
Optimizing Data Movement with Near-Memory Acceleration
of In-memory DBMS

Donghun Lee†, Minseon Ahn†, Jungmin Kim†, Kangwoo Choi†, Oliver Rebholz‡

Andrew Chang§, Jongmin Gim§, Jaemin Jung§, Vincent Pham§, Krishna Malladi§, Yang Seok Ki§

† SAP Labs Korea ‡ SAP SE
{dong.hun.lee, minseon.ahn, jungmin.kim, kangwoo.choi, oliver.rebholz}@sap.com

§ Samsung Semiconductor Inc.
{andrew.c1, gim.jongmin, j.jaemin, tung1.pham, k.tej, yangseok.ki}@samsung.com

ABSTRACT
Despite the increase of memory capacity and CPU computing
power, memory performance remains the bottleneck of in-memory
DBMS due to ever-increasing data volumes and application de-
mands. Since the scale of data workload has outpaced traditional
CPU caches and memory bandwidth, it is essential to optimize
data movement from memory to computing units. In this work,
we present a near-memory Database Accelerator (DBA) frame-
work that offloads data-intensive database operations via or to a
near-memory computation engine. DBA’s system architecture in-
cludes a DBA software module/driver and memory module with
DBA engine. We build a Proof-of-Concept (PoC) of DBA using
FPGAs with attached DIMMs, and then conduct an experimental
evaluation.

1 INTRODUCTION
Low cost and high capacity of DRAM accelerated the market of
in-memory database management systems (IMDBMS). The latest
IMDBMS architecture capable of running both Online Trans-
actional Processing (OLTP) and Online Analytical Processing
(OLAP) applications in a single system removes the data redun-
dancy and provides higher performance and efficiency with lower
total cost ownership (TCO) [9]. However, with ever-increasing
data volumes and application demands, memory performance be-
comes the main performance bottleneck of IMDBMSs. Our study
with OLTP/OLAP applications shows that performance can be
bound by expensive data-intensive operations like table scan and
aggregation of OLAP workloads. These data-intensive operations
have very little data reuse for further computation but consume
more than 50% of CPU resources and almost all memory band-
width in many cases. The other mission critical workloads suffer
from cache conflicts (or cache thrashing) and memory bandwidth
bottleneck. Therefore, it is essential to optimize data movement
from memory to computing units.

The best way to optimize this data movement in IMDBMS
would be to process these data-intensive operations within mem-
ory devices. Instead of transferring the whole data to computing
units, forwarding the filtered results to the next processing step
could minimize the overhead. Near-storage computing [3, 4] tries
to accelerate the data-intensive operations by minimizing the
data transfer overhead from storage to processing nodes or CPU.

© 2020 Copyright held by the owner/author(s). Published in Proceedings of the
22nd International Conference on Extending Database Technology (EDBT), March
30-April 2, 2020, ISBN 978-3-89318-083-7 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

However, this research does not deliver byte addressability and
much lower latency necessary for IMDBMS. Previous work to
accelerate database operations using FPGA [7, 8, 10] and GPGPU
[5, 6] shows an order of magnitude performance gain in compute-
intensive operations. However, these approaches show a smaller
gain in data-intensive operations because of the data movement
overhead [1]. Even Hybrid CPU-FPGA approaches [7, 10] require
data movement from host memory to accelerator computing
units which has a high memory bandwidth overhead.

Processing-In-Memory (PIM) approaches like UPMEM [2] ad-
vance the concept of near-memory computing but are still in
early stage. Furthermore, the data needs to be reformatted to uti-
lize the processing units, thus the existing data structure cannot
be reused directly.

In this paper, we propose near-memory database accelera-
tor (DBA) to offload data-intensive operations of IMDBMS to
memory devices. By placing simple arithmetic units near DRAM
within memory devices like DIMMs, we 1) save CPU cycles
for data-intensive operations, 2) avoid cache thrashing among
threads, and 3) reduce the host memory bottleneck. We imple-
ment our proof-of-concept (PoC) system using FPGAs with at-
tached DIMMs. Its DBA kernel is designed to perform parallel
comparisons in a SIMD manner fully utilizing internal memory
bandwidth. Our evaluation shows that near-memory DBA has
more than 2 times performance improvement in OLTP workloads
when offloading the data-intensive operations. Finally, we discuss
the obstacles to embody the approach in real memory devices.

2 BACKGROUND
2.1 Motivational example
Figure 1 shows the performance degradation of OLTP workload
by the interference from the scan workloads on OLAP data in
the server having 4 sockets and 72 physical cores. The two work-
loads managed by two separate processes access the different
sets of data but compete with each other for limited hardware re-
sources like CPU, cache and memory bandwidth. As the number
of scan threads increases, the CPU resources allocated for OLTP
workloads are reduced, thus the throughput of OLTP workloads
decreases.

It is quite common to apply SIMD instructions to data-intensive
operations like scan within a DBMS [11, 12], as SIMD performs
the same operation on multiple data points simultaneously ex-
ploiting data level parallelism. We observe that the OLTP work-
loads show a larger performance degradation, when the scan
operation is implemented with SIMD commands like AVX2 or
AVX 512 because of much higher memory bandwidth usage. As

Short paper

 

 

Series ISSN: 2367-2005 371 10.5441/002/edbt.2020.35

https://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2020.35


Figure 1: OLTP throughput bynumber of concurrent scans

Table 1: Memory bandwidth usage (%) by scan workloads

#Threads AVX2 AVX512 No_SIMD
4 11.3 6.0 0.8
8 21.8 12.3 1.3
16 41.3 23.0 2.8
32 73.8 46.3 5.5
64 94.8 85.3 11.3

shown in Table 1, 64 scan threads consume almost all mem-
ory bandwidth of 4 sockets with SIMD, only 12% of memory
bandwidth is consumed without SIMD. Interestingly, there is
no difference in CPU usage between SIMD and NO-SIMD, but
the OLTP throughput shows a larger performance degradation
with SIMD. In Figure 1, with 64 scan threads, the CPU usage by
OLTP decreased by 30% but the OLTP throughput decreases by
about 40% without SIMD and more than 50% with SIMD. This
supports our claim that the larger memory bandwidth usage by
data-intensive workloads degrades OLTP performance more.

2.2 Scan operation in In-memory DBMS
Recent IMDBMSs are designed to support both OLTP and OLAP
workloads and keep the data in the columnar storage for fast
read accesses of the tables, storing the majority of data of each
column in the read optimized main storage, and maintaining the
separate delta storage for optimized writes [9]. The delta storage
is periodically merged to the main storage [8]. To reduce the
memory footprint (or TCO), the main storage uses dictionary
encoding where the distinct values are stored in the dictionary
and the individual values are replaced with the corresponding
value IDs of the dictionary separately with the bit-packed com-
pression [9]. A scan in IMDBMS reads this value ID array with
filter conditions. In this work, the two common scan operations -
Range search (having from/to filter conditions) and Inlist search
(having a list of filtered values) are offloaded to DBA as they are
simple and common data-intensive operations that often con-
sume relatively high CPU usage (5-10% by itself). They include
the decompression of value ID (integer) array and return row IDs
satisfying the predicates. Offloading only low-level data access
operators in the query plans reduces the effort to integrate them
with the existing query optimizer.

3 DBA ARCHITECTURE
This section discusses the architecture and design of our proposed
near-memory Database Accelerator (DBA). Figure 2 describes
the system architecture of DBA. The objective of this work is

1) to demonstrate the offloading feasibility within current eco-
system, 2) to provide a framework to measure the stand-alone
DBA engine performance, and more importantly, 3) to study
the system impact of our proposal. To remove the unnecessary
data movement, database operations are performed by DBA in
the device memory where the source data is stored. After DBA
completes the operations, the result output is written back to
the device memory in FPGA. The host has access to the device
memory via memory mapped I/O (MMIO). This eliminates speed
and coherency limitations of the PCIe interface from this study
and yet leverages the current driver software stack with the OS
and the application.

Figure 2: DBA System Architecture

Figure 3 describes the DBA FPGA micro-architecture with
functional partitions of host interface, multiple DBA kernels and
memory subsystem. The host interface exposes DBA control
parameters to the driver that manages offloading from the ap-
plication API call to the hardware accelerator. Each DBA kernel
consists of data prefetcher reading the data, SIMD engine com-
paring the data with the predicate, and result handler writing
the results. The memory subsystem provides the infrastructure
to access device memories on the FPGA.

Figure 3: DBA FPGA Micro-Architecture

Internally, DBA kernels read 64B bit-compressed data at a
time from the memory. A programmable extractor logic splits the
data into multiple values. They are fed into an array of simple
processing units and each unit performs a simple comparison
independently. The number of parallel units in the array is de-
termined by the number of values in the 64B data so that DBA
kernels can keep up with the input data rate. Compared to fixed-
length instruction-based processors, each DBA kernel takes the
full advantage of parallelism in the data stream due to the flexi-
bility of hardware design. The results are packed into 64B and
written back to the device memories. Thus, the data flow is highly
optimized for available memory bandwidth.

Figure 4 describes DBA software architecture. Unlike GPU/FPGA
accelerators, the DBA engine is located within memory devices.
Hence, it allows zero data copy with performance and energy
gains. The DBA device driver assigns one DBA engine to a thread

372



of the IMDBMS application per request. Once offloaded, a thread
that requested an offloading yields to free CPU for processing.
When offloading is done, DBA driver wakes up the requester to
resume.

Figure 4: DBA Software Architecture

Normally, applications use a virtual address (VA) to access
memory in the host system while the DBA engines access mem-
ory with a device physical address (DPA). This implies that the
DBA driver is responsible to translate all VA parameters of an
offloading request into DPA. The DBA driver first obtains the
corresponding system physical address (SPA) by referring to a
page table. Then, converting DPA to SPA is trivial because the
system BIOS has stored the start SPA of device memory in the
Base Address Registers (BAR) of the PCI device at boot time.

4 EVALUATION
4.1 Experimental setup
The system consists of the embedded TPCC benchmark in an
IMDBMS and a separate micro-benchmark program to generate
scan workloads in a single server as shown in Figure 5.

Figure 5: Conceptual diagram

In our experiments, we use the TPCC benchmark for OLTP
workload. Its generator is embedded within the IMDBMS engine
to remove the communication and session management overhead
because the total throughput is usually bound by the session layer,
not IMDBMS engine. We want to maximize the throughput (i.e.
resource consumption) of the TPCC workload.

The micro-benchmark performs the scan workloads 1) on
CPU, or 2) via FPGA. Its data is randomly generated and bit-
compressed. The separate data for scans avoids the internal over-
head of IMDBMS like locking by two different workloads and
enables us to focus on the performance effect by hardware re-
sources. In our experiment, scans read 2 billion bit-compressed
integer values and return the row IDs satisfying the filter condi-
tions. When it runs on CPU, the same number of scan threads
are bound to each socket to prevent workload skew among the
sockets on the 4-socket server (Intel Xeon Gold 6140@2.30GHz,
18 cores and 6 * 64 GB memories per socket). For DBA offloading,
we attach one Ultrascale+ FPGA@250MHz per socket and popu-
late 6 scan engines with 4 * 64 GB DDR4 DIMMs @1866MHz per
FPGA. The scan data is copied to the memory in each FPGA to
emulate that DBA offloading runs within memory devices where
the data resides. We compare the performance variation of TPCC
workloads and measure the latency and throughput scalability
of scan workloads in both options (on CPU vs. on FPGA), while
the number of scan threads increases.

4.2 Evaluation results
This section summarizes our DBA PoC evaluation results com-
pared with a state-of-art 4-socket Skylake system having 72 phys-
ical cores.

Figure 6: OLTP throughput gain by DBA

Figure 7: Scan throughputs with/without TPCC

Figure 6 demonstrates the system performance gain of IMDBMS.
While TPCCworkload runs in the server, the scanmicro-benchmark
runs on either CPU or DBA with a different number of threads.
As a result, DBA offloading shows less performance slowdown as
the number of scan threads increases. Therefore, DBA offloading
shows 115% better tpmC (transactions per minute) in TPCCwork-
loads when all 64 scan threads are offloaded than when 64 threads
use AVX2 on CPU. The results confirm that DBA offloading can
alleviate CPU conflict, cache thrashing and memory bandwidth
conflict by data-intensive operations.

373



Table 2: Average latency (sec/scan) of a single scan

Latency of
single scan
(sec/scan)

On CPU OffloadingNO_SIMD AVX2 AVX512
4.16 0.44 0.47 0.29

DBA offloading shows the better performance in scan op-
eration itself, when scans run without OLTP workloads. DBA
offloading shows 1.5x better latency (sec/scan) than AVX2 and
14.3x better than NO-SIMD as shown in Table 2.

As for the throughput (scans/sec) scalability, DBA offloading
shows quite promising performance as shown in Figure 7. The
solid lines represent the throughputs of scans when TPCC work-
loads are executed concurrently. The dotted lines mean the scan
throughputs without TPCC workloads. DBA Offloading shows
similar performance regardless of the presence of TPCC work-
loads, while scan with SIMD/NO-SIMD shows significant perfor-
mance drop because of the interference from TPCC workloads.
DBA offloading outperforms the scan with SIMD/NO-SIMD up to
16 threads and shows similar performance to SIMD scan with 32
threads. With the current implementation, each DBA FPGA has 6
scan engines and 4 DIMM slots. The results show the throughput
by DBA offloading is saturated with 16 threads (4 threads per
FPGA) because of the limited memory bandwidth of 4 memory
channels and resources within the FPGA. Each CPU has 6 DDR
channels with 128GB/sec bandwidth while each FPGA has 4 with
60GB/sec. When DBA has the same number of threads, it per-
forms better than CPU running with SIMD. In a SoC (System
on Chip) implementation where DBA offloading is embedded in
real memory devices, these limitations will be relieved, and the
overall performance will be improved further by higher clock
frequency or more DBA engines.

In our work, we have the similar performance gain with both
range and inlist scans, and similar results regardless of bit-cases
used in bit-packed compression [9]. Due to the limited space in
this paper, we show only the results of the range scan.

5 DISCUSSION
This research was done using FPGAs with attached DIMMs. The
host system accesses the device memory through PCIe MMIO
by mapping the device memory in the same address space of the
host memory. Even with the slow performance of MMIO in PCIe,
the offloading performance is not affected, because our offloading
implementation only accesses the local device memory on FPGA
once offloading operation starts.

DBA offloading can be implemented on the diverse memory
form-factors with their own pros and cons. DIMM-based memory
is quite common and very fast, but the memory controller will
naturally interleave the data among memory channels. There-
fore, even a single value can be crossed on two DIMMs and the
DBA driver should handle the data interleaving while processing
offloaded operations.

Recently proposed interfaces like CXL(Compute Express Link),
Gen-Z and OpenCAPI will enable a newmemory pool hosting the
columnar main storage in IMDBMS. Although these interfaces
introduce a bit higher latency than DIMM, the memory devices
are not part of host memory controller pool where data are typi-
cally interleaved at 64B granularity. This allows DBA to assume
a contiguous data layout in its attached memory and operates
without considering data interleaving across memory channels.
One more hurdle of DBA offloading would be non-contiguity in

the physical address space of the contiguous data in the virtual
address space. DBA offloading will provide so-called ’scatter and
gather’ feature by building a page translation table.

In Clouds, the micro-services of IMDBMS can be spread out
among several nodes according to its role. The front-end com-
puting nodes to process the transactions may be easily scaled
out, but the storage node cannot be done simply having the same
issues on our claim. We believe DBA offloading can contribute
to resolving them in Clouds as well.

6 CONCLUSION
We showed that the OLTP-like mission critical workloads can
interfere with data-intensive operations like massive scans. We
proposed a near-memory database accelerator (DBA) to optimize
the data movement and showed that performing the expensive
scan operations in the memory devices can alleviate CPU load,
cache conflict, host memory bandwidth bottleneck. To confirm its
feasibility, we implemented the offloading system using FPGAs
with attached DIMMs. Its results showmore than 2x performance
gain in OLTP workload when offloading the data-intensive oper-
ations, and higher or similar throughput scalability with better
latency in offloaded scan workloads.

Aggregation is another data-intensive operation in IMDBMS
consuming about 20-50% of CPU usage depending on the work-
loads. While it reads large amounts of data, most of it is rarely
referenced again. DBA offloading on aggregation is being inves-
tigated as the next target operation.

ACKNOWLEDGMENTS
The authors would like to thank Ismail Oukid for his valuable
feedback and contribution in developing our implementation.

REFERENCES
[1] Amirali Boroumand, Saugata Ghose, Youngsok Kim, Rachata Ausavarung-

nirun, and etc. 2018. Google Workloads for Consumer Devices: Mitigating
Data Movement Bottlenecks. In Proceedings of the Twenty-Third International
Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS ’18). 316–331.

[2] Febrice Devaux. 2019. True Processing in Memory with DRAM accelerator.
Hot Chips 31 (2019).

[3] Boncheol Gu, Andre S. Yoon, Duck-Ho Bae, Insoon Jo, Jinyoung Lee, and etc.
2016. Biscuit: A Framework for Near-data Processing of Big Data Workloads.
In Proceedings of the 43rd International Symposium on Computer Architecture
(ISCA ’16). 153–165.

[4] Insoon Jo, Duck-Ho Bae, Andre S. Yoon, Jeong-Uk Kang, Sangyeun Cho, and
etc. 2016. YourSQL: A High-performance Database System Leveraging In-
storage Computing. Proc. VLDB Endow. 9, 12 (Aug. 2016), 924–935.

[5] Tomas Karnagel, Dirk Habich, and Wolfgang Lehner. 2017. Adaptive Work
Placement for Query Processing on Heterogeneous Computing Resources.
Proc. VLDB Endow. 10, 7 (March 2017), 733–744.

[6] Tomas Karnagel, Renè Müller, and Guy M. Lohman. 2015. Optimizing GPU-
accelerated Group-By and Aggregation.. In ADMS@VLDB. 13–24.

[7] Nusrat Jahan Lisa, Annett Ungethüm, Dirk Habich, Wolfgang Lehner, Tuan
D. A. Nguyen, and Akash Kumar. 2018. Column Scan Acceleration in Hybrid
CPU-FPGA Systems. In International Workshop on Accelerating Analytics and
Data Management Systems Using Modern Processor and Storage Architectures,
ADMS@VLDB 2018, Rio de Janeiro, Brazil, August 27, 2018. 22–33.

[8] J. McGlone, P. Palazzari, and J. B. Leclere. 2018. Accelerating Key In-memory
Database Functionality with FPGA Technology. In 2018 International Confer-
ence on ReConFigurable Computing and FPGAs (ReConFig). 1–8.

[9] Hasso Plattner. 2014. The Impact of Columnar In-memory Databases on
Enterprise Systems: Implications of Eliminating Transaction-maintained Ag-
gregates. Proc. VLDB Endow. 7, 13 (Aug. 2014), 1722–1729.

[10] David Sidler, Zsolt István, Muhsen Owaida, and Gustavo Alonso. 2017. Ac-
celerating Pattern Matching Queries in Hybrid CPU-FPGA Architectures. In
Proceedings of the 2017 ACM International Conference on Management of Data
(SIGMOD ’17). 403–415.

[11] Thomas Willhalm, Ismail Oukid, Ingo Müller, and Franz Färber. 2013. Vector-
izing Database Column Scans with Complex Predicates.

[12] Thomas Willhalm, Nicolae Popovici, Yazan Boshmaf, Hasso Plattner, and etc.
2009. SIMD-scan: Ultra Fast In-memory Table Scan Using On-chip Vector
Processing Units. Proc. VLDB Endow. 2, 1 (Aug. 2009), 385–394.

374


	Optimizing Data Movement with Near-Memory Acceleration of In-memory DBMSDonghun Lee, Andrew Chang, Minseon Ahn, Jongmin Gim, Jungmin Kim, Jaemin Jung, Kangwoo Choi, Vincent Pham, Oliver Rebholz, Krishna Malladi, Yang-Seok Ki

