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ABSTRACT
Machine learning is critical to the success of many products
across application domains. At Uber, we have a variety of ma-
chine learning applications including matching, pricing, recom-
mendation, and personalization. As a result, we have a large
number of machine learning models to manage in production.
Generally, building machine learning models is an iterative pro-
cess and machine learning models span across a set of stages of
a lifecycle. In this paper, we describe Gallery, a machine learning
model lifecycle management system to save and serve models
and metrics and automatically orchestrate the �ow of models
across di�erent stages in the lifecycle. We then use the Uber
Marketplace Forecasting and Simulation platforms as examples
to show how Uber uses Gallery in production and the bene�ts
we get by using Gallery.

1 INTRODUCTION
Machine learning is critical to the success of many products
across application domains. Companies employ machine learn-
ing for recommendation, targeting, and personalization. Uber
uses machine learning across product features including match-
ing, pricing, personalization, ETA estimation, and Uber Eats rec-
ommendations. Recently, there have been various systems and
frameworks [1, 12, 22, 26] designed and built to make machine
learning easy-to-use and scalable in production systems. How-
ever, as the interaction of models with systems have becomemore
complex, a growing technology need exists to manage machine
learning models through their lifecycle to accelerate the process
of getting a model from exploration to production and improve
the model iteration velocity.

Building machine learning models is an iterative process [7].
Given a problem to solve, the common lifecycle of a model, as
shown in Figure 1, starts with model exploration, during which
we design and explore multiple models. When we �nd a model
that beats a benchmark, we build the model into a production
system. Getting a model into production starts at the model
training, where we generate model instances. We refer to the
trained models as the instances of a model. We evaluate the
performance of trained model instances and deploy instances
when the performance is above certain thresholds. Otherwise, we
continue to improve the models. When models are deployed in
production, monitoring performance is critical. If a performance
degradation is detected or we have a new model, we will need to
re-train the appropriate model, deprecate the old model instances,
and deploy the new model instances.

Managing a handful of models is feasible for a production
system. However, operational scale quickly becomes untenable
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Figure 1: Machine Learning Model Lifecycle

with multiple machine learning problems, and more so when
each problem has hundreds of model instances to manage. For
example, when doing Marketplace-level forecasting at Uber, we
forecast supply, demand, and other quantities in real time for
hundreds of cities across the globe. We shard the problem spa-
tially by city, training a model instance for each city-quantity
combination because Uber is operating in many cities across the
world, and di�erent cities may pose di�erent geospatial charac-
teristics. Besides, the Uber business might be at di�erent growth
stages for di�erent cities.

Though there are variances across applications and projects,
many interesting questions about how to manage a large num-
ber of machine learning models in production are common. In
this section, we list a sample of the questions which are raised
between use cases: Where do we save and serve the models gen-
erated during model exploration or trained in production? How
do we e�ciently search for models and their experiment results?
How can we con�dently deploy a large-scale number of models
and avoid regressions? How and when do we trigger model re-
training due to model performance deterioration? In a complex
system like the Uber Marketplace, the result of applying one
model could be the input to another model. How can we manage
the dependencies between multiple models?

How to address the above model management questions of-
ten depends on the experiences of machine learning engineers
who work on these problems. Even within one company like
Uber, di�erent machine learning applications may use di�erent
approaches to solve these problems. For example, prior to Gallery
there were over seven di�erent storage solutions (e.g., MySQL,
HDFS, Cassandra and Git repo) engineers used to save machine
learning models. As a result, similar functionalities to manage
machine learning models are scattered across a variety of pro-
duction systems. This results in increased overhead to build and
maintain individual systems, and causes a loss of visibility into
the machine learning models across a production system. With
the increasing number of machine learning solutions being built
to solve business problems at Uber, we built Gallery, a model
lifecycle management system to systematically and uniformally
address these common questions to improve machine learning
model velocity and productivity across Uber.

Gallery was started as a system to solve Uber Marketplace
Forecasting model management problems and was later inte-
grated as part of Michelangelo [6], Uber’s ML Platform. It is a
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system designed to manage machine learning models by provid-
ing functions for model saving, searching, serving, performance
monitoring, and orchestration across di�erent stages of themodel
development lifecycle.

Overall, the major contributions in this paper are as follows:

• A comprehensive analysis of the problems we addressed
at Uber in order to manage machine learning models in a
large-scale, distributed, microservices-based system.

• We describe Gallery, a model lifecycle management system
used in production at Uber.

• We use Uber Marketplace Forecasting and Simulation case
studies to demonstrate how we utilize Gallery to manage
machine learning models and the bene�ts we have gained
with Gallery.

2 THE MODEL MANAGEMENT PROBLEM
We �rst share some machine learning model management con-
text at Uber before we de�ne the problem. At Uber, we employ
numerous machine learning applications, such as request dis-
patching, pricing, user growth, and recommendations. Overall,
the Uber platform is microservice-based. Application teams build
their own services and have di�erent requirements for cadence
and latency, implying di�erent patterns of running the models.
For example, long-term forecasting predicts hourly trips for a
city for weeks in the future, while real-time forecasting predicts
sub-hour demand. As a result, di�erent applications might use
di�erent languages, modeling techniques, and frameworks for
building and serving models.

In addition to the variety of applications and models, Uber is
operating in markets across the world that have unique condi-
tions in terms of population, city layout, climate, and population
density. As a result, it is common to see machine learning models
trained separately for di�erent markets. We also need to fre-
quently retrain the models when we detect model performance
degradation due to the changing market conditions, and we need
to independently trigger the retraining of the models for a city.
Often it is not e�cient to blindly re-train the models for all the
cities, e.g., the training data for real-time demand forecasts can
easily go up as much as terabytes for one city. Instead, we would
like to retrain the models periodically if performance evaluation
shows the need.

To solve the model management issue across heterogenous use
cases, a system to manage a variety of machine learning models
across di�erent frameworks, languages, and usage patterns, from
model exploration to models deployed in production, is necessary.
To be clear, we refer to a machine learning model as an abstract
data transformation which we can use to solve a particular prob-
lem or business use case. A model contains the speci�cation of
the input, output, and transformation, e.g., linear regression or
random forest classi�cation and all the corresponding hyperpa-
rameters. A model instance consists of a set of coe�cients that is
a learned representation of a given model on a particular training
data set. The terms “model” and “model instance” are commonly
used interchangeably when there is no ambiguity. Accordingly,
we de�ne the model management problem as: how to consis-
tently and scalably manage a large number of complex models
and model instances across stages of a model lifecycle.

3 THE GALLERY SYSTEM
In the section, we describe Gallery, a model lifecycle management
system, built at Uber to solve the aforementioned model man-
agement problems. We �rst introduce the principles that guide
our design. Then, we discuss the overall system architecture,
followed by the description of each major system component.

3.1 Design Principles
Immutable. Any machine learning model and model instance

generated and managed in our system is immutable. Any update
of a model or model instance will result in a new version in
production. This is critical to guarantee no unexpected behavior
in production, and ensures that all decisions can be traced back
to a speci�c model version. This builds the foundation for model
performance observability and debuggability.

Model Neutral. Each model is treated as a black box and the
model management system does not interpret the models. In this
way, we can have one system to provide management for the
varying models built for each application, e.g., a deep learning
model using TensorFlow or PyTorch, or linear regression models
using scikit-learn. Users are not blocked from leveraging the
model management system because of their modeling technology
choices.

Framework Agnostic. Any framework for model training, eval-
uation, deployment and serving, e.g., model exploration with
Python code manually on a local server or scheduled pipelines
to train models in production, could be seamlessly integrated
with the model management system. With this �exibility, we can
manage models from all di�erent machine learning projects at
di�erent development stages. This lowers the on-boarding cost
for new users and provides model management support for a
wide array of use cases.

Automation. With a large number of machine learning models
and model instances, automatically moving models across dif-
ferent stages in the lifecycle is the key to high scalability and
velocity. Achieving automation requires the management sys-
tem to have an integrated holistic view of the model work�ow
including training, evaluation and deployment.

3.2 Overall Architecture
We show the overall view of the Gallery architecture in Figure 2.
Advanced model management is a core component of a machine
learning system as it orchestrates the �ow of a model across
di�erent stages of a lifecycle. For the sake of completeness, we in-
clude a generic machine learning system that encompass the basic
stages of a machine learning lifecycle and the data infrastructure
we leverage in Gallery for the storage in the architecture. We
describe the major components of the Gallery system separately
in the rest of this section.

3.3 Data Model
To manage the lifecycle of a machine learning model, Gallery col-
lects data of models, model instances, and model performance, and
the corresponding metadata information. We present a simpli�ed
version of the basic Gallery data model in Figure 3.

3.3.1 Model. A machine learning model is generally a rep-
resentation of a transformation from a given input to a given
output. We use model metadata to store the basic model informa-
tion including the model owner, model description (e.g., linear
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Figure 2: Gallery Overall Architecture

regression formula or neural network structure), features, hyper-
parameters, and also the information on how the model can be
trained and served.

Building machine learning models is always an iterative pro-
cess through which we generally start with a simple baseline
model and subsequently improve the model performance by op-
timizing the model structure, tuning the hyperparameters, or
updating the model features. Therefore, we keep track of the
evolution of a model through next and previous pointers in the
model record. In a complex production system, we often have
one model depending on the output of other models. To get a
holistic view of the application of machine learning models in
such a system, we also keep track of the model dependency via
upstream and downstream pointers.

3.3.2 Model Instance. A model instance is a realization of a
model given a set of training data. It consists of the model pa-
rameters learnt from the training data and it is used to construct
the model in serving for prediction. To achieve model neutrality,
we treat model instances as uninterpreted binary blob data and
any updates to the blob will be versioned as a new instance in
Gallery. As a result, Gallery can not interpret any model and
treats all the models the same. Depending on the types of models,
the model instance sizes vary from a few KBs to 10s GBs. Model
blob storage is abstracted from the users, and the blob is saved
via Gallery in distributed data storage systems, e.g., S3 or HDFS.

We decouple the storage of the model instance blob with other
model information. Each model instance has a �eld to record the
model instance blob location, which could be a HDFS or S3 path.

For a model instance, we use metadata to keep track of the
training data, training framework, and other con�gurations (e.g.,
seed for random number generator, number of epochs for training
a deep learning model) we have set for the training to generate
the model instance. Storing all the information about the models
and model instances allow users of Gallery to closely reproduce
their model instances on demand. Note that it is not always

possible to generate exactly the same model instance due to the
randomness introduced in training the models.

3.3.3 Model Performance. We track the performance of ev-
ery model instance for o�ine model evaluation and online per-
formance monitoring. When users measure their models either
o�ine or online, they can write blobs of evaluation metrics that
pertain to a speci�c mode instance. Each metric also has its own
set of metadata to describe the nature of the evaluation. We store
metrics as blobs in order to remain model neutral and frame-
work agnostic. For di�erent model evaluations, we can have
di�erent metrics, e.g., precision, recall, AUC for classi�cation
models and MSE (Mean Squared Error), MAPE (Mean Absolute
Percentage Error) for regressions models. There are also a lot of
customized metrics de�ned for application-speci�c evaluations.
Gallery treats all the metrics the same and the metrics take the
form of a structured blob with the basic format of “<metric>:
<value>” pairs.

3.3.4 Metadata. As shown in the Figure 3, for Gallery models,
model instances, and model performance, we keep a comprehen-
sive set of metadata to identify model ownership, associate each
model with its serving context, and link models to their training
datasets. With metadata, we can improve the discoverability of
models and instances by enabling search over key metadata �elds.
We record all necessary con�gurations, e.g., training code pointer,
hyperparameters, and training data location and version, to make
model instances reproducible. We provide a standard set of meta-
data �elds and naming conventions to unify the characteristics
of a model over a production system.

Note that none of the metadata about a model or a model
instance is generated in Gallery. Users of Gallery need to save
the information to Gallery via APIs within the Gallery server. An
example of the usage of the Gallery APIs is presented in Section
4.1. Gallery simply manages the information and indexes the data
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Figure 3: Gallery Basic Data Model

for querying. As a result, Gallery is model neutral and agnostic
to any modeling framework.

3.4 Model Versioning
Model versioning is an approach to uniquely identify a model
or model instance. It is the foundation for model immutability.
With versioning, we never override an existing model or model
instance. Any update to a model or model instance will introduce
a new version. We keep track of the update history as the lineage
of the model or model instance.

Versioning of code or artifacts is a basic requirement for any
production system.While it is standard to use Git for code version
control, there is no such standard for versioning models or model
instances. As a result, many users derive their own versioning
schemas, like Semantic Versioning [8] and timestamps, which
lead to high maintenance costs due to lack of standandarization
across users users and applications. Gallery abstracts model ver-
sioning away from users, analogous to what Git provides to code,
and provides APIs for users to trace model lineages.

3.4.1 Model Instance Versioning. Each model can have one or
multiple model instances. We not only version models, but also
model instances. This is because bothmodels andmodel instances
have their own notions of change that need to be tracked. An
update to a model represents some change to the underlying data
transform such as feature and hyperparameter changes. Typically,
these changes happen in response to new approaches for solving
a problem and are usually less frequent than model instance
updates. Model instance versions represent updates against an
existing model with new training data. In production, periodic
retraining is expected as new training data becomes available, and

information about retraining is captured in the model instance
versioning.

The versioning approach we took before Gallery is based on se-
mantic versioning using the format of “<major>.<minor>.<patch>”.
A version example for a demand forecasting model instance is
"1.3.10". We adhere to the following basic version updating rules:
1) update major versions when model architectures change, e.g.,
from linear regression to neural network; 2) update minor ver-
sions when features or hyper-parameters change, e.g., adding a
new feature, and 3) update patch versions when the model in-
stance is retrained. This approach works well when we have one
simple forecasting model for a handful of cities. However, it is
not manageable when we build and launch multiple forecasting
model for hundreds of cities. As di�erent models might perform
better or worse for di�erent cities and the forecasting model
performance might degrade gradually due to the changes in the
Uber business, we expect retraining models to improve model
performance. However we do not want to retrain models for all
the cities if one city performs poorly since that needlessly wastes
computing resources. As a result, we very quickly end up with
multiple model versions for di�erent cites in the production sys-
tem which becomes impossible to manually manage. The basic
semantic versioning schema also loses meaning because cities
are no longer aligned against the same versions.

In Gallery, instead of incorporating model semantics into the
versions, we adopted a Git style versioning approach and assign a
UUID for each model instance. We associate metadata to capture
the model semantics and make it easy to search for. To be speci�c,
when users create a new model, they declare a base version
id for the model. The base version id is the top-level identi�er
that is linked to all its descendent model instances. Typically, a
base version id represents some approach to solving a particular
problem (e.g., demand forecasting). Each time a model instance
is trained, a unique identi�er is assigned to the trained model
and its metadata tracks which base version id the instance was
trained from. In this way, users can query for speci�c model
instances, or traverse the evolution of their model by following
all instances linked to a given base version id.

Figure 4 shows one example of a model and model instance.
There are two base model version ids “demand_conversion” and
“supply_cancellation” which represent models for the correspond-
ing business problems. For example, “supply_cancellation” has
evolved over four iterations with di�erent model instances which
are identi�ed by four di�erent UUIDs. The model instances are
sorted by time and linked to the base model they were trained
from.

3.4.2 DependencyManagementWith Versioning. Besidesmodel
and instance identi�cation, versioning is at the core of model
dependency tracking and management. As collaboration grows
within a production system and models become more advanced,
there are scenarios where models become dependent on one an-
other. For example, the output of one demand forecasting model
could be used as a feature for a pricing model. As systems become
more complex, these types of relationships become very di�cult
to track. Tracking these relationships is an important prerequisite
for understanding how a model impacts the entire production
environment with a holistic view. Users need to be aware of the
consequences of changes in their models, or need to be aware
that changes in their model’s behavior could be due to upstream
dependencies. For example, the performance of Model A could
improve even though the only change is on its upstream Model
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Figure 4: Model and Model Instance Versioning

Figure 5: Model Dependency Graph

Figure 6: Model Dependency Update

B. Without tracking this dependency relationship, we would lose
track of Model B’s impact on the production system.

Here, we present one example to show how dependencies
of 5 models are managed by Gallery. In Figure 5, we show a
dependency graph of �ve models. Both Model X and Y depend on
Model A and Model A depends on Model B and C. For readability,
we use numbers instead of UUIDs to represent the model instance
versions in this example. In Figure 6, we show the case of a model
dependency update. When we update instance of Model B from
version 2.0 to 2.1, this triggers the version updates for all Model
B’s downstream models including A, X and Y. Considering that
there is no real change of Model A, X or Y, we automatically
update the model instance version by adding a newmodel version
to Gallery without changing the production versions. The owner

Figure 7: Adding New Model Dependency

of Model A can choose to upgrade to the new model version,
if they want to include the updated Model B. But, models are
not automatically updated because we would like users to be
aware that their model dependencies have changed before their
production environment is updated.

Figure 7 shows a use case when we add a new model de-
pendency for an existing model. By adding the Model D as the
dependency of Model A, we will automatically update model
A’s instance version to 4.2. Accordingly, the downstream Mod-
els X and Y will also be updated to instance version 7.2 and 8.2
separately.

Dependencies between models are established by the user
when models are �rst registered in Gallery. When adding models,
Gallery provides operations for the user to add dependent models
by their uuids. There are also operations exposed for updating or
removing dependencies. Once the dependencies are established,
Gallery provides users with APIs to query their model’s upstream
or downstream dependencies and will track model updates across
dependencies.

3.5 Model Storage
The Gallery model storage layer de�nes the interface through
which model blobs, metadata, and metrics are stored and re-
trieved. We have the following model storage requirements:
searchability, agnostic, high availability, and low-latency.

To satisfy these requirements, we build the Gallery model stor-
age using a hybrid approach. Considering that model metadata
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and metrics are commonly structured data, we use a relational
database, e.g., MySQL, for storing metadata and providing sup-
port of �exible queries. The MySQL service is supported by the
Uber infrastructure team to guarantee high availability and de-
ployed cross data centers. Considering the enormity of models
and model instances, we would not be able to scale up to handle
thousands of models and instances if we need to interpret each
model. As a result, we treat each model equally and store each
model blob as binary data. We leverage Uber’s large data storage
service built on top of S3 and HDFS to store the model blobs to
achieve model neutral and framework agnostic design principles.
We expect Gallery users to provide their models as serialized
binaries, which are in turn stored in Uber’s large data storage
service. The storage locations are subsequently stored as part of
the model metadata so that they can be retrieved at serving time.
Another bene�t of taking this approach to save model blobs is
that it does not have data size constraints, which can be an issue
for large deep learning models. To handle cases of inconsistent
data due to system failures, e.g., MySQL or HDFS write fails, we
always write model blobs �rst and only write the model metadata
after the model blobs are successfully stored. If the model blob
of a model instance is saved but the metadata fails to save, then
the model instance will not be available in the system.

Model metadata searchability is critical for users managing a
high volume of models. Users conducting experiments or man-
aging production environments need the ability to easily search
and query models based on key metadata like training dates,
model type, and features. Model searchability allows easy track-
ing of all models in the wild and more e�cient analysis and
experimentation over the various models.

Brie�y, model storage is accessed via a uni�ed DAL (data
access layer). The model performance metrics are saved and
read from MySQL to support �exible queries for analysis and
monitoring. When models instance blobs are queried, the request
�rst goes to MySQL to get the location of the model blob, and
then the model is directly accessed via the storage location. The
cache is updated with the requested blob and then is subsequently
returned to the user.

3.6 Model Performance and Health
When building and maintaining production-grade software sys-
tems, it is standard to de�ne SLAs with consumers to establish
accountability and trust. Typical SLAs for software systems in-
clude availability, latency, and throughput. For machine learning
systems, we also would like to have SLAs on performance. We
de�ne model health as a set of metrics and standards for users to
adhere to in order to guarantee some level of accountability of
models in Gallery.

More speci�cally, we de�ne two categories of metrics to mea-
sure the model health. One category of the metrics is on the
completeness of model information, which consists of metadata
for model reproducibility and model performance. Production
models should contain enough metadata to reproduce the model
and annotate the behavior leading to a decision. Di�erent models
may have di�erent performance metrics. In Gallery, we ensure
that the performance of each model is evaluated and stored for
monitoring and analysis.

The second category of model health metrics provides a holis-
tic view of model performance across model lifecycle stages
including training, validation and production. All model perfor-
mance is agnostic to the system and provided by the applications.

Model training performance is generally available as a by-product
of model training. Model validation performance is produced by
validation processes or backtesting and is used to check for model
over�tting or as a gauge of whether to deploy a model to produc-
tion. Model production performance is measured against served
predictions and re�ects the online performance of a model. The
evaluation criteria for each performance metric is entirely up
to the user and is con�gurable, since di�erent models and ap-
plications optimize for varying outcomes. We store an object of
metrics in Gallery and de�ne the above metrics as guidelines for
users.

With model performance metrics, we can derive various in-
sights about the models in Gallery. The insights can give model
owners a signal on how their model behaves over time, informa-
tion about their serving environment, and establishes a level of
trust between model owners and model consumers. Here are two
examples of insights that Gallery can provide: model drift and
production skew.

Model Dri� . Model drift refers to the case when the statisti-
cal properties of the target variable, which the model is trying
to predict, change over time in unpredictable ways. With real-
time platforms, data changes. Accordingly, if the data we use in
production gradually evolve to have di�erent patterns from the
data we use in the training, we may see the model performance
degrade over time. Considering Uber’s rapid growth in many
markets, this drift can occur and once detected, triggers model
re-training via Gallery rule engine using the new training data.

Production Skew. Production skew is the di�erence between
performance at training time and serving time. Multiple factors
can result in production skew, such as bugs in training or serving
implementation, or discrepancies between training data and data
feeding to model serving. The ability to detect production skew
is critical for model performance monitoring.

3.7 Orchestration Rule Engine
As the number of models and model instances grow in a pro-
duction system, it becomes increasingly di�cult to manually
manage their various states. Therefore, we designed and built a
rule engine in Gallery to orchestrate the model work�ows. Based
on the model metadata, such as deployment con�guration and
various model performance metrics in Gallery, users can de�ne
conditions and actions in rules to automatically move the models
across the stages of the lifecycle, such as model deployment and
serving, monitoring and retraining, and deprecation.

In the following section, we �rst show the basic automations
we need in the model lifecycle stages where the rule engine can
help. Then, we describe our design of the rule engine system and
illustrate how it works with examples.

Model Deployment and Serving Automation. When we gen-
erate model instances through training, we decide whether to
deploy a model instance to production and replace the existing
instance. It is common to have multiple models and instances
deployed in production and use rules to select the best performer
for serving, based on performance metrics generated by evalua-
tion systems. Normally, di�erent applications will have their own
evaluation systems to measure the performance of the models.
For example, in real-time forecasting, we have a heuristic model
which uses the mean value of last 5 minutes as the forecasts.
The heuristic model is stable and consistent, but may not always
produce the best performance. We also have complex forecasting
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models that take in more features, like historical data, into the
prediction, which are generally better performing but may not
perform well when there are unanticipated events not speci�-
cally considered in the modeling. We have a real-time system
to evaluate the performance of the models. Therefore, we can
combine the bene�ts of di�erent models to achieve the overall
best performance by using the model metrics in Gallery to make
decisions. With a rule engine, we can de�ne the model candidates
to consider and the selection criteria for choosing a champion.
At serving time, users will query Gallery for the champion model
to serve based on the user-de�ned rules.

Model Monitoring and Retraining. After we train models and
deploy model instances into production, we need to keep mon-
itoring the performance and alert in cases like model drift, as
discussed in the previous section. At the same time, model perfor-
mance can degrade because the training data we used to �t the
model no longer best represents the production data. Therefore,
we can re-train the model with the latest training data. With a
rule engine, we can set rules to automatically detect model drift,
send out alerts, and trigger model training.

Model Deprecation. Models are not used forever, we may not
always improve the performance of a model by retraining, and
we keep experimenting with new models. When a model consis-
tently performs worse than other models, we should deprecate it
to save computational resources. Users can utilize the rule engine
to de�ne the deprecation criteria based on sustained underper-
formance, and training and serving costs, e.g., training takes too
long or requires a large amount of computational resources. This
precaution allows users to ensure that their production systems
are not being negatively impacted by poorly performing models.
When a model or model instance is deprecated, we would not
delete them from the system, but rather �ag them as deprecated.
With the �ag, we can skip them during model fetching or search-
ing. Any application depending on these deprecated models or
model instances can still use them until the application �nishes
migration to new models.

3.7.1 Rule Engine Design. To satisfy the needs of orchestrat-
ing models across lifecycle stages in production, we identify
three requirements to design the rule engine: rules being easy to
understand, reliable, and agnostic to supporting services.

Making rules easy to understand and safe to update is the �rst
principle. We use the rules to control the production systems for
model deployment and serving. We need to make sure Gallery
users understand the rules and have con�dence updating the rules
to avoid outages due to unexpected rule usage or changes. At the
same time, we need to make sure the system reliably applies the
rules within a reasonable response time (SLA) when the rule is
triggered. The rule engine needs also to be framework-agnostic
so that any model training, monitoring, or serving components
can leverage and integrate with the Gallery.

Based on frequent use cases, Gallery leverages two type of
rules: model selection rules and action rules. Applying a model
selection rule will return a model based on some selection criteria,
e.g., returning the model that maximize AUC (area under curve).
Applying an action rule will trigger some event, e.g., deploying
a model instance. To make the rule engine agnostic to di�erent
frameworks within the machine learning work�ow, we expect
users to de�ne callback functions that will be triggered by the
rule engine. For example, to deploy a real-time forecasting model,
we have one action that automatically makes a con�guration

change, via http request, that updates the version of the model
served to consumers. There are also a default set of common
actions that users can leverage or extend, like sending an email
or alerting.

We use the classical Given/When/Then model to de�ne rules.
More concretely, for “Then” we de�ne two templates: model
selection and callback action. For example, the following rule is
designed for the selection of a forecasting model.

Listing 1: Model Selection Rule Example
{

�team�: �forecasting�,
�uuid�: �316b3ab4-2509-4ea7-8025-ca879dac61�,
�rule�: {

�GIVEN�: modelName ==
�linear_regression�
AND model_domain == �UberX�,

�WHEN�: �metrics[�mae�] <= 5�,
�ENVIRONMENT�: �production�,
�MODEL_SELECTION�:
�a.created_time > b.created_time�

}
}

With this rule, we select the latest trained linear regression model
if the model performance is good, i.e., mae (mean absolute error)
is less than 5. This rule allows the user to automatically fetch the
freshest models and have con�dence that the returned models
are within their accepted error threshold.

The following is an example of an action rule which speci�es:
when we have a new model instance, and if the model perfor-
mance is within a threshold, e.g., forecasting bias less than 0.1
and greater than -0.1, we can deploy the model in production.

Listing 2: Action Rule Example
{

�team�: �forecasting�,
�uuid�: �43057544-92b0-4421-a1b0-d7d87f77a�,
�rule�: {

�GIVEN�: �model_domain == �UberX�
AND model_name == �Random Forest�,

�WHEN�: �metrics.bias <= 0.1
AND metrics.bias > -0.1�,

�CALLBACK_ACTIONS�: [
{

�action�:�forecasting_deployment�
}

],
�ENVIRONMENT�: �production�
}

}

3.7.2 Rule Engine Implementation. We show the overall ar-
chitecture of the Gallery rule engine in Figure 8. For rule storage,
we use a Git repository. To add or update a rule, users need to
check it into Git within their allocated directory. The advantage
of using Git is that we automatically have version control for the
rules, which is critical for a production environment and enables
us to set up a test framework to validate each rule before it can
impact production. With Git, we can also easily enforce the peer
review process for the rules to avoid production outages due to
accidental updates of rules. We use Java Expression Language
(JEXL) [2] to implement the rules.

The rule evaluation implementation is event based and we
currently have two kinds of events to trigger the evaluation of a
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Figure 8: Gallery Rule Engine

rule: 1) directly sending a request to the rule trigger or 2) updating
any metadata or metrics speci�c in a registered rule. Since we
focus on two types of customized rules, we implement the rule
evaluation ourselves instead of using other rule engines. In Figure
8, we demonstrate the work�ow of the rules with two application
clients. Client 1 has a model selection rule and sends the rule
directly to the rule engine trigger via Gallery service. The rule
is �rst placed in the job queue and goes through the evaluation
during which the performance metrics of the related models
are queried from the storage. Then the best model instance is
fetched and returned to Client 1 via a Gallery service based on
the condition in the rule.

Client 2 has an action rule registered in the Git rule repo.
Whenever there is an update of the corresponding metadata or
metric speci�ed in the rule via a Gallery service, the evaluation
of the rule will start and the job is put into evaluation job queue.
If there are any action triggers, then the callback speci�ed in
the rule is executed, e.g., "when a model instance performance
metric mae is less than 0.2, we deploy the model in production."

4 GALLERY IMPLEMENTATION AND
USAGE CASE STUDIES

Gallery was built by the Uber Marketplace team for managing
forecasting models to improve the Uber plaftform. We leverage
the Uber storage infrastructure for saving the model related in-
formation and we built Gallery as a stateless microservice that
includes versioning, dependency management and rule engine in
Java. Gallery was designed and built to be horizontally scalable
across di�erent data centers.

Before Gallery, there was a lot of manual cost and overhead to
manage our forecasting models. For about 100 models, engineers
and data scientists spent 1-2 hours a day manipulating �les on
HDFS and Git, measuring performance and triggering model
retraining. Now, Gallery has been in production for two years
and is supported as part of Uber’s Michelangelo ML platform.
Under Michelangelo, Gallery is managing more than 1 million
model instances for many machine learning applications, and

engineers or data scientists no longer spend time managing �les
and training scripts, but instead are able to spend their energy
on model iteration and experiments.

4.1 Gallery Interface
Gallery users interact with Gallery via a standard set of Thrift
APIs with language-speci�c clients. By using Thrift, users can
access the functionality of Gallery in their ownmodeling environ-
ment and language of their choice (e.g., Jupyter notebook, Spark
application, services build in Java). With the APIs, Gallery users
can manage their models cross the stages of a model lifecycle. In
the following example, we use a Python application example to
show one typical Gallery user work�ow using the basic Gallery
APIs.

���
Train a ML model using SparkML and upload the

model blob to Gallery with model instance
metadata information.

���
# Using a SparlML pipeline to fit a model
model_object = pipeline.fit(train_df)
# Model is serialized to a binary blob
model_content = serialize(model_object)

# Create and upload the trained model instance
with metadata to Gallery.

model = createGalleryModel(project=�example -
project �, base_version_id=�supply_rejection �
)

# Add model instance information
modelInstance = createModelInstance(model)
modelInstance.content = model_content
modelInstance.modelName = �Random Forest �
modelInstance.city = �New York City�
modelInstance.modelType = �SparkML �
modelInstance.trainingDataSet = �...�
modelInstance.trainingDataMetadata = �...�
...

# Update model instance to Gallery
modelInstanceId = uploadModel(project=�example -

project �, base_version_id=�supply_rejection �
, modelInstanceRecord=modelInstance

)

Listing 3: Create and Save Gallery Model

The sample code in Listing 3 shows that we use SparkML to
train a machine learning model and serialize the model into a
binary blob. Then we add the related model instance metadata
information and save the model instance to Gallery.

# Upload a model instance performance metric
modelPerformanceRecord = ModelEvaluationMetric(

metricName=�bias�,
scope=�Validation �,
value =0.05
)

insertModelInstanceMetric(project=�example -
project �, modelInstanceId=modelInstanceId ,
modelPerformanceRecord=
modelPerformanceRecord

)

Listing 4: Save Model Performance Metric
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With the model instance we have trained previously, we keep
track of the model evaluation performance by saving the per-
formance metrics in Gallery as shown in the sample code in
Listing 4. At the same time, if we have one rule similar to what
is shown in Listing 2 registered in the rule Git repository, then
the corresponding model deployment process might be triggered
based on a rule condition. How to automatically deploy model in
production is di�erent for di�erent serving systems and we leave
this part to Gallery users to de�ne their own callback functions.
For example, a realtime forecasting model is deployed in Uber by
updating some con�guration which is continuously monitored
by the forecasting serving system in production.

# Model query with a given performance criteria
searchConstraint = [

{�field �:�projectId �, �operator �:equal ,
�value �:�example -project �},

{�field �:�modelName �, �operator �:equal ,
�value �:�random_forest �},

{�field �:�metricName �, �operator �:equal ,
�value �:�bias�},

{�field �:�metricValue �, �operator �:
smaller_than , �value �:0.25}

]
modelInstance = modelQuery(searchConstraint)

Listing 5: Model Search

We save the related metadata and performance metrics of the
models and model instances in Gallery. Then, we could fetch the
models we want with the conditions as shown in Listing 5.

4.2 Case 1: Marketplace Forecasting
At Uber, the Marketplace Forecasting team generates real-time
and long-term forecasts for multiple applications, including dri-
ver suggestions and pricing [4]. Multiple supply and demand
models have evolved through di�erent model classes ranging
from simple time series models, linear regression models, and
now deep learning models. Each model class is trained and de-
ployed per city Uber operates in. Each city faces di�erent market
dynamics, and classes of models perform di�erently based on
certain spatial or temporal characteristics of the city. Therefore,
the team needs a mechanism to track and train each model’s
performance on a per city basis, and a systematic way to deter-
mine which model class to serve at a given time. As a result,
the Marketplace Forecasting team alone has thousands of model
instances to maintain and decisions to make each minute about
which model to serve. Gallery’s model management solution
with storage and automation via rule engine has reduced model
deployment from two hours of engineering work per model to 0.

Another use case is dynamic model switching for forecasts
when there are events e.g., holidays. Via action rules, Gallery is
able to inform forecasting serving system about the performance
of models that include holiday/event features versus those that
do not, and subsequently switch to serve the appropriate mod-
els for the duration of the event. This improves the accuracy of
the served predictions by more than 10% MAPE (Mean Absolute
Percent Error) compared to a static served model. Furthermore,
Model Health alerts continue to monitor the performance of such
models and can alert engineers regarding issues with predic-
tion accuracy. These alerts have proven useful in the case of un-
planned events (e.g., public transit outages) that cause unexpected
spikes in demand, and gives engineers or ops an opportunity to
intervene and mitigate the performance degradation.

4.3 Case 2: Marketplace Simulation Platform
The Marketplace Simulation platform [5] hosts a simulated world
with driver-partners and riders, mimicking scenarios in the real
world. Leveraging an agent-based discrete event simulator, the
platform allows Uber Marketplace engineers and data scientists
to rapidly prototype and test new features and hypotheses in a
risk-free environment.

Priori to leveraging Gallery, one issue the simulation platform
had is model reusability. ML developers implemented models
directly in the simulator and trained them on the �y as the simu-
lator ran. As a result, the complexity of the system and the wide
array of models being simulated degraded the performance of
the platform.

Gallery became part of the solution by providing the simula-
tion platform with metadata and model binary storage, which
enabled the platform to decouple model training and serving.
O�ine processes can store reusable model instances into Gallery,
and the simulation backend service can instantiate such models
as they’re needed. This decoupling allows model developers to
iterate and evolve their models, independently of the simulator’s
backend, whereas before they need to wait for the entire end-
to-end process each time they trained/updated a model. Once a
model developer is satis�ed with their model, they can store their
model in Gallery, which will signal to the backend service the
presence of a new model. Furthermore, decoupling model train-
ing workloads from the simulator, allowed the Simulation team
to simplify the complexity of the simulator reduce maintenance
costs, conserve hardware resources while improving system e�-
ciency. The Gallery system has saved the simulation platform an
estimated 8GB memory and one hour CPU time per simulation.

5 RELATEDWORK
With the proliferation of Big Data and large-scale computing (e.g.,
MapReduce [16], Apache Spark[31]), several scalable machine
learning platforms [32] have emerged in recent years with the
focus of machine learning training on a large amount of data.
Apache Spark is a general data processing framework. MLlib [20,
23], the machine learning library added to Apache Spark, makes
Apache Spark broadly used for some simple large-scale machine
learning model training. However, for complex machine learning
tasks, especially deep learning [17], which requires state updates
and iteration, parameter server architecture is used for enabling
in-place updates for very large parameters, e.g., Parameter Server
[18], PMLS [30], Google DistBelief [15]. TensorFlow [11] and
MXNet [24] are advanced machine learning frameworks focusing
more on the deep learning problem and can fully utilize di�erent
devices like CPU and GPU.

Managing a large number of machine learning models in pro-
duction is challenging. There is an ever-increasing interest in
the problem and several academic and industry e�orts have been
published. ModelDB [28] is an open source model management
system which provides APIs for saving models and associated
metadata, measuring performance, and querying models. It has a
web-frontend for easy visualization and summary of the model
information. ModelDB also provides clients with the ability to
integrate its model management features with Apache Spark ML
and scikit-learn [25]. However, there is no orchestration of model
training, serving and deployment in ModelDB.

A lightweight system is proposed in [27] to extract, store, and
manage machine learning model metadata. It tracks the prove-
nance information of datasets, models, predictions, evaluations
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Table 1: Model Management System Comparison (Y: Yes, N: No)

Systems Saving Loading Metadata Searching Serving Metrics Orchestration
ModelDB [28] Y Y Y Y N Y N
ModelHUB [21] Y Y Y Y N Y N

Metadata Tracking [27] N N Y Y N Y N
Velox [13] Y Y Y N Y Y Y
Clipper [14] Y Y N N Y Y Y
MLFlow [22] Y Y Y Y Y Y N
TFX [12] Y Y Y N Y Y Y

Azure ML [1] Y Y N N Y N Y
SageMaker [26] Y Y N N Y N Y

Gallery Y Y Y Y N Y Y

and training runs in machine learning experiments. With model
metadata and provenance, the system provides a basis for com-
parability and repeatability of machine learning experiments.
Similar to ModelDB, there is no orchestration of machine learn-
ing stages in this system. This system is focusing on the metadata
associated with model experiments instead of managing the ma-
chine learning models.

ModelHUB [21] was built to manage the lifecycle of deep
learning models. Considering the huge space of potential deep
learning models by tweaking neural network architectures and
hyperparameters, ModelHUB compactly stores a large number
of models and snapshots with fast query performance. It also
keeps track of the model metadata including the model accuracy
score. ModelHUB focuses on deep learning models and is not
framework agnostic.

Velox [13] is a low-latency and large-scale model serving sys-
tem. It focuses on making the model serving e�cient by caching
computation and scaling out model prediction. Velox leverages a
cluster computation framework and incremental model updates
to scale out the model training process. Velox also manages the
model lifecycle by detecting model performance degradation to
trigger model rollback or re-training. However, the project was
deprecated [29].

Clipper [14], the follow-up project of Velox, is a general-purpose
low-latency prediction serving system. It can incorporate mul-
tiple machine learning frameworks including TensorFlow [11],
Apache Spark [31] and scikit-learn [25]. Similar to Velox, it uses
caching, as well as batch and adaptive model selection to improve
model prediction latency and performance. Clipper focuses on
serving models with low latency across di�erent frameworks.

ML�ow [22] is an open source platform under active devel-
opment for managing the machine learning lifecycle. There are
three major components in ML�ow: ML�ow Tracking, which
tracks the experiments results and parameters; ML�ow Project,
which packages the ML code to be easily reproducible; and
MLFlow Model, which provides a standard format for packaging
ML models across di�erent libraries or framework. The same
model could be packed with di�erent �avors such that a model
could be applied in di�erent frameworks, e.g., a TensorFlow
model can be used with TensorFlow �avor or python function
�avor. With this ML�ow Model format, the models can be used
in a variety of downstream tools, e.g., real-time serving through
a REST API or batch inference on Apache Spark. MLFlow also
provides CLI to run the ML�ow models for model deployment.
However, there is no orchestration to coordinate the moving of
models across di�erent stages in a model lifecycle.

TFX [12] is a production-scale machine learning platform for
TensorFlow and it consists of multiple components for machine
learning, including data transformation, model training, model
evaluation, and model serving. With the TensorFlow serving
component [9], TensorFlow models can be deployed and served
in production. However, TensorFlow serving is a not generic
component for managing a variety of machine learning models
using di�erent frameworks. Kube�ow [3] is a project to make
deploying ML work�ows on Kubernetes simple, portable, and
scalable. It started as an open source project from Google that
highlighted how the company ran Tensor�ow internally based
on TFX. Now, Kube�ow has extended to be a multi-architecture,
multi-cloud framework for running entire ML pipelines.

Azure ML [1] is a machine learning platform where we can
process data, build models and publish and stage a predictive
model as an Azure-based service. Similar to Azure ML [1], AWS
SageMaker [26] also provides the functionality to build models,
train models, and deploy models in production. Both Azure ML
and AWS SageMaker are closed systems making single compo-
nent integrations challenging. The model management in Azure
ML and AWS SageMaker is really focused on training a model
and deploying a model in its own system. They are not model
neutral and framework agnostic. Kepler [19] and Taverna [10]
are popular scienti�c work�ow systems which manage complex
data analytics pipelines including data access, data analysis and
mining steps, and many other steps including computationally
intensive jobs on high-performance cluster computers.

We present a feature comparison of di�erent model manage-
ment systems in Table 1.

6 LESSONS LEARNT IN BUILDING GALLERY
6.1 Common ML Tools
Machine learning is becoming the essential component of many
Uber product features. Accordingly, more and more teams at
Uber are using machine learning or beginning to use machine
learning. Di�erent teams might be at di�erent maturity stages of
applying machine learning depending on the team’s experience,
but all of them will go through solving the common issues of
managing the models in a machine learning application. Without
shared common ML infrastructure tools, each team might waste
a lot of resources to “reinvent the wheel.” When we built Gallery,
many teams express the similar needs of Gallery to manage their
models. As a result, we made Gallery part of Uber’s standard ML
infrastructure as part of Michelangelo so that it could bene�t
all the teams at Uber. It also shows the importance of building
common ML tools so that all the product teams can boost their
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productivity by focusing on their own business problems and
model iterations without worrying about how to train, manage
and serve their models.

6.2 Model Reproducibility
Shortly after onboarding the �rst group of users of Gallery, we
observed and learned that one of the more desired features was
model reproducibility. Reproducibility was not one of the original
use cases we had in mind when we built Gallery. Instead, we had
focused directly on performance tracking and alerting. However,
it became clear that a user’s natural follow-up to an alert is to
attempt to reproduce the problem, and it was apparent a model
management system needs to support this functionality. The
original Gallery data model did not include many of the metadata
components included today that led to model reproducibility (e.g.,
training data information, training frameworks and features), but
an important lesson learned is that reproducibility is central to
supporting the ML model lifecycle. Users need the ability to
recreate models or replay history in order to understand their
production �ows and debug performance. Gallery has proven to
be a valuable tool for model builders at Uber in simplifying the
model debugging process.

6.3 Tiered Service O�ering
Another lesson we have learned during the development of
Gallery is how to make user adoption of such tools easy. As
discussed before, there is a wide variety of ML tooling being
used at Uber and teams across the company are working against
their own deadlines with di�erent features in their tech stacks.
Therefore, there would be no single opportunity to ask users to
migrate their work�ows and no central mechanism by which
we could directly onboard them to Gallery. Instead, we opted to
provide a tiered set of features and solutions that teams could
leverage as they had the bandwidth and discovered the need. We
wanted our features to be modular in that users at any point in
their maturity could leverage the system, with the opportunity
to add more complex functionalities in the future.

Gallery features are broken up into four groups that are built
on top of one another: 1) model storage and retrieval; 2) meta-
data storage and search; 3) metric storage and search; and 4)
rule engine automation. As teams start to use Gallery in their
systems, they sequence their onboarding based on the features
and complexity that they need to unlock. For teams exploring
new modeling techniques or building a system from scratch, it is
often the case that they only need feature set 1), and optionally
2). Teams doing experimentation have not yet thought about
automation and only need a place to dump models to rapidly do
more testing. However, once teams have built out a model and
are trying to scale to meet business requirements, they then see
the need for feature sets 3) and 4). By using the base functionality
of data storage and retrieval in their experimentation, there is
only an incremental additional e�ort required to unlock more
complex Gallery features that help to automate entire work�ows.
This approach helped Gallery gain quick adoption among �ve
teams with in its �rst six months.

7 CONCLUSIONS
In this paper, we describe the machine learning model manage-
ment problem across the di�erent stages of a model’s lifecycle
for a large number of models and model instances in production

environments at Uber. We describe the model lifecycle manage-
ment system, Gallery, a solution used in production to manage
machine learning models across di�erent services at Uber.

Design for system automation up front is critical to manage
thousands of machine learning models in production. Developing
and applying machine learning models involves multiple stages
across a model’s lifecycle. Manually managing the models and
model instances in production is not scalable and is error-prone.
Building generic systems to be able collect and keep track of
model and instance information, as well as dependencies is criti-
cal for maintaining accurate production systems. On top of the
raw information, we can produce intelligence. With the help of
rules, we can orchestrate the whole modeling work�ow, which
dramatically boosts data scientists and engineers’ productivity
and also makes the machine learning systems more reliable and
scalable.

Building an agnostic model management system is critical for
adoption and user on-boarding. At Uber, there are a large number
of existing machine learning applications, which often leverage
di�erent languages and frameworks for model development and
serving. Building Gallery to be agnostic to machine learning
frameworks has allowed the system to be adopted by many teams
at Uber and has helped the company to align on a common
infrastructure for the machine learning model management.
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