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ABSTRACT
We present a dimension indexing based algorithm for skyline

computation. We first show that the dominance tests required

to determine a skyline tuple can be sufficiently bounded to a

subset of the current skyline, and then propose the algorithm

SDI, of which the time complexity is better than the best known

algorithm in high-dimensionality domains with reasonably low

cardinality. Our performance evaluation on synthetic and real

datasets shows that SDI outperforms the state-of-the-art skyline

algorithm in both low-dimensionality and high-dimensionality

domains.

1 INTRODUCTION
The skyline computation problem aims at retrieving the complete

set of dominating tuples frommultidimensional data, with respect

to a monotonic preference order on all dimensions. Over several

past decades, many algorithms have been developed, which can

be categorized into sorting based [1, 4, 6, 7, 14] and partitioning

based [2–4, 8–13, 15]. Most the existing skyline algorithms have

been designed for low-dimensionality domains because of the

quadratic issue raised by the worst case time complexity.

In this paper, we present a dimension indexing based skyline

algorithm SDI (Scalable Dimension Indexing) that is efficient in

high-dimensionality domains as well as in low-dimensionality

domains. We show that by indexing all dimensions, it is sufficient

to test a tuple only with the existing skyline tuples on an arbitrary

dimension instead of with the complete set of skyline tuples. We

also show that any skyline tuple can be used as a stop line that
traverses the indexed dimensions to stop the computation, which

is much performant than the calculation of stop point mentioned

in SaLSa [1]. Furthermore, SDI adopts the weak incomparability
checking to take the incomparability between tuples into account,

which is the most important feature of the state-of-the-art skyline

algorithm BSkyTree [10]. Our analysis shows that the worst time

complexity of SDI is better than the best known one [13] in high-

dimensionality domains with reasonably low cardinality, and our

performance evaluation shows that SDI outperforms BSkyTree
on both low and high dimensional data, but less efficient than

BSkyTree on medium dimensional data.

The rest of this paper is organized as follows. Section 2 presents

the SDI algorithm with preliminary definitions. We show our

theoretical analysis of the computational complexity of SDI in
Section 3. Section 4 reports the performance evaluation of SDI
on both synthetic and real datasets. We conclude in Section 5.

2 THE SDI APPROACH
Let t be a d-dimensional tuple, we denote t[i] the dimension
value of t on the dimension i , where 1 ≤ i ≤ d . We define the
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preference order, denoted by ≺, as a total order that covers each

dimension such that given two tuples t and u, t[i] is better than
u[i] if t[i] ≺ u[i]; t[i] is equal tou[i] if t[i] = u[i];u[i] is not worse
than t[i] if (t[i] ≺ u[i])∨(t[i] = u[i]) holds, denoted by t[i] ⪯ u[i].
We say that a tuple t dominates a tuple u, denoted by t ≺ u, if and
only if for each dimension i , we have t[i] ⪯ u[i], and for at least

one dimension k we have t[k] ≺ u[k]. We denote t ⊀ u that t
does not dominateu, and t ≁ u that t andu are incomparable, that
is, (t ⊀ u)∧(u ⊀ t). Considering ad-dimensional databaseD and

a preference order ≺ on D, a tuple t ∈ D is a skyline tuple if and
only if ∄u ∈ D such that u ≺ t . The skyline of D is the complete

set S of skyline tuples such that S = {t ∈ D | ∄u ∈ D,u ≺ t}.
We have s ≁ t for any two skyline tuples s and t .

Given a database, the dimension index, denoted I, is the set of
d ordered lists on a preference order ≺, in which each list Ii ∈ I is

a dimensional subindex that contains all dimension values sorted

with respect to ≺.
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Figure 1: A dimension index example.

Let us consider the 5 tuples {a, e,д,h, i} presented in Figure

1 that shows a dimension index example consisting of 10 tuples

and 6 subindexes, where the dashed lines link the tuple among

the subindexes. Obviously, a is a skyline tuple, which can be

independently concluded from I1, I2, and I6 because no tuple

can dominate a; if we regard only I4, h is immediately a skyline

tuple and in order to determine whether i , the second tuple in

this subindex, is a skyline tuple, it is enough to compare i with h
because any tuple x located after the position of i in I4 cannot
dominate i since we have i[4] ≺ x[4] in I4. Nevertheless, if we
focus on I3, we see that h ≺ i and i ≺ h must be first tested in

order to decide whether h or/and i shall be skyline tuple(s) since
h[3] = i[3] (indeed we have h ≺ i and i ⊀ h). That is also the

case in I6, where 3 tuples contain the same dimension value 0.15,

so all these 3 tuples must be first locally compared in order to

filter the potential skyline tuples (in our example, e). We call such

tuples as h in I3 and e in I6 the local skyline tuple. It is easy to

see that any tuple is a local skyline tuple on a given dimension if

there are no identical dimension values.

Theorem 1. Let I be the dimension index of a database D and
Ii ∈ I be an arbitrary subindex of the dimension i . Then, a local
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skyline tuple t is a skyline tuple if and only if (1) there is no tuple
u such that u[i] ≺ t[i], or (2) for any skyline tuple s such that
s[i] ≺ t[i], we have s ⊀ t .

Proof. Let t be a local skyline tuple. If t is the first tuple in
Ii , then t is a skyline tuple because no tuple is better than t .
Otherwise, let s be a skyline tuple such that s[i] ≺ t[i], then if

s ≺ t , t cannot be a skyline tuple since s dominates t ; if s ⊀ t ,
then there exists at least on dimension k , i such that t[k] ≺ s[k]
so no tuple dominated by s dominates t . Hence, for each skyline

tuple s such that s[i] ≺ t[i], if we have s ⊀ t , then no tuple in the

database dominates t , thus, t is a skyline tuple. If t[i] ≺ s[i], then
s ⊀ t so it is meaningless to compare t with s . □

Theorem 1 allows to determine whether a tuple is a skyline

tuple only with a subset of the existing skyline. Furthermore, once

the dimension index has been constructed, Theorem 1 allows to

switch among subindexes so that the best one containing the

least of known skyline tuples can always be selected. Indeed, let p
be a skyline tuple, then any tuple t such that p ≺ t can be pruned

from the database in order to reduce the computation time. In this

paper, we propose the notion of stop line based on the dimension

index of which the effectiveness can be guaranteed.

Theorem 2. Let I be a dimension index of a d-dimensional
database D and p ∈ D be an arbitrary skyline tuple. Let oi (p)
denote the largest offset of any tuple x such that x[i] = p[i] in the
dimensional subindex Ii ∈ I, if all offsets oi (p), 1 ≤ i ≤ d , have
been reached by following a top-down traversal on all dimensions,
then the complete set of skyline tuples has been identified and the
computation can be terminated.

Proof. Letp and t ∈ D\p be two skyline tuples inD, we have:

(1) t ≁ p; or (2) t and p have identical values on all dimensions.

We denote Lp =
⋃

1≤i≤d oi (p) the set of all offsets oi (p). In the

first case, t ≁ p ⇒ ∃k such that p[k] ≺ t[k], i.e. ok (p) < ok (t),
hence, if the index traversal reaches all offsets in Lp , t must have

been identified at least in the dimension k . In the second case, we

have p[i] = t[i] on any dimension i . In both cases, if all offsets in

Lp have been reached, all skyline tuples have been identified. □

We call the set Lp =
⋃

1≤i≤d oi (p) a stop line that can safely

terminate the skyline computation of SDI. In theoretical, any

skyline tuple can be selected as a stop line, however, different

stop lines behave differently in pruning irrelevant tuples. We

propose therefore a functionminstop to find the best stop line

L∗p , defined as:

L∗p =minstop (p) = argmin

p
(max{oi (p)},

d∑
i=1

oi (p)),

where d is the dimensionality of the data. The functionminstop
sorts first by the maximum offset, then by the sum of offsets in

all dimensions, so the skyline tuple having the minimized value

is the best stop line. The best stop line Lp can be dynamically

maintained by keeping minstop (p) < minstop (t) for any two

skyline tuples p and t .
The incomparability checking is taken into account while a

dominance test is proceeding. In our approach, we consider that

a d-dimensional dominance test runs in O(d) time, so any tuple

comparison better than O(d) time shall improve the efficiency

of SDI. Indeed, to efficiently determine s ≁ t in stead of testing

s ≺ t in the case of s ⊀ t is an essential time-costly task while

comparing t with all existing skyline tuples in a dimensional

subindex. In this paper, we propose a weak checking mechanism

of the incomparability between a skyline tuple s and a testing

tuple t in a dimensional subindex Ii as following.

Theorem 3. Let I be a dimension index and s be a skyline tuple
present in a dimensional subindex Ii ∈ I. Given a tuple t such
that s[i] ≺ t[i], we sufficiently have s ≁ t ifmax(s) > max(t), or
min(s) > min(t), or sum(s) > sum(t).

Proof. The sets Ls and Lp (see the proof of Theorem 2 for the

definition) can be considered as the coordinates of two curves in a

two-dimensional space. In Euclidean geometry,max(s) > max(t),
ormin(s) > min(t), or sum(s) > sum(t) are sufficient conditions

for the existence of at least one intersection of the curves formed

by s and t since we have s[i] ≺ t[i], i.e. oi (s) < oi (t), that is,
according to the definition of dominance, s ≁ t . □

Note that the maximal value, the minimal value, and the sum

of a tuple can be pre-calculated while constructing the dimension

index, so Theorem 3 can efficiently determine s ≁ t . However,
Theorem 3 shows in fact 3 sufficient conditions for s ≁ t , hence
a dominance test is necessary to determine s ≁ t in the cases

that are not covered by Theorem 3, for which we call Theorem 3

a weak incomparability checking. The sketch of SDI is listed in

Algorithm 1.

Algorithm 1: SDI
Input: Dimension index I

Output: Skyline S
1 while true do
2 Ibest ← BestSubindex (I)
3 while T ← NextLocalSkyline(Ibest ) do
4 if T = null then
5 return S

6 foreach t ∈ T and t < S do
7 if Sbest ⊀ t then
8 Sbest ← Sbest ∪ t
9 S ← S ∪ t

10 if Found new skyline tuples then
11 Update StopLine
12 break

13 if StopLine is reached then
14 return S

Extensions. (1) SDI computes the skyline in the categorical

domains as long as the preference order ≺ can be defined; (2) SDI
can be immediately adapted to subspace skyline computation by

skipping unrelated dimensions; (3) SDI can be extended to the

skyline maintenance by dynamically constructing the dimension

index; (4) SDI can handle the top-k skyline query by finding the

skyline tuples having the best positions in the dimension index.

3 THEORETICAL ANALYSIS
We denote d the dimensionality and N the cardinality of the

data, andM the size of the skyline. We discuss without duplicate

values on any dimension, but if K duplicate values are present in

a dimensional subindex, O(dK2) shall be considered in assuming

that BNL is applied to compute local skylines. Note that we

consider O(d) time for a d-dimensional dominance test, which

implies the tests of s ≺ t and t ≺ s , hence, the dominance test
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(a) d = 6, N = 1 × 105. (b) d = 6, N = 1 × 106. (c) d = 8, N = 1 × 109. (d) d = 8, N = 5 × 109.

Figure 2: Numerical simulation for complexity study in the worst case.

within SDI is considered in O(d/2) time since s ≺ t is sufficient.

We also note that the construction of dimension index requires

O(dN logN ) time with respect to general O(N logN ) sorting
algorithms on d dimensions, and we do not consider the two

heuristics of stop line and incomparability checking.

The average time complexity of SDI is measured onM skyline

tuples uniformly distributed in d dimensional subindexes.

Theorem 4. Considering M skyline tuples, SDI computes the
skyline of a d-dimensional database with the cardinality N in

O(dN logN +
M(2N −M − d)

4

).

Proof. WithM skyline tuples uniformly distributed on each

dimension, (N − M)/d non skyline tuples must be compared

withM/d skyline tuples. For each dimension, in the worst case,

(M/d)(M/d−1)/2 dominance tests are required by skyline tuples,

((N −M)/d)(M/d) dominance tests are required by non skyline

tuples, and each dominance test cost O(d/2) time. Therefore, the

average time complexity of SDI is O(((M/d)(M/d − 1)/2+ ((N −
M)/d)(M/d))(d/2)d), that is the result shown in Theorem 4. □

Theorem 5. In the worst case, all N tuples in a d-dimensional
database are skyline tuples. SDI computes the skyline in

O(dN logN +
N 2 − dN

4

).

Proof. The proof is immediate if we replaceM in Theorem 4

by N . □

Comparing with the best known worst-case time complexity

O(N log
max (1,d−2) N ) proposed by Sheng and Tao [13], given

d > 2, the following equation must be resolved:

N log
d−2 N > dN logN +

N 2 − dN

4

.

The above equation belongs to transcendental equations that

have no closed-form solutions. Our numerical simulation results

presented in Figure 2 shows that while d = 6, SDI is better than
the approach of Sheng and Tao for N < 5 × 10

5
; and while

d = 8, the compared approach beats SDI only if N > 4× 109. SDI
performs better in high-dimensionality domains with respect to

a reasonable data cardinality.

4 PERFORMANCE EVALUATION
We evaluate the performance of SDI in comparisonwithBSkyTree
implemented in SkyBench

1
[5] on both synthetic datasets and real

world datasets. The synthetic datasets are generated by Skyline

Benchmark Data Generator
2
, including uniform independent

1
https://github.com/sean-chester/SkyBench

2
http://pgfoundry.org/projects/randdataset

(UI), correlated (CO), and anti-correlate (AC) data; the real world
datasets include NBA, HOUSE, and WEATHER [5]. We implemented

SDI3 in C++ standard and all executables are compiled by LLVM
Clang with -O3 option. All experiments have been conducted on

an Intel Core i5 2.8 GHz processor with 16GB 1600 MHz DDR3

RAM, running macOS 10.15.1 operating system. We note that all

results reported are the average performance over 5 iterations.

First, the effects of (1) dimensionality and (2) cardinality
of data have been evaluated. For (1), the cardinality is fixed to

100K and for (2), the dimensionality of data is fixed to 24. Due to

the space limitation, only overall elapsed time, that is, the sum

of data loading time, data structure construction time, and query

time, has been reported in this paper. Indeed, we consider that for

single-round skyline queries, to focus on total processing time is

much important than to focus only on the query time without

looking at data structure building time.

Dataset d = 2 d = 4 d = 6 d = 8 d = 10 d = 12

UI 7 259 2,597 9,960 25,737 46,301

CO 1 5 31 120 449 790

AC 50 4,100 26,713 56,118 75,668 87,857

Dataset d = 14 d = 16 d = 18 d = 20 d = 22 d = 24

UI 67,676 82,286 92,011 96,832 99,059 99,662

CO 1,439 2,941 5,471 8,936 14,498 16,948

AC 94,053 96,956 98,413 99,205 99,570 99,760

Table 1: Skyline size of synthetic datasets (N = 100K).

Table 1 lists the skyline size of synthetic datasets with the

cardinality of 100K. We see that the higher the dimensionality

of data, the closer to the worst case is likely to be. For instance,

the skyline consists of 92% of tuples in UI data while d = 18,

however while d = 14 of AC data, the skyline rate reaches already
94%. Figure 3 shows the effect of dimensionality on SDI where
the cardinality N = 100K is reasonable in the most of use cases.

SDI outperforms BSkyTree in both low-dimensionality and high-

dimensionality domains on UI (d ≤ 10 or d > 20) and AC data

(d ≤ 4 or d > 20), but is less efficient than BSkyTree in other

dimensionalities. In fact, we note that the stop line takes no

advantage in AC data because of the anti-correlated characteristics
of data, however SDI systematically outperforms BSkyTree on
the CO data because the stop line can efficiently determined with

respect to the strong correlation in data. Figure 4 shows the effect

of cardinality on SDI with the highest dimensionality in our

experiments. In high-dimensionality domains, SDI outperforms

BSkyTree in most cases except in AC data. Again, we confirm that

the stop line does not show any advantage in high-dimensionality

3
https://github.com/skyline-sdi/sdi-bench
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(a) The UI dataset. (b) The AC dataset. (c) The CO dataset.

Figure 3: Performance evaluation on the effect of dimensionality (N = 100K).
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Figure 4: Performance evaluation on the effect of cardinality (d = 24).

and high-cardinality AC data. Table 2 lists the pruned tuples by

the stop line in different synthetic datasets while N = 100K, that

are relevant to our experimental results.

Dataset d = 2 d = 4 d = 6 d = 8 d = 10 d = 12

UI 99,849 88,011 63,260 30,576 12,381 8,110

CO 99,997 97,773 98,832 97,656 96,526 92,066

AC 36,731 5,022 2,227 240 30 27

Dataset d = 14 d = 16 d = 18 d = 20 d = 22 d = 24

UI 3,794 297 933 35 3 8

CO 87,901 80,587 73,837 51,347 39,742 48,239

AC 13 25 0 10 0 0

Table 2: Pruned tuples by the stop line (N = 100K).

Table 3 shows the performance comparaison between SDI and
BSkyTree on real datasets. SDI outperforms BSkyTree on NBA and
HOUSE datasets but is much slower than BSkyTree on the WEATHER
dataset because the huge number of duplicate dimension values

in WEATHER makes O(dK2) (discussed in Section 3) an important

factor.

Dataset d N |S | SDI BSkyTree

HOUSE 6 127,931 5,774 306 ms 839 ms

NBA 8 17,264 1,796 45 ms 155 ms

WEATHER 15 566,268 26,713 18,680 ms 11,641 ms

Table 3: Performance evaluation on real datasets.

5 CONCLUSION
In this paper, we presented an efficient Skyline computation

algorithm.We proved that in multidimensional databases, skyline

computation can be conducted on an arbitrary dimensional index

which is constructed with respect to a predefined total order

that determines the skyline. We further showed that any skyline

tuple can be used to stop the computation process by outputting

the complete skyline. Our experimental evaluation shows that

SDI outperforms the state-of-the-art skyline algorithm in both

low-dimensionality and high-dimensionality domains.
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