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ABSTRACT
In this paper, we propose delta trees to boost efficiency and re-
duce storage requirements of iterative data exploration and data
wrangling tasks over massive, semi-structured datasets. During
such tasks, data is filtered, projected, joined, and converted in
multiple successive or independent steps, driven by data scien-
tists or higher-level applications. While the original datasets can
often not be disposed, delta trees are necessary to represent only
the changes to the original data, instead of creating largely re-
dundant copies. With delta trees, we are able to reduce storage
requirements and query execution time for various data manipu-
lation operations, while maintaining acceptable query times for
others. We report on a first experimental study over a dataset of
Twitter tweets, showing that the expected vast savings of stor-
age consumption can be enjoyed with negligible computational
overhead compared to a full data duplication.

1 INTRODUCTION
In recent years, the interest in semi-structured file formats steadily
increased. Arguably, one of the most visible data formats is JSON,
which eliminates the need to force data into relations and is de-
signed to be human-readable. It has been adopted by various
platforms and systems, for instance, for data exchange through
APIs, to store system access logs, or configuration files. Common
operations in semi-structured document processing are adding,
removing, and moving values. Consider for instance the case
of data scientists working on a large sample of Twitter tweets.
While some first extract textual content and geo-coordinates of
Canadian tweets written in French they later observe that also
the author of the tweet is required, others need to convert the
original schema (attribute names) to match their existing data
visualization libraries. To execute these operations, systems have
to either edit the original document, or perform the operation
on a copy. The first option may not always be possible, if the
base documents are to be used in future processing steps or by
multiple data scientists working in parallel. The second option is
undesirable, because it introduces a huge overhead regarding per-
formance and memory usage, for copying the documents. In this
paper, we propose a novel way to store changes made to original
documents, leading to a vastly reduced memory footprint and
an even improved querying performance for some query types,
while having a modest performance overhead for others.

1.1 Sketch of the Approach and Related Work
The concept of late materialization [1] is used to push back ma-
terializations of (intermediate) results until they are needed. For
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Figure 1: Example of base document with a delta tree

this to work, the system has to store the queries, or similar in-
formation, and the base data. The result is then calculated on
demand as soon as it is required.

Our approach also aims to reduce the amount of unnecessary
transformations of the base data. But instead of storing the op-
erations that lead to the result, we calculate the difference (or
delta) of the transformations, compared to the base data and
only store this new information, with a reference to the base
document. Almeida et al. already proposed a map as Conflict-free
Replicated Data Type (CRDT) [2], which can be synchronized by
sending delta changes of the modification action to replicated
instances. This data type can also be nested and JSON documents
can be translated to and from nested maps. But the computa-
tional overhead required for conflict-free synchronization is too
large for our use case. Generally, the concept of extracting or
storing deltas from semi-structured documents has been inves-
tigated before [3, 6, 7]. It has also been applied in the context
of relational database systems to compact historical data [4, 5].
However, in contrast, we store the changes made by incremental
data modification operations, in order to improve the memory
consumption.

2 DELTA TREES
Figure 1a visualizes the tree representation of one semi-structured
document. It consists of (nested) objects containing attributes,
with atomic data. Now, a query may transform this base docu-
ment by deleting the “D” attribute of the root object, changing
the atomic data within the “B” attribute, and adding an additional
member to the “A” object. Instead of storing the complete trans-
formed document, we only store the changed parts of the tree,
as shown in Figure 1b. In this example, the changed “B” member
and additional “E” attribute is stored, together with the required
parent structure (in this case the root node and “A” object).

Additionally, we keep track of all paths within the tree that
have been changed. A path is an ordered list of tokens, identi-
fying all nodes that have to be traversed to arrive at a desired
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destination. In this example, the changed paths would be “/A/B”,
“/A/E”, and “/D”. This information is sufficient to reconstruct the
complete transformation result as shown in Figure 1c.

The benefits of this approach may not be immediately evident
from the given example. But in real world data sets, documents
having hundreds of attributes, distributed over many nested ob-
jects, are very common. If a transformation query only modifies
a couple of nodes, storing the complete transformation result
clearly is unnecessary—and modifying the original data is often
prohibited.

2.1 Reconstructing Combined Documents
Given a base tree B and a delta tree D, with the overwritten paths
P , we may need to construct the complete result document tree R
to return to the user. This is achieved by simultaneously iterating
through both trees in a depth-first manner. Starting at the root
of the trees, for every unique path p in both trees, there are now
five possibilities:

(1) ∃nB ∈ B and ∃nD ∈ D belonging to p
(a) p ∈ P ⇒ the path is overwritten in D, hence, we only

continue traversing nD for this sub-tree.
(b) p < P ⇒ the path is shared between B and D, thereby,

we continue traversing both nB and nD .
(2) ∃nB ∈ B and ∄nD ∈ D belonging to p
(a) p ∈ P ⇒ the path was removed by the transformation

and we do not continue traversing this sub-tree.
(b) p < P ⇒ the node is not materialized, but still valid,

thus, we continue traversing nB .
(3) ∄nB ∈ B and ∃nD ∈ D belonging to p, it must thereby be

added by D and we only traverse nD .
The result is constructed by traversing B and D as above and

adding all visited nodes to R.

2.2 Delta Hierarchies
There can be multiple delta trees, which reference the same base
tree, in which case the memory savings introduced by delta
trees are magnified. Additionally, delta trees may be based on
other delta trees. Given (B,D1, ...,Di , ...,Dn ), where B is the base
document, and Di are delta trees, each based on the previous
tree. This is called a delta hierarchy. The result document R1,
of B and D1 may be constructed as shown in Section 2.1. To
construct the result document Ri , the same algorithm would then
be executed with Ri−1 as base tree and Di as delta tree. In case
of larger hierarchies, this naïve execution is suboptimal. Instead,
we perform the reconstruction algorithm for all trees at the same
time, by traversing the whole delta hierarchy simultaneously. For
each unique path p in the delta hierarchy, starting at the root: If
p exists only in one tree, we follow only this subtree. If p exists
in multiple trees, we use the value of the uppermost delta tree, in
case of atomic values. In case of objects, whose child attributes
are distributed over multiple tree, we continue traversing all
affected trees.

3 ARCHITECTURE AND ALGORITHMS
We implemented our approach in our in-house JSON exploration
system JODA, written in C++. This system uses the RapidJSON
(http://rapidjson.org/) parser, which uses a DOM-tree in-memory
representation to store the parsed JSON documents—the exten-
sion to XML and YAML is straightforward.

Documents provided to the system are organized in so-called
collections, for instance, a collection of Twitter tweets and a

collection of blog posts. All documents within a collection are
organized into a number of containers. Each container is a self-
contained unit, which includes all required information to per-
form a query upon. After creation, these containers are immutable
to make the query execution free of any synchronization over-
head.

Queries are simple PIG-style sequences of commands. To be-
gin, a collection can be chosen and data can be imported into the
system by the LOAD step. This data is then passed to the CHOOSE
command, which may filter the data depending on a given pred-
icate. The filtered documents may then be transformed in the
AS step, by using an arbitrary amount of transformation instruc-
tions, in the form of (<destination>:<source>) tuples, where
the destination is a path in the new document, and the source can
be any supported function or a path in the base document. The
transformed documents are then passed to the AGG command for
aggregation and may finally stored in a collection or exported
into a file with the STORE expression.

3.1 Construction
The AS instruction also supports the special * operator, which
copies the whole source document. This operator may be com-
bined with additional transformations to change the source doc-
ument. If the system detects this combination, delta trees may
be used to perform this transformation.

In this case, the system will first create the support structure,
by instantiating an empty delta tree with a pointer to the base
document, which may also be a delta tree. Each additional trans-
formation is then executed and the result materialized in the
newly created delta tree. Additionally, the <destination> point-
ers form the explicitly overwritten paths and are stored with the
tree, as described in Section 2. These paths will be the same for
all delta trees that are created by a given query. We can therefore
store them once in the—previosuly introduced—container class,
as it includes all data that may be shared by its documents. Now, a
delta hierarchy is given by following the base document pointers
from any given delta tree to the bottom.

3.2 Reconstruction
To reconstruct the result document we created a visitor class,
which implements the idea described in Section 2.1–2.2. This
visitor class simultaneously traverses the delta hierarchy as de-
scribed. This basic visitor class is then extended to fulfill different
needs, like materializing the final result documents or accessing
specific subtrees for query evaluation.

Our system preserves the order of members within a JSON
object, which is not required by the standard itself. Thereby we
have to adapt the traversing algorithm described previously as
follows:

Algorithm 1 reconstructs a result document, given a delta
hierarchy. Our implementation handles the base document as
just another delta tree D0 which overwrites the whole tree (root
path ’ ’). The algorithm visits a node n, which at the beginning
is the root node of Dn . If the given node is shared, i.e., it is an
object or array which is distributed over multiple delta trees,
then we first search the base document. The base document is
the document which has overwritten this node last. Starting from
the base, we collect all members of this shared node in all delta
trees. The algorithm is then repeated for each of these members.

If the node is not shared, then we retrieve the upper most
instance of the node in the delta hierarchy and visit this node.
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Data: n = root(Dn ); p = ’ ’; D0, ...,Dn ; P0, ..., Pn
1 if IsShared(n,P1, ..., Pn ) then
2 Base = GetBaseDeltaTree(n);
3 for i = Base to Dn do
4 members += GetMembers(Di ,Pi );
5 end
6 for member in members do
7 Recurse(member,p+’/’+member.id,D0,...);
8 end
9 else
10 nD = GetBaseNode(n);
11 Visit nD ;
12 end

Algorithm 1: Reconstruction algorithm

The visit function belongs to the given visitor, which may, as
explained previously, perform different actions for the given
node.

3.3 Estimating Memory Usage
The main advantage of delta trees is the reduced memory require-
ment. We define the memory cost of a tree, as the sum of all costs
of its nodes. The cost of a node is given by the byte size of its
in-memory representation. Evidently, each delta tree is smaller
or equal in size as the result tree, given by combining the base
with the delta tree, as all of its nodes are contained in the result,
plus potential additional nodes from the base document. Thus,
the memory cost of delta trees should always be smaller or equal
to materializing the whole result.

In reality, this is often not the case. For instance, the RapidJSON
library, that we use to create JSON documents, creates each new
object and array with 16 placeholder children. In many cases, this
is a sensible decision, as reallocating memory for more children
is an expensive operation and objects and arrays often have more
than one child. For delta trees that mostly consist of a few nodes,
this decision proved to be a disadvantage. Each placeholder child
will be added to the cost, which for some queries and documents
may be more than materializing the result.

We thereby added a sample step to our system before deciding
which execution method, delta trees or complete materializa-
tion, to choose. The transformation is performed for ≤ 1% of
documents with both execution methods. Then the memory re-
quirement of these documents is calculated and the method with
the lowest requirement is chosen. This decision is performed on
per-container basis in our system, which mostly contain similar
documents.

3.4 Accessing values
Queries in our systemmay use a wide range of functions to evalu-
ate values. The parameters of functions may be nested functions
or retrieved directly from the document. Hence, functions have to
be able to access all values contained in delta trees. For example,
it is not trivial to evaluate the member count of an object, that
is distributed over multiple trees. If a function accesses a value,
specified by a given path, the system will check top-down for the
given delta tree hierarchy if this specific path is shared. If not,
the value can be directly passed to the function, without even
traversing the whole delta hierarchy. If it is shared, we have to
evaluate this function by traversing the delta tree hierarchy as
explained in Section 3.2.
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Figure 2: Virtual Object Index

The main cost of accessing values by path is traversing the
tree. For each token in the path, the child represented by this
token has to be found. For arrays, this is simple, as the token
is the index of the child. Objects on the other hand, store their
children in order of occurrence in the source document. Here a
linear search with string comparisons has to be performed to find
the specified child. This operation is the dominating cost factor
for finding a value belonging to a path. For delta hierarchies this
cost may be amplified, if many trees have to be searched. But
if the value is overwritten in one of the higher trees in a delta
hierarchy, this cost can be less than for one materialized result
document.

4 PARTIAL MATERIALIZATION AND
OBJECT INDICES

It may happen, that multiple queries repeatedly require the same
value, which may be an object or array distributed over multiple
delta trees. In these cases it can be beneficial to materialize the
given object or array at the cost of increased memory usage. This
is achieved by traversing only this sub-tree in the delta hierarchy,
as described previously, and copying the whole sub-tree into
the highest delta tree. We call this partial materialization of the
result. By strategically materializing parts of the result we can
still massively reduce the memory footprint while preventing the
performance drawbacks of simultaneously traversing multiple
trees.

To prevent the materialization of objects, we created an virtual
object index. This index tries to combine the powers of delta
trees with the read performance of materialization. A virtual
object, is a list of tuples, containing an attribute id and a pointer
to a value or nested virtual object, as shown in Figure 2. The
attribute id is a numerical value, retrieved by mapping a string
attribute name to a numerical value using a hash map. This
has two advantages. (1) Having a numerical value reduces the
cost of comparisons needed for the linear search of children. (2)
The string dictionary is stored in the container and shared by
many documents, thereby reducing the required memory of this
index. We create these virtual objects, as soon as an object, that is
distributed over multiple trees in the delta hierarchy, is traversed
for the first time. During traversal, we map the attribute names
of the children to the attribute id and add it to the virtual object,
together with the pointer of the actually traversed value. Each
value may reside in a different tree within the delta hierarchy.
The traversed object is then replaced by the virtual object in the
highest delta tree of the hierarchy. Future accesses of the object
can then use the created index without traversing multiple trees.
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5 EVALUATION
In this section, we will evaluate the performance and memory
footprint of our delta tree implementation. The data set used is
a 109 GB selection of the Twitter JSON stream1. It consists of
29,634,708 JSON documents, where each document has between
7 and 348 attributes, containing every JSON type. The documents
are split into two major groups. Around 23.5 million (79.33%)
documents are normal tweets, while around 6.1 (20.67%) million
documents are deletion instructions. The tweets have a varying
number of attributes, depending on their status, e.g., retweets
and favorites, while the deletion documents consist of seven
attributes.

The tests are executed on a machine with 4 Xeon E7-4830
CPUs, each having 12 cores—and 24 threads—with 2.1 GHz. Fur-
thermore, 33 RAM-Kits, each having 32 GB of memory at 2400
MHz, are included, providing the server with around 1 TB of
RAM. The data is stored on one HGST Ultrastar 7K4000 HDD,
with 7200 RPM. Ubuntu 16.04.3 LTS is used as the underlying
operation system.

The first query in Listing 1 loads the Twitter data set. Then a
collection is created which adds one member to the user object
of the previous data set. Derived from this collection, another
attribute is added to the user object. In the following query, only
the data added in Q2 is used in an aggregation. Then the member
count of the user object is queried in the next two queries. The
last query copies the shared user object into a new collection.

Q1: LOAD t1 FROM FILES "/data/twitter";
Q2: LOAD t1 CHOOSE EXISTS('/user')

AS *,('/user/v1':1) STORE t2;
Q3: LOAD t2 AS *,('/user/v2':2) STORE t3;
Q4: LOAD t3 AGG ('':SUM('/user/v1')) STORE a;
Q5: LOAD t3 AS ('':MEMCOUNT('/user')) STORE c1;
Q6: LOAD t3 AS ('':MEMCOUNT('/user')+1) STORE c2;
Q7: LOAD t3 AS ('':'/user') STORE user;

Listing 1: Queries iteratively changing an object and
reading it

We compare our introduced approaches against the default
execution method, which copies and modifies the full JSON doc-
uments. The delta tree approach is based on our implementation
within the system, as explained in Section 3. The index approach
uses the same implementation, but with enabled virtual object
1https://developer.twitter.com/en/docs/labs/sampled-stream

indexing, as described in Section 4. The query time plot in Fig-
ure 3 is omitting the first data import query, as it is unaffected by
the execution method and requires the same time for all of them.

As we can see, for queries Q2 and Q3, the delta tree approaches
have a strong advantage over the default execution method.
While the default execution copies the whole Twitter data set,
the delta tree approaches only require one reference to the base
document and the /user/v<x> values, with the supporting tree
structure. This results in an increase of maximum 37.24GB and
31.89GB to the previous query for Q2 and Q3 respectively, as
can be seen in Figure 4. The default approach on the other hand
increases its memory consumption by 228GB and 230GB. As
copy operations are the dominating cost for these queries, the
execution times of the delta tree methods is also significantly
lower.

In Q4 the value written in Q2 is read. This is fast and mem-
ory unintensive for all approaches, but the delta tree approaches
are faster, as the value can be read very fast in one of the delta
trees without traversal. In Q5 and Q6 the user object, which
is distributed between three delta trees is used. For the default
execution method this is fast and requires nearly no memory.
For the normal delta tree method, this operation is slow, as the
whole delta hierarchy has to be traversed. The index introduces
additional overhead, as it creates the virtual object indices. This
results in vastly improved query times, but increased memory
consumption in Q6, which brings it closer to the default imple-
mentation, while the delta tree execution is much slower. In Q7
the modified user object is materialized to a new document. This
is relatively fast for the default execution method, but once again
slow for the delta tree. The indexed method can use the virtual
objects to improve its query time. All in all are the delta tree
implementations faster and very similar for this query set. But
if it would contain additional read queries this situation could
quickly change.

6 CONCLUSION
In this paper, we introduced the concept of delta trees, for ma-
terializing only the differences of a transformation, to reduce
the memory footprint of exploration systems. We explained the
basic idea and specific implementation details, based on our in-
house JSON exploration tool JODA. Additionally, we introduced
improvements to the systems to mitigate the performance bottle-
necks introduced by the approach. As we have seen, delta trees
enable systems to perform the same set of queries, with a fraction
of the required memory.
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