity

of DP makes it impractical for huge graphs.

Realizing the fact that each triangle in probabilistic graph

can be defined as a Bernoulli random variable with an existence

probability, we design a novel approach based on Lyapunov’s

special version of the Central Limit Theorem [6] to approximate

probability distribution of the support of an edge. We show that

the proposed approximation is accurate for our problemwhen the

number of triangles is big. In addition, we derive an error bound

on the approximation to ensure that the output probabilities are

very close to the values obtained through exact computation.

We design a peeling algorithm for probabilistic k-truss decom-

position. Our algorithm takes advantage of the fast calculation

of edge support probabilities in time O(min {d(u),d(v)}) using
central limit theorem. It also uses optimized array-based data

structures for storing edge information of the graph.

In summary, our contributions are as follows.

• We introduce an efficient approach based on Lyapunov’s

central limit theorem to compute support probabilities of

edges in the input graph (Section 3.1).

• Using theoretical analysis, we obtain error bound of the

approximation, which shows that the higher the number

of triangles, the higher the accuracy of the approximation

results (Corollary 1).

• We develop a peeling algorithm based on recursive edge

deletions (Section 3.2), which, by utilizing central limit

theorem and additional data structures, is able to calculate

truss decomposition in very big probabilistic graphs not

possible with the pure DP approach (Section 4).

2 BACKGROUND
Trusses in deterministic graphs. Let G = (V ,E) be an undi-

rected graph with no self-loops. For a vertex v , let NG (v) be the
set of v’s neighbors inG . A triangle in the input graph is defined

as a cycle of length 3, denoted by △uvw , whereu,v,w ∈ V . Given

an edge e = (u,v), the support of e inG is the number of triangles

that contain e . Formally, supG (e) = |NG (v) ∩ NG (u)|.
The k-truss of G is defined as the maximal induced subgraph

Tk (G) = (V ′,EV ′) in which each edge e ∈ EV ′ has support of at

least (k − 2). The set of all k-trusses forms truss decomposition

ofG , where 2 ≤ k ≤ kmax, and kmax is the largest support of any

edge.

Probabilistic graphs. A probabilistic graph is defined as G =

(V ,E,p), where V and E are as before and p : E → (0, 1] is

a function that assigns existence probability p(e) to edge e . In
the most common probabilistic graph model [2], the existence

probability of each edge is assumed to be independent of other

edges.

To analyze probabilistic graphs, we use the concept of possible
worlds, which are deterministic graph instances of G. For each

Short Paper

 

 

Series ISSN: 2367-2005 722 10.5441/002/edbt.2019.96

https://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2019.96


2

1

5

3

4

0 6
0.66

0.34

0.67

0.99

0.76

0.23
0.5

0.75

0.94

0.68

0.23

Figure 1: A probabilistic graph.

possible worldG = (V ,EG ) ⊑ G, where EG ⊆ E, the probability
of observing that possible world is obtained as follows: Pr(G) =∏

e ∈EG p(e)
∏

e ∈E\EG (1 − p(e)).
Given an edge e = (u,v), let ke = |N (u) ∩ N (v)|. We define

the notion of η-support, denoted by η-supG(e), as the maximum

k for which PrG⊑G[supG (e) ≥ k] ≥ η, where k = 0, . . . ,ke ,
and the probability is taken over all the possible worlds G ⊑

G. In the rest of the paper, we use Pr[supG(e) ≥ k] to denote

PrG⊑G[supG (e) ≥ k].
For instance, consider Figure 1, edge e = (2, 5), and η = 0.5.

With the assumption that e exists (with probability p(e) = 0.76),

edge e has support at least 2 with probability 0.76 · (0.99 · 0.68) ·

(0.23 · 0.75) = 0.0883 (product of the probabilities that triangles

△245 and △235 exist in a possible world), and it has support at least

1 with probability 0.76·
(
1−(1−0.99·0.68)·(1−0.23·0.75)

)
= 0.5545

(complementary probability that none of the two triangles are

in a possible world). Since 0.5545 is greater than the threshold η,
the η-support of edge e is 1.

In probabilistic context, supG(e) is a random variable which

can take on integer values form zero to ke . Furthermore, as k
increases, the value of Pr[supG(e) ≥ k] decreases.

Trusses in probabilistic graphs. In order to compute truss

decomposition in probabilistic graphs we follow the local (k,η)-
truss model defined in [5]:

Definition 1. Let G = (V ,E,p) be a probabilistic graph. Given
threshold η ∈ [0, 1], the local (k,η)-truss is the maximal induced
subgraph T(k,η)(G) = (V ′,EV ′ ,p) in which the η-support of each
edge e ∈ EV ′ is at least (k − 2). The set of all the local (k,η)-trusses
forms the local truss decomposition of G.

Similar to deterministic case, local (k,η)-trusses are unique and
nested into each other. The highest value of k for which e belongs
to a local (k,η)-truss is called η-truss number or probabilistic

trussness of e .

Computing η-supports using Dynamic Programming. Sup-
port probabilities are computed using Pr[supG(e) ≥ k] = 1 −∑k−1
i=0 Pr[supG(e) = i]. One way of calculating Pr[supG(e) = i]

is to use dynamic programming as proposed in [5]. Given an

edge e = (u,v), time complexity of this method of computation is

O(k2e ). Since ke ∈ O(min {d(u),d(v)}), where d(u) and d(v) are
deterministic degree of u and v in G, respectively, this method

of computation is not practical when the minimum degree of

two neighbors is big, say over 100, which is quite common in

all our datasets. In addition, web-scale graphs have millions of

such edges, and as a result, if DP is applied to each edge the

total processing time increases considerably. In the next section

we propose an alternative approach for fast computation of η-
support of an edge e using Lyapunov central limit theorem.

3 PEELING ALGORITHM FRAMEWORK
USING CENTRAL LIMIT THEOREM

We describe a CLT-focused algorithm to compute truss decompo-

sition in probabilistic graphs. The pseudocodes/proofs are omit-

ted due to page limit.

3.1 Computing η-Supports using Central
Limit Theorem

We first show how a special version of Central Limit Theorem

(CLT) can be applied to accurately estimate Pr

[
supG(e) ≥ k

]
.

Then, we show theoretical bounds on the accuracy of this ap-

proximation. Specifically, we show that CLT can produce a very

accurate approximation to tail probabilities of the support edge.

Based on CLT, the distribution of properly scaled sum of a

sequence of random variables converges to normal distribution

under specific conditions. In this paper, we consider a variant

called Lyapunov CLT that can be applied when random vari-

ables are independent, but not necessarily identically distributed.

Lyapunov CLT can be formally stated in the following:

Theorem 3.1. Lyapunov CLT. Let ζ1, ζ2, · · · , ζn be a sequence
of independent, but non-identically distributed random variables,
each with finite expected value µk and variance σk . Let

s2n =
n∑

k=1

σ 2

k , (1)

Lyapunov CLT states that if

lim

n→∞

1

s2+δn

n∑
k=1

E[|ζk − µk |
2+δ ] = 0, (2)

for some δ > 0, then 1

sn
∑n
k=1(ζk − µk ) converges in distribution

to a standard normal random variable.

Equation (2) is called Lyapunov’s condition which in practice

is usually tested for the special case δ = 1. The proof for this

theorem can be found in [3].

Computing η-supports using Lyapunov CLT. Given an edge

e , to compute Pr

[
supG(e) ≥ k

]
we assume that e exists. Thus,

the true edge support probability is obtained by multiplication

of Pr

[
supG(e) ≥ k

]
with p(e).

Each edge ej in probabilistic graph has existence probability

of p(ej ), which is independent of the other edge probabilities. As

a result, associated with each edge ej we can define a Bernoulli

random variable ζej which takes on 1 with probability p(ej ) and
0 with probability (1−p(ej )). Since each edge is assumed to exist

independently of other edges, ζej ’s are independent. Given an

edge e = (u,v), let Te be a set of all the common neighbors of u
and v in G. We have,

Te = N (u) ∩ N (v) =
{
t1, · · · , tke

}
.

For each common neighbor ti , let ζu,ti and ζv,ti be the cor-
responding Bernoulli random variables to the edges (u, ti ) and
(v, ti ), respectively. Let Xi = ζu,ti · ζv,ti . The following observa-

tions hold for each random variable Xi : (1) Xi ’s are independent,
since ζu,ti and ζv,ti are independent random variables. (2) Xi ’s
are Bernoulli random variables which take on 1 with probability

p(u, ti ) · p(v, ti ). This is because Xi can be equal to 1 when both

ζu,ti = 1 and ζv,ti = 1, with probability p(u, ti ) · p(v, ti ). Oth-
erwise, if at least one of them is 0, the value of Xi will become

zero. The probability that at least one of these random variables

become zero is 1 − (p(u, ti ) · p(v, ti )).

723



Now, let us consider the triangle △uvti . It should be noted that

only common neighbours can create a triangle containing edge

e . With the assumption that e exists, the triangle △uvti exists

if both edges (u, ti ) and (v, ti ) exist, which is associated with

Xi = 1. On the other hand, the triangle does not exist if at least

one of edges, (u, ti ) and (v, ti ), does not exist, which corresponds

to Xi = 0. Therefore, corresponding to each triangle △uvti , we

can define the Bernoulli random variable Xi .
Let pi = p(u, ti ) · p(v, ti ). Since Xi is a Bernoulli random vari-

able, we know that E[Xi ] = µi = pi and Var[Xi ] = pi (1 − pi ).

Since supG(e) =
∑ke
i=1 Xi , we have:

Pr[supG(e) ≥ k] = Pr


ke∑
i=1

Xi ≥ k

 . (3)

Bernoulli random variables Xi ’s are independent, but may not

be identically distributed. Thus, if condition (2) is satisfied and

if ke is large enough, we can conclude that
1

ske

∑ke
i=1(Xi − µi )

has standard normal distribution, where ske =
√∑ke

i=1 pi (1 − pi ).

In order to compute the right-hand side of equation (3), we can

subtract

∑ke
i=1 µi from both sides of the inequality, and then divide

by ske which results in:

Pr

[ ke∑
i=1

Xi ≥ k
]
= Pr

[
1

ske

ke∑
i=1

(Xi − µi ) ≥
1

ske
(k −

ke∑
i=1

µi )

]
. (4)

Using Lyapunov CLT and setting

Z =
1

ske

ke∑
i=1

(Xi − µi ), (5)

we can conclude that Z has standard normal distribution. Thus

Pr

[
sup(e) ≥ k

]
� Pr

[
Z ≥ z

]
, (6)

where z = 1

ske
(k−

∑ke
i=1 µi ). Using the complementary cumulative

distribution function [13] of standard normal variable Z , we can
simply evaluate the right-hand side of Equation (6) for each value

of k . Thus, to find the η-support for an edge, we start with k = 1,

approximate Pr[sup(e) ≥ k] using Lyapunov CLT, and find the

maximum k for which the probability multiplied by p(e) is above
threshold η. For an edge e , the obtained value of k , which can be

in range from one to ke , is set as initial η-support for that edge.
Given an edge e = (u,v), time complexity of finding η-support is
O(ke ), where ke = |N (u) ∩ N (v)|. Recall that DP required O(k2e )
for this step.

In the following we show that Lyapunov’s condition in Theo-

rem 3.1 is satisfied for our problem.We set δ = 1 in Equation (2) to

show that this condition holds for a sequence of non-identically

distributed Bernoulli random variables.

Theorem 3.2. Given a sequence of random variables Xi ∼

Bernoulli(pi ), where 1 ≤ i ≤ n, the Lyapunov’s condition (2) for
δ = 1 is satisfied whenever s2n =

∑n
k=1 pk (1 − pk ) → ∞.

Accuracy of the Approximation. Using Berry–Esseen theo-

rem [14], in the following corollary we show how to obtain an

upper-bound on the maximal error while approximating the true

distribution of the sum of Xi ’s with the normal distribution.

Corollary 1. For each edge e in the probabilistic graph G with
Xi ’s being Bernoulli random variables defined as above in this

section, where i = 1, . . . ,ke , the error bound on the approxima-
tion of the right-hand side of Equation (6) to the standard normal
distribution is given as follows:

sup

x ∈R

��Fke (x) − Φ(x)
�� ≤ 0.56√

p1(1 − p1) + · · · + pke (1 − pke )
.

3.2 Peeling Algorithm (PA)
In [10], a peeling algorithm was proposed to calculate the k-truss
in deterministic graphs. While the algorithm is not applicable to

probabilistic graphs, its optimized array-based data structures

for storing edge information of the graph are useful. Our new

peeling algorithm, termed as CLT_based-PA algorithm, is built

on the same array-based data structures but utilizes central limit

theorem to compute and update support probabilities of edges

which participate in more than 100 triangles.
1

The CLT_based-PA algorithm consists of two main parts: (1)
initial probabilistic support computation, and (2) probabilistic
truss computation which involves updating probabilistic support

values once an edge is removed.

In initial support computation step, the η-support of each
edge e is computed using CLT and Equation (6), if ke is greater
than 100. Otherwise, DP can be used safely. The details on DP

approach can be found in [5]. The initial phase can be executed in

parallel, since probabilistic support of each edge can be computed

independently of other edges.

After initialization, the CLT_based-PA algorithm runs in three

steps: First, sort edges in ascending order of their η-support in
the array sortedEdge, and store their positions in the array.

Then, remove edges with the lowest η-support. The removal

of an edge e = (u,v) affects the η-support of all edges that can
constitute triangles with (u,v). As a result, the algorithm finds

all the common neighborsw of u and v , i.e., △uvw is a triangle

containing edge (u,v).
At the third step, the η-support of (u,w) and (v,w) is updated

if their η-supports are greater than e’s η-support. In the updating

part, if the number of remaining triangles which contain edges

(u,w) and (v,w) is greater than 100, we perform update phase

using CLT approach. Otherwise, we apply DP. Since theη-support
has been changed, we change the position of edges (v,w) and

(u,w) in sortedEdge array in constant time [10]. The algorithm

continues until all the edges in the graph are removed. Then,

the trussness of each edge is obtained by adding 2 to the final

η-support.

4 EXPERIMENTS
Our implementations are in Java and the experiments are con-

ducted on a commodity machine with Intel i7, 2.2Ghz CPU, and

12Gb RAM, running Ubuntu 14.03. The hard disk is Seagate Bar-

racuda ST31000524AS 2TB 7200 RPM.

The statistics for the datasets are shown in Table 1. We ob-

tained flicker, dblp, and biomine from the authors of [2], and the

rest of the datasets from Laboratory of Web Algorithmics.
2
Each

horizontal line in the table categorizes the datasets according

to their size, small (S), medium (M), and large (L). We use the

Webgraph framework [1] to store these datasets. The flickr, dblp,

and biomine datasets already contained edge probability values.

For the other datasets we generated probability values uniformly

distributed in [0, 1].

1
This value was chosen because it was large enough to keep the approximation

error obtained from Corollary 1 small.

2
http://law.di.unimi.it/datasets.php

724



Name |V | |E |

flickr 24,125 300,836

dblp 684,911 2,284,991

cnr-2000 325,557 2,738,969

biomine 1,008,201 6,722,503

ljournal-2008 5,363,260 49,514,271

Table 1: Dataset Statistics

Dataset η
Running Time Running Time

gain (%)
DP_Pure CLT_based–PA

flickr 0.1 351 94 73%

dblp 0.1 37 34 8.50%

biomine 0.1 7642 2554 67%

cnr-2000 0.1 N.P. 7874 100%+

ljournal-2008

0.1 54627 26129 52%

0.2 50614 27064 47%

0.3 45052 24799 45%

0.4 36563 21332 42%

0.5 28773 16291 43

Table 2: Running times (sec) of DP_Pure and CLT_based–PA. The
column “gain (%)” reports the gain of CLT_with_DP algorithm over
DP_Pure algorithm. We use N.P. for “Not Possible”.

Dataset η-suppmax kmax η

flickr 49 47 0.1

dblp 42 14 0.1

biomine 151 33 0.1

cnr-2000 4672 13 0.1

ljournal-2008

1030 51 0.1

1015 43 0.2

1001 35 0.3

980 27 0.4

530 19 0.5

Table 3: Maximum η-support, maximum probabilistic trussness,
value of the threshold η.

Table 2 represents the running times of our proposed approach,

versus the running times of the state-of-the-art, which uses dy-

namic programming (DP) only and is referred as DP_Pure. The
last column shows the gain of CLT_based–PA algorithm over

DP_Pure. For ljournal-2008, we present the results for differ-

ent values of η ranging from 0.1 to 0.5. However, for the other

datasets, we only show the results for η = 0.1, and omit results

for η = 0.2, . . . , 0.5, since they are similar to those for η = 0.1 and

their performance trend is similar to what we see for ljournal-

2008. As can be seen, CLT_based–PA algorithm is significantly

faster than DP_Pure. For instance, for biomine, which is a large

dataset, the gain of our algorithm is 67 percent, making CLT_-
based–PA truss decomposition algorithm three times faster than

DP_Pure.
CLT_based–PA produced the results in about 1.5 minutes and

about 34 seconds for flickr and dblp, respectively. Although flickr

is smaller than dblp in terms of the number of vertices and edges,

its probabilistic maximum truss is much greater at value 47 com-

pared to 14 in dblp. We represent the maximum probabilistic

truss and maximum probabilistic support in Table 3. These values
are the same as those obtained by DP_Pure. On biomine which

is a large dataset, our proposed algorithm completed in about

43 minutes; which is quite impressive. In contrast, DP_Pure pro-
duced the results in more than 2 hours. The running time for

ljournal-2008 increases, which is quite reasonable, because this

graph has 49 million edges with probabilistic support of 1030

when η = 0.1. The same argument holds for cnr-2000 which has

probabilistic support of 4672 which is significantly big. DP_Pure
wasn’t able to run to completion in our machine after one day.
Effect of η values. The running time of both algorithms in-

creases as η becomes small. This is because as η decreases, the

chance for support probabilities to pass the threshold increases,

resulting in larger values of η-supports. This is particularly im-

portant in performance evaluation of DP_Pure algorithm– as η
decreases the DP algorithm approaches its worst case time com-

plexity,O(k2e ), for an edge e . As a result, for larger values of η, the
running time of DP_Pure improves, but is still by far slower than

CLT_based–PA. In terms of the effect of η on truss decomposi-

tion and support values, as can be seen in Table 3, the maximum

truss and maximum initial probabilistic support decrease as η
increases. As before, we report the maximum truss, and the max-

imum η-support for ljournal-2008 for η = 0.1, . . . , 0.5, whereas

for the other datasets we only show the values for η = 0.1.

5 CONCLUSIONS
We presented a peeling algorithm for computing truss decompo-

sition in probabilistic graphs at web scale. Our peeling algorithm

uses Lyapunov’s central limit theorem to obtain the probabilistic

support for an edge. Unlike the dynamic programming approach,

the computation does not rely on incremental evaluation of sup-

port probabilities. In addition, it can efficiently update probabilis-

tic support when a triangle is removed from the input graph,

without the need of storing all the previously computed support

probabilities. We evaluated our algorithm and showed that it is

significantly faster than state-of-the-art for large datasets. For

large and medium datasets our algorithm obtained approximately

50 percent gain over the proposed algorithm in the literature,

completing the biomine dataset in less than one hour.

REFERENCES
[1] P. Boldi and S. Vigna. 2004. The webgraph framework I: compression tech-

niques. In Proc. WWW’04. ACM, 595–602.

[2] F. Bonchi, F. Gullo, A. Kaltenbrunner, and Y. Volkovich. 2014. Core decompo-

sition of uncertain graphs. In Proc. SIGKDD. ACM, 1316–1325.

[3] H. Cramér. 1946. Mathematical Methods of Statistics. PUP.
[4] X. Huang, H. Cheng, L. Qin, W. Tian, and J. Yu. 2014. Querying k-truss

community in large and dynamic graphs. In Proc. SIGMOD. ACM, 1311–1322.

[5] X. Huang, W. Lu, and L. V. Lakshmanan. 2016. Truss decomposition of proba-

bilistic graphs: Semantics and algorithms. In Proc. SIGMOD. ACM, 77–90.

[6] H. Kobayashi, B.L. Mark, and W. Turin. 2011. Probability, Random Processes,
and Statistical Analysis. Cambridge University Press.

[7] V. Lee, N. Ruan, R. Jin, and Ch. Aggarwal. 2010. A survey of algorithms for

dense subgraph discovery. In Managing and Mining Graph Data. Springer,
303–336.

[8] Y. Li, T. Kuboyama, and H. Sakamoto. 2013. Truss decomposition for extracting

communities in bipartite graph. In Proc. IMMM. 76–80.

[9] J. Wang and J. Cheng. 2012. Truss decomposition in massive networks. Proc.
VLDB 5, 9 (2012), 812–823.

[10] J. Wu, A. Goshulak, V. Srinivasan, and A. Thomo. 2018. K-Truss Decomposition

of Large Networks on a Single Consumer-Grade Machine. In Proc. ASONAM.

IEEE, 873–880.

[11] Y. Zhang and S. Parthasarathy. 2012. Extracting analyzing and visualizing

triangle k-core motifs within networks. In Proc. ICDE. IEEE, 1049–1060.
[12] F. Zhao and A. Tung. 2012. Large scale cohesive subgraphs discovery for social

network visual analysis. In Proc. VLDB, Vol. 6. VLDB Endowment, 85–96.

[13] D. Zwillinger and S. Kokoska. 2000. CRC Standard probability and statistics
tables and formulae. Chapman and Hall/CRC, USA.

[14] D. Zwillinger and S. Kokoska. 2013. Probability Theory. Springer-Verlag,

London.

725


	Fast Truss Decomposition in Large-scale Probabilistic GraphsFatemeh Esfahani, Jian Wu, Venkatesh Srinivasan, Alex Thomo, Kui Wu

