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ABSTRACT
In recent years, the amount of available data keeps growing at

fast rate, and it is therefore crucial to be able to process them in

an efficient way. The level of parallelism in tools such as Hadoop

or Spark is determined, among other things, by the partitioning

applied to the dataset. A common method is to split the data into

chunks considering the number of bytes. While this approach

may work well for text-based batch processing, there are a num-

ber of cases where the dataset contains structured information,

such as the time or the spatial coordinates, and one may be inter-

ested in exploiting such a structure to improve the partitioning.

This could have an impact on the processing time and increase

the overall resource usage efficiency.

This paper explores an approach based on the notion of con-

text, such as temporal or spatial information, for partitioning the

data. We design a context-based multi-dimensional partitioning

technique that divides an n−dimensional space into splits by

considering the distribution of the each contextual dimension in

the dataset. We tested our approach on a dataset from a touristic

scenario, and our experiments show that we are able to improve

the efficiency of the resource usage.
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1 INTRODUCTION
A dataset analyzed using parallel data processing systems, such

as Hadoop or Spark, is usually divided into chunks, or splits. The
basic partitioning approach uses the amount of bytes (e.g., 64 or

128MB) as splitting technique, without considering the content of

the data. In case of batch processing, where the dataset is always

analyzed entirely, this solution is reasonable. Nevertheless, if

the dataset is analyzed using selective queries based on some

attributes of the data, like time intervals or spatial regions [6, 11],

such an approach may not be efficient, since the partitioning

does not exploit the correlations in the data.

Consider for instance a dataset that collects the visits of tourists

at different Points of Interests (PoIs). The tourists have a city pass

which they swipe at the entrance of a PoI. Each swipe contains

the identifier of the city pass, the name and location (coordinates)

of the visited PoI, together with an entrance timestamp. One may

analyze such a dataset considering the timestamp (How many

tourists have been there in a specific day?), or the space (How

many times has a specific PoI been visited?), or PoI type (Are

modern-art museums preferred to science museums?). One may
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also combine different dimensions (How many tourists visited a

specific PoI in a specific hour?).

As a general approach, we consider context-aware partitioning
techniques. Assuming that a dataset can be analyzed w.r.t. several

dimensions, the idea is to group in the same split records that

are context-related [7]. For instance, if the context is defined by

the space and time dimensions, a context-aware partitioning will

include in the same split records that are nearby to each other

from both a spatial and temporal point of view.

Previous works proposed partitioning approaches mainly ba-

sed on spatial [9, 12] and spatio-temporal [1, 2] characteristics.

In case of spatial partitioning, one may partition based on space

(grid and Quad-tree), based on data (STR, STR+, K-d tree), or

based on space filling curves (Z-curve, Hilbert curve) [8]. The

selection of the partitioning technique is usually left to the user,

and only few works automatically select the best partitioning

technique based on the dataset distribution [5].

When two or more dimensions need to be combined, there are

two possible approaches. The first one considers each dimension

independently and builds amulti-level partitioning. This approach
produces a list of n grids (one for each level) that are used for

performing the partitioning, and it imposes an order between

them. The chosen order can have a great impact on the nature

and balancing of the resulting splits. For instance, ST-Hadoop [1]

firstly divide the dataset based on temporal granularity, and then

splits each portion based on spatial proximity. A query focused

on spatial properties (e.g., Has PoI x been visited more than PoI

y?) requires the analysis of all, temporally organized, splits.

The second approach considers all the dimensions together

and builds a multi-dimensional partition, i.e., a n-dimensional

grid. An example is HadoopTrajectory [2], in which partitions

are 3D cubes where the three dimensions are space (planar co-

ordinates) and time. Given a query focused on one dimension,

this approach allows the exact selection of the splits that could

be useful in answering the query. The challenge imposed by the

multi-dimensional partitioning is to find the best size of the grid

cells in each dimension, so that the amount of data in each cell is

balanced. This can be a non trivial task, especially in the general

case where data are not uniformly distributed [3, 5].

In this paper, we consider a context-based multi-dimensional

partitioning approach, which takes as input a dataset D and the

set of n contextual dimensions relevant to analyse D. We design

a solution that automatically produces the most appropriate di-

vision of the n−dimensional space, considering the distribution

of each contextual dimension inside D. The proposed technique

could be adopted in case of recurrent queries, to drive the parti-

tioning of the dataset that is stored permanently (e.g., HDFS), or

it can be used in a dynamic scenario, where the dataset is kept

in-memory (e.g., Spark), and it can be repartitioned based on the

current set of queries.
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We evaluate our solution on a real-world dataset containing

the swipes of a city pass – with the characteristics previously de-

scribed. The results show that we are able exploit the partitioning

to efficiently process a set of representative queries.

2 PROBLEM FORMULATION
This section formalizes the context-aware partitioning problem.

Definition 2.1 (Dataset). A dataset schema S = ⟨a1, . . . ,am⟩ is

a list of attributes, each one belonging to a particular domain, de-

noted as∆(ai ). A dataset D = {r1, . . . , rn } over a schema S is a col-
lections of records ri = ⟨v1, . . . ,vm⟩, where∀i ∈ {1, . . . ,m}vi ∈
∆(ai ).

Definition 2.2 (Context). Given a dataset D over a schema S =
⟨a1, . . . ,am⟩, the context is a subset of the attributes in S :

C = {c1, . . . , ck } ⊆ {a1, . . . ,am } (1)

Definition 2.3 (Partitioning). Given a dataset D = {r1, . . . , rn },
a partitioning P is a collection of subsets of D:

P = {p1, . . . ,ph } such that ∀pi ∈ P (pi ⊆ D) and D = ∪ipi (2)

Definition 2.4 (Balanced partitioning). A partitioning P = {p1,
. . . ,ph } for a dataset D is said to be balanced if and only if:

∀pi ,pj ∈ P : abs(|pi | − |pj |) ≤ ε (3)

where |pi | denotes the cardinality of the partition pi .

Definition 2.5 (Context-aware partitioning). A partitioning PC
for a datasetD is the minimal one for the contextC and a context-

based query q if and only if:

(1) it is a balanced partitioning, i.e. it is able to produce bal-

anced partitions,

(2) it minimizes the number of splits to consider for answering

the query q. Notice that a partition might contain also

more than one split.

3 CONTEXT-BASED PARTITIONING
In order to partition a dataset D considering a context C with

several dimensions of analysis, different approaches can be ap-

plied. For instance, in the multi-dimensional partitioning the

subdivision of the elements in D is performed by defining an

n-dimensional grid where n = |C |. Conversely, a multi-level

partitioning could also be applied by using n grids, each one

representing a level and corresponding to a dimension in C .
Notice that given a dataset D, a context C and a query q, it

is possible to have multiple minimal partitionings. Indeed, the

quality of the resulting set of partitions can highly depend on

the distribution in D of the values of the dimensions belonging

to C and those used in q. When our partitioning technique is not

applied on-line before executing each query q, the minimality

of a partitioning can be evaluated by considering the average

number of splits used for a reference set of context-based queries.

Given a contextC for a datasetD, the identification of the most

appropriate partitioning requires an easy and efficient way for

evaluating the skewness in D of each context dimension. Based

on this evaluation, the right shape of each n-dimensional cell

inside the n-dimensional grid can be determined.

The aim of this paper is to propose a partitioning technique

able to capture the distribution of the dataset w.r.t. each context

dimension and based on this to build the right set of partitions

even for skewed datasets. For this purpose, we extend the idea

originally proposed in [5] for the spatial domain to the man-

agement of a generic number n of context dimensions. For this

reason, we present below the definition of the box-counting func-

tion BC
q
r (D,a) for a given dataset D and a context dimension a,

that is the fundamental notion for the skewness evaluation.

Definition 3.1 (Box-counting function for a dimension a). Given
a datasetD, containing an attribute a belonging to a domain ∆(a),
and a scale r representing the cell size of a mono-dimensional

grid covering the range of values of ∆(a) appearing in D, the
box-counting function BC

q
r (D,a) is defined as:

BC
q
r (D,a) =

∑
i
δi (D,a)

q
with q , 1 (4)

where δi (D,a) is the number of records in D whose value for a
is contained in the cell i . The case q = 1 is excluded, since it does

not depend on r and it equals the number of records in D. �

Intuitively, given a grid with cells of side r , the box-counting
function with q = 0 counts the number of cells that contains at

least one record of D. When q is greater than 1, the box-counting

becomes the sum of the number of records that a cell contains,

raised to q. This function can be used to detect the skewness of a

dataset by computing it for q = 0 and q = 2, while varying the

value of r . More specifically, the level of skewness of a dataset

depends on how this value changes while increasing r .

Definition 3.2 (Box-counting plot). Given a dataset D, contain-
ing an attribute a belonging to a domain ∆(a), the box-counting
plot is the plot of BC

q
r (D,a) versus r in logarithmic scale.

On datasets representing fractals, since it can be derived from

theory, and on real datasets, as shown in [5, 10], the following

observation can be considered valid.

Observation 1. For finite datasets representing fractals and
real datasets the box counting plot reveals a trend of the box count-
ing function that, in a large interval of scale values r , behaves as
power law:

BC
q
r (D,a) = α · rEq (5)

where α is a constant of proportionality and Eq is a fixed exponent
that characterizes the power law.

The power law exponent Eq for a given dataset D and an

attribute a can be computed by starting from the box-counting

plot, since it becomes the slope of the strait line that approximates

BC
q
r (D,a) in a range of scale (r1, r2), thus it can be computed by

a linear regression procedure.

We can observe that E0 and E2 could be chosen as reference

descriptors about the distribution of the values of the attribute a
in the datasetD. Indeed, E0 can be an indicator of the cases where
the dataset leaves empty some areas of the range of values of a
covered by D, while E2 can also be affected by the concentration

of the values in some areas with respect to other ones, i.e. the

situations where there are no empty areas, but different data

concentrations in different areas.

In order to optimize the computation of E0 and E2 for a big
dataset Dbig the following approach can be applied. First, we

consider a sample of Dbig (usually 10% of the records) for the

computation of the n-dimensional histogram: it is composed of

a n-dimensional cube counting the number of records falling in

each cell (only the non-empty cells are represented). Second, the

projection of then-dimensional cube on each dimension produces

n one-dimensional histograms to be used for the computation of

E0 and E2 for each dimension. Third, considering the heuristics

presented in [5], accordingly to E0 and E2 the suitable partition-
ing technique for each dimension is chosen (possible techniques
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are: regular grid, space-based partitioning, record-based parti-

tioning). Finally,Dbig is scanned and partitioned using the n-cube
produced by intersecting the list of splitting planes obtained by

applying the chosen techniques. Notice that for each dimension

a different technique might have been chosen.

4 CASE STUDY EVALUATION
The proposed technique has been applied to a real-world dataset

containing the swipes of a city pass, called VeronaCard, which is

provided by the tourist office of Verona, a municipality in North-

ern Italy. The dataset contains about 1,200,000 records concerning

4 years. Each record reports beside to the identifier of the city

pass and the name of the visited PoI: the location (coordinates)

of the PoI, the entrance timestamp and the age of the tourist

holding the card.

Fig. 1 shows the spatial distribution of the records: the size

of the circle surrounding the PoI name represents the number

of records regarding that location: bigger cycles represent PoIs

with the higher number of visits. As you can notice, the records

are not uniformely distributed w.r.t. space, since there are some

PoIs, such as Arena and Casa di Giulietta, which have much more

visits w.r.t. others, like San Fermo.

Figure 1: Spatial distribution of the swipes: bigger circlers
represent an higher number of visits in that PoI (records).

A sample about the distribution of the records w.r.t. the time

is represented in Fig. 2 by means of histograms. In particular, we

show the distribution of three PoIs aggregated by the day of the

week. Even in this case the distribution is not uniform, since

there are some days in which a PoI is mostly visited than others

(es. weekend days vs week days). Moreover, some PoI can have a

closing day in which there are no visits at all.

Finally, the age distribution is reported in Fig. 3 by means of a

Pie chart. Even in this case the distribution is not uniform: some

ages more frequent than others, reflecting the fact that there are

PoIs more suitable for some kinds of tourists than others.

These different distributions are recognized also by the expo-

nents E0 and E2 of their box counting plot, as reported in Tab. 1

together with the chosen partitioning technique.

Tab. 2 illustrates some statistics about the partitions produced

by the four considered partitioning techniques: Rand is the de-

fault partitioning technique traditionally supported by a MapRe-

duce environment, it simply subdivides the dataset into parts

with homogeneous size in bytes. MDдr id is a multi-dimensional

uniform grid partitioning technique which essentially subdivides

the dataset by using uniform d-dimensional cells for data aggre-

gation, while MLдr id is a multi-level uniform grid partitioning

Figure 2: Number of swipes for 3 PoIs by day of the week.

Figure 3: Number of swipes for each age value.

Table 1: Exponents E0 and E2 and technique choice.

Context attribute −E0 E2 Index

time 1.041 0.963 Regular Grid

x 0.041 0.001 Space-based partitioning

y 0.054 0.154 Space-based partitioning

age 0.506 0.474 Record-based partitioning

which considers only a dimension at each phase during the uni-

form subdivision. Finally, CBP is the context-based partitioning

technique proposed in this paper which uses the computation of

the box counting plot and the corresponding exponents E0 and
E2, in order to produce the most appropriate d-dimensional grid

in order to accomodate also non uniform data.

Table 2: Experimental results: RAND is the random parti-
tioning, %RSD is the relative standard deviation with re-
spect to the dimension analysis.

Index #parts #splits %RSD %RSD %RSD %RSD %RSD

#size time x y age

Rand 69 69 1% 57% 33% 35% 58%

MDдr id 64 109 64% 25% 4% 17% 24%

MLдr id 73 117 71% 26% 4% 14% 23%

CBP 88 88 26% 20% 2% 3% 19%

The first consideration we can done is that while Rand is

able to produce the minimum number of splits with respect to

the dataset dimension and the split size (#parts = #splits), the
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other techniques can produce a greater number of splits which

is equal to: ⌈ d
√
ds/sp⌉ where d is the number of dimensions, ds is

the dataset size in bytes and sp is the split size in bytes. Notice

that since the dataset is not uniformly distributed: (1) some cells

could be empty, so they are not produced (i.e., MDдr id has 64

partitions and MLдr id has 73 partitions). (2) Some cells could be

overpopulated, so they have to be split in order to comply with

the split size prescription, i.e., at the and MDдr id has 109 splits,

while MLдr id has 117 splits. Conversely, Rand and CBP has a

number of splits equal to the number computed of partitions.

CBP produces more partitions than Rand due to the additional

subdivision of the n-dimensional space in case of clustered data.

The non uniformity of the dataset distribution has a direct

effect also on the split size variability. In order to evaluate the

variability of a given feature, we use the %RSD, which is the

relative standard deviation, namely it is a statistical measurement

describing the spread of data with respect to the mean and the

result is expressed as a percentage. Clearly, the Rand technique

is able to produce very balanced splits, since the partitioning is

guided only by this parameter. Conversely, MDдr id and MLдr id
produce very unbalanced splits due to the data skeweness. With

CBP, we obtain quite good results in terms of balancing.

The second aspect to consider is the variability of each dimen-

sion values inside the splits. Columns 5-8 in Tab. 2 reports the

average %RSD for each considered dimension. As you can notice,

all the last three techniques generally improve the performances

of the Rand technique. In particular, as regards to the temporal

dimension, since it is quite uniformly distributed and also it is the

first considered dimension by the MLдr id , its average spread is

the same forMDдr id andMLдr id , while for the other dimensions

the spread is less for MDдr id since it considers all dimensions

at the same level for producing the partitioning. CBP produces

splits with less variability in each dimension w.r.t. all the other

techniques.

Given the partitions induced by the four considered partition-

ing techniques, we have performed some representative range

queries in order to evaluate their performances. The performan-

ces are evaluated as the number of splits that have to be processed

in order to produce the desired result, namely in the filtering

capabilities induced by each partitioning technique.

We consider 4 queries, the first one has a condition on all the

context dimensions, while the other ones contain conditions on

less dimensions. The results are reported in Tab. 3.

Q1: find all visits performed around the Arena during spring
2015 by young tourists. The spatial location is defined by a buffer

around the Arena, while the period spring 2015 is defined by a

temporal interval, and the young tourists are identified by an age

range. Since the condition regards all the four dimensions, the

performance of MDдr id and MLдr id are quite similar.

Q2: find all visits performed by teenager in 2016 everywhere in
Verona. In this case the spatial dimensions are not considered in

the filter, while a pruning is performed on the temporal dimen-

sion. Since this represents the first level for MLдr id , it sightly
outperforms MDдr id .

Q3: find all visits around Arena performed by senior tourists. In
this case the temporal dimension is not considered, while the

spatial and age dimensions are considered. Differently to the

previous case, the advantage of MLдr id is loss, since no filtering

can be performed at the first level.

Q4: find all the visits performed by adult tourists. As you can

notice here the filter is applied only on the 4th dimension, so

Table 3: Experimental results. Numbers represents #splits.

Query Rand MDдr id MLдr id CBP
Q1 69 3 3 2

Q2 69 32 30 14

Q3 69 6 6 5

Q4 69 85 94 80

MLдr id performs worst than MDдr id , because it has to scan all

the levels before applying a filter.

5 CONCLUSION
In MapReduce frameworks the partitioning of a dataset into

independent splits is a critical operation, since the degree of par-

allelism and the overall performances directly depend from the

initial partitioning technique. This is particularly true in case of

context-based applications, where data present correlations and

consequently data could be aggregated and filtered in order to

reduce the amount of work to be done during the analysis. More-

over, beside the need for a context-based partitioning technique,

in order to produce balanced splits, it is necessary to consider

the distribution of the dataset w.r.t. the analysis dimensions. This

paper proposes a context-based partitioning technique which

takes care of the dimension distributions to produce the best par-

titioning for the dataset at hand. We also apply it to a real-world

dataset and compare its performances w.r.t. existing partitioning

techniques for highlighting its differences and benefits. The ob-

tained preliminary results confirm the goodness of the approach

and encourage further research in this direction, for instance as

regards to the managament of multi-accuracy data [4].
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